Isaac Newton Institute, Cambridge
Training Course: Pattern Formation, 1 — 5 August 2005

Answers for problem sheet 2: Symmetric bifurcations

1. We show the logically equivalent statement, that reducible reps cannot be absolutely irreducible. Suppose
that the real orthogonal representation 5(G) is reducible. Then there exist invariant subspaces V, V+ such
that R* = V @ V+ and 5(G) acts irreducibly on V. Let dimV = m. Then the matrix

al,, 0O
A = m
(v 3)
where a # 0 is real, and I,,, is the m x m identity matrix, commutes with the matrices in the representation.
But A is not a multiple of the n x n identity matrix and so the representation is not absolutely irreducible.

2. This is proved in the lecture notes, page 10.

3. Geometrically, if a 2 x 2 real matrix commutes with a rotation by an angle less than , it must be a rotation
itself. Then, if this rotation also commutes with a reflection, it must be the identity. In coordinates, check

that for a matrix (S 3), if we have

a b cosf sinf \ [ cosf sind a b
c d —sinf cosf /  \ —sinf cosf c d

then a =d and b =c¢ = 0.

4. Using the third-order truncation we find

_ U — 2ax 2ay
Dflew = ( 2ay U+ 2az )

and the nontrivial branch is located approximately at 0 = p — az + O(z?), y = 0. So at leading order the
Jacobian matrix is

_ Y
i.e. the nontrivial is a saddle on both sides of y = 0 for |y| small enough.

5. The solution branch z; = x5 = z3 (‘hexagons’) is located at 0 = i+ = — (a + b+ c)z2. For stability, compute
the Jacobian matrix which, by symmetry, has the form

P Q R

Df'hez = R P Q

Q R P
which is circulant. So the eigenvectors are e; = (1,1,1)T, es = (1,w,w?)T and e3 = (1,@,@%) where
w = e>™/3, Evaluating the corresponding eigenvalues we find v; = z — 2(a + b+ ¢)2> = —2u — 2 and

v = —2z — 22%(a + bw + cw?). v3 = Uy. Taking real and imaginary parts of v we have Re(vs) = 0 when
w(b+c—2a)
da+b+c

and, at this point the frequency Im(vz) is as required.



6.(a) Tt is enough to check commutivity with the group generators. If a matrix

a b ¢
A= d e f
g h k
commutes with k, (forces b =c=d = g =0), with r, (forces f = —h and e = k), and with r,, (forces a =€
and f = 0), then A = al.
(b) The three axial branches are:
Subspace Isotropy subgroup Generators
(z,0,0) Dy Ky, Tz
(z,z,0) Dy =275 x 7o Ky, Ky OT,
(:1:,.7:,:5) D3 Ky OTygy, Ky OT,

(there is a group orbit of branches in each case). Geometrically these correspond to distorting the cube by
pulling or pushing in the middle of a face, the middle of an edge, or at a vertex. Apply the equivariant
branching lemma since they all have 1D fixed point subspaces.

(c) Normal form to cubic order is

& = fi(z,y,2) = pr + az(y® + 2°) + ba®
= falz,y,2) = py + ay(z® + 2°) + by®
2 = fa(z,y,2) = pz +az(2® + y%) + b3

Justification: from k;, ky, K, we see that f; is odd in z and even in y and z. Absolute irreducibility implies
that the linear terms are just pul. r, equivariance implies that the coefficients of zy? and z22 are equal. Then
the forms of f, and f3 come from applying k; o7, and ky o r,.

7. Applying the change of variables in the question we obtain

dA

= = mm — AsAs — A3 — cAi (A2 + A2).
Define i = u/(a+ bu)®. Then as u increases from small negative values, i first increases approximately
linearly, then reaches a maximum at p = a/b, i = 1/(4ab), then decreases to zero with further increases in
u. Now refer to figure 9 from the lecture notes and consider that, as p increases we traverse the figure from
left to right and then back to the left again. So hexagons undergo two D3 transcritical bifurcations with the
rectangle branch and are stable again for large positive .

8. Generic Hopf bifurcation has either (i) an irreducible but not absolutely irreducible group representation,
or (ii) two copies of an absolutely irreducible rep. Since Z, only has one non-trivial rep and it is absolutely
irreducible we must be in case (ii) here. So the action of Zy x S on R? must be generated by x and 74 as
given (note: we could have 74(2) = €™z for any integer m, but these cases are essentially the same, just
with all solutions having an automatic additional Z,, symmetry). The spatio-temporal symmetry & o 7, acts
trivially, so ¥ = {I,k o 7} is an isotropy subgroup with a two dimensional fixed point subspace and so is
C-axial, guaranteeing exactly one branch of periodic orbits in a generic Hopf bifurcation.

9. If a complex conjugate pair of eigenvalues of A + 2B cross the imaginary axis we have no extra multiplicity
due to symmetry. So this is standard Hopf bifurcation, and we expect a unique branch of periodic orbits that
have full D3 symmetry. A solution would take the form (z(¢),z(t), z(t)) where z(¢) is time-periodic.

In the second case, where a complex conjugate pair of eigenvalues of A — B cross the imaginary axis, the
Jacobian matrix DF' will have critical eigenvalues with twice the multiplicity, leading to the non-trivial case
outlined in the question. Let T be the oscillation period. Then the three C-axial branches are

Subspace Isotropy subgroup Generators Oscillation pattern
(2,2) iz K (y(t),y(t), z(t))
(2,0) Zs ppots  (a(t),a(t+T/3),a(t+27/3))
(2,—2) Zy K O Ty (z(t), z(t + T/2),9(t))

A

Notice that, in the third case, §(¢) is forced by symmetry to have exactly half the period of z(t): §(t) =
g(t+T/2). See GS (2002) p70 or GSS (1988) p389. In all cases (in normal form) there is the spatiotemporal
symmetry pr o T - this fixes all points in C?, and has been omitted for clarity.



