Isaac Newton Institute, Cambridge

Training Course: Pattern Formation, 1 – 5 August 2005

Answers for problem sheet 2: Symmetric bifurcations

1. We show the logically equivalent statement, that reducible reps cannot be absolutely irreducible. Suppose that the real orthogonal representation $\tilde{\rho}(G)$ is reducible. Then there exist invariant subspaces V, V^{\perp} such that $\mathbb{R}^n = V \oplus V^{\perp}$ and $\tilde{\rho}(G)$ acts irreducibly on V. Let $\dim V = m$. Then the matrix

$$A = \begin{pmatrix} aI_m & 0 \\ 0 & 0 \end{pmatrix}$$

where $a \neq 0$ is real, and I_m is the $m \times m$ identity matrix, commutes with the matrices in the representation. But A is not a multiple of the $n \times n$ identity matrix and so the representation is not absolutely irreducible.

- 2. This is proved in the lecture notes, page 10.
- 3. Geometrically, if a 2×2 real matrix commutes with a rotation by an angle less than π , it must be a rotation itself. Then, if this rotation also commutes with a reflection, it must be the identity. In coordinates, check that for a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, if we have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

then a = d and b = c = 0.

4. Using the third-order truncation we find

$$|Df|_{(x,y)} = \begin{pmatrix} \mu - 2ax & 2ay \\ 2ay & \mu + 2ax \end{pmatrix}$$

and the nontrivial branch is located approximately at $0 = \mu - ax + O(x^2)$, y = 0. So at leading order the Jacobian matrix is

$$Df|_{(x,0)} = \begin{pmatrix} -\mu & 0 \\ 0 & 3\mu \end{pmatrix}$$

i.e. the nontrivial is a saddle on both sides of $\mu = 0$ for $|\mu|$ small enough.

5. The solution branch $x_1 = x_2 = x_3$ ('hexagons') is located at $0 = \mu + x - (a+b+c)x^2$. For stability, compute the Jacobian matrix which, by symmetry, has the form

$$Df|_{hex} = \left(egin{array}{ccc} P & Q & R \ R & P & Q \ Q & R & P \end{array}
ight)$$

which is circulant. So the eigenvectors are $e_1=(1,1,1)^T$, $e_2=(1,\omega,\omega^2)^T$ and $e_3=(1,\bar{\omega},\bar{\omega}^2)$ where $\omega=\mathrm{e}^{2\pi\mathrm{i}/3}$. Evaluating the corresponding eigenvalues we find $v_1=x-2(a+b+c)x^2=-2\mu-x$ and $v_2=-2x-2x^2(a+b\omega+c\omega^2)$. $v_3=\bar{v}_2$. Taking real and imaginary parts of v_2 we have $Re(v_2)=0$ when

$$x = \frac{\mu(b+c-2a)}{4a+b+c}$$

1

and, at this point the frequency $Im(v_2)$ is as required.

6.(a) It is enough to check commutativity with the group generators. If a matrix

$$A = \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & k \end{array}\right)$$

commutes with κ_x (forces b=c=d=g=0), with r_x (forces f=-h and e=k), and with r_y (forces a=e and f=0), then A=aI.

(b) The three axial branches are:

Subspace	Isotropy subgroup	Generators
(x, 0, 0)	D_4	κ_y, r_x
(x, x, 0)	$D_2\cong \mathbb{Z}_2 imes \mathbb{Z}_2$	$\kappa_z,\ \kappa_x\circ r_z$
(x,x,x)	D_3	$\kappa_y \circ r_x, \ \kappa_x \circ r_z$

(there is a group orbit of branches in each case). Geometrically these correspond to distorting the cube by pulling or pushing in the middle of a face, the middle of an edge, or at a vertex. Apply the equivariant branching lemma since they all have 1D fixed point subspaces.

(c) Normal form to cubic order is

$$\dot{x} = f_1(x, y, z) = \mu x + ax(y^2 + z^2) + bx^3
\dot{y} = f_2(x, y, z) = \mu y + ay(x^2 + z^2) + by^3
\dot{z} = f_3(x, y, z) = \mu z + az(x^2 + y^2) + bz^3$$

Justification: from κ_x , κ_y , κ_z we see that f_1 is odd in x and even in y and z. Absolute irreducibility implies that the linear terms are just μI . r_x equivariance implies that the coefficients of xy^2 and xz^2 are equal. Then the forms of f_2 and f_3 come from applying $\kappa_x \circ r_z$ and $\kappa_y \circ r_x$.

7. Applying the change of variables in the question we obtain

$$\frac{dA_1}{dT} = \frac{\mu}{(a+b\mu)^3} A_1 - A_2 A_3 - A_1^3 - cA_1 (A_2^2 + A_3^2).$$

Define $\hat{\mu} = \mu/(a+b\mu)^3$. Then as μ increases from small negative values, $\hat{\mu}$ first increases approximately linearly, then reaches a maximum at $\mu = a/b$, $\hat{\mu} = 1/(4ab)$, then decreases to zero with further increases in μ . Now refer to figure 9 from the lecture notes and consider that, as μ increases we traverse the figure from left to right and then back to the left again. So hexagons undergo two D_3 transcritical bifurcations with the rectangle branch and are stable again for large positive μ .

- 8. Generic Hopf bifurcation has either (i) an irreducible but not absolutely irreducible group representation, or (ii) two copies of an absolutely irreducible rep. Since \mathbb{Z}_2 only has one non-trivial rep and it is absolutely irreducible we must be in case (ii) here. So the action of $\mathbb{Z}_2 \times S^1$ on \mathbb{R}^2 must be generated by κ and τ_{θ} as given (note: we could have $\tau_{\theta}(z) = e^{im\theta}z$ for any integer m, but these cases are essentially the same, just with all solutions having an automatic additional \mathbb{Z}_m symmetry). The spatio-temporal symmetry $\kappa \circ \tau_{\pi}$ acts trivially, so $\Sigma = \{I, \kappa \circ \tau_{\pi}\}$ is an isotropy subgroup with a two dimensional fixed point subspace and so is \mathbb{C} -axial, guaranteeing exactly one branch of periodic orbits in a generic Hopf bifurcation.
- 9. If a complex conjugate pair of eigenvalues of A + 2B cross the imaginary axis we have no extra multiplicity due to symmetry. So this is standard Hopf bifurcation, and we expect a unique branch of periodic orbits that have full D_3 symmetry. A solution would take the form (x(t), x(t), x(t)) where x(t) is time-periodic.

In the second case, where a complex conjugate pair of eigenvalues of A-B cross the imaginary axis, the Jacobian matrix DF will have critical eigenvalues with twice the multiplicity, leading to the non-trivial case outlined in the question. Let T be the oscillation period. Then the three \mathbb{C} -axial branches are

Subspace	Isotropy subgroup	Generators	Oscillation pattern
(z,z)	\mathbb{Z}_2	κ	(y(t),y(t),x(t))
(z,0)	\mathbb{Z}_3	$ ho_{\phi}\circ au_{\phi}$	(x(t), x(t+T/3), x(t+2T/3))
(z,-z)	\mathbb{Z}_2	$\kappa \circ \tau_\pi$	$(x(t),x(t+T/2),\hat{y}(t))$

Notice that, in the third case, $\hat{y}(t)$ is forced by symmetry to have exactly half the period of x(t): $\hat{y}(t) = \hat{y}(t+T/2)$. See GS (2002) p70 or GSS (1988) p389. In all cases (in normal form) there is the spatiotemporal symmetry $\rho_{\pi} \circ \tau_{\pi}$ - this fixes all points in \mathbb{C}^2 , and has been omitted for clarity.

2