Series and Limits - Answer sheet

J.H.P. Dawes

Starred questions are interesting but less important than the others.

. Show, using the definitions carefully, that if {a,}n>1 — a and {b,},>1 — b as n — oo then

(i) apn+b, —a+b as n— o0, (ii) apb, — ab as n — 0.

Answer: (i) Given € > 0 there exist N1 and Ny such that |a, —a| < /2 for alln > N1, and |b, —b| < &/2
for all n > Ny. So, for all n > max{Ny, Na} we have

|an, + by — (@ +0)| < |an, —a|+ |b, — b <e/2+¢e/2=¢
$0 an, + b, > a+basn — oco.

(i) The same argument works here. A slight embellishment is to say, given € > 0 there exists N1 such
that |a, — o] < min{e,1}. Define Na as before. Then, if n > max{Ny, Na} we have

|anbn, — abl = |apby, — anb+ anb —abl < an||bn — b + |b]|an — a
< (la| + 1)e + |ble = constant x €

so now, replacing € with /(1 + |a| + |b|) if you wish, we have convergence of a,b,.
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. Find the partial sum Sy of the first N terms of these series (note that they start at different values of
n!), and hence determine whether they converge:

() ijllog (). (i 2(—2)“.

Answers: (i) Sy =log(N +1). (ii) Sy = (1 — (=2)N). Neither of them converges.

Achilles and the Tortoise. In this well-known paradox due to Zeno, we imagine that the Greek hero
Achilles is racing against a tortoise. Sensing that the tortoise is at more than a slight disadvantage,
Achilles gives him a headstart of d metres. Both begin to run, at constant but very unequal speeds, at
time t = 0. The paradox is that it will take Achilles a certain length of time to get to where the tortoise
started from, but in that interval the tortoise will have crawled further. Achilles will have to now cover
that new distance, but in that time the tortoise will again have crawled forward. So Achilles can, in fact,
never overtake the tortoise.

Refute the paradox, supposing that the tortoise runs at v ms~! and Achilles runs at v ms~! where
r > 1, by showing that Achilles and the tortoise are level after a finite time U(T;‘EI) seconds.
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Answer: There is a geomelric series to sum here. It takes Achilles a time t1 = d/(rv) to reach the
tortoise’s starting point. In this time the tortoise has moved an additional distance v X d/(rv) = d/r
metres. It takes Achilles an additional time to = dT—/vT to cover this distance, and so on. They are level
after a time

= = d d 1)r d
T = t’I’L: _— = = =
ngl n;r”v vl—1/r wv(r—1)

Check that the behaviour of T in the cases r > 1, and r close to 1, agree with your intuition. A sketch of
the motion in the (x,t) plane might be useful.



Hint: an, = Sy — Sm—1; use the definition of convergence and the Triangle Inequality. Note that the
reverse implication is not true.

Answer: By assumption, Sy, — L as m — oo, i.e. given e > 0 there exists M : |S,, —L| <e/2¥V m > M.
So

lam| = |Sm — m—1|§|5’m—L|+|L—Sm,1|Sng2M+1

by the Triangle Inequality. So all |ay,, for m sufficiently large, are less than any given €, i.e. the sequence
{am} — 0 as m — oo. O

5. By rearranging the terms of the absolutely convergent series Y - 1/ n? = w2 /6, show that

- = -
n 8
n odd

Answer: split into a sum over n odd plus a sum over n even:

il/nQ: i 1/n? + il/(Zm)Qz i 1/n2+1§:1/n2
n>1 n odd m>1 n odd 4 n>1

and recombine the last term with the left-hand side to get the result.

6. (i) Show that the series > - (—1)""!/n, which sums to log2 ~ 0.693, but which is not absolutely
convergent, can be rearranged in the order

S = 1+1_1+1+1_l+l+i_1+
13 25 7 4 9 11 6 '

m=1 m=2 m=3

(ii) By considering the terms of the rearranged series grouped in threes as indicated, show that the series
can be written as

i": 8m — 3
m(4m — 3)(4dm — 1)

(iii) Show that the above series for S is convergent by comparison with >~ 1/n?, and that it contains only
positive terms. Evaluate the first term and deduce that the sum S is not equal to log 2.

Answer: (i) check that all the terms will appear at some stage.
(ii) Add the fractions 1/(4m — 3) 4+ 1/(4m — 1) — 1/(2m) in the m*" triple.

(ii) Let Sy be the sum to N terms. Then take the first term separately and write m = n + 1 in the
remainder to get

N N N N N
5 8(n+1) 5 8n +8 51N 1 1 1
S — — _— = — — —_ —_ —_
N<6+nz::12(n+l)(4n+1)(4n+3)<6+;2nx4nx4n 6 422311 gn z::n

Clearly the sum contains only positive terms, so Sy is an increasing sequence. First term = 5/6 ~ 0.83 >
log 2, so the sum is strictly larger than log 2.
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8. By considering the sequence of continuous functions {f,(z)} defined for 0 <z <1 by

_ 1—nx ifo<xz<1/n
Julz) = { 0 ifl/n<z<1l
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Answer: Sketch the first few fy,(x) to get a feel for the behaviour. For any fixzed xo > 0 we have f,(xg) =0
for all sufficiently large n, i.e. when n > 1/xq. So lim,_. fn(xg) = 0 for all xg > 0. Clearly f,(0) =1
for all n, so limy, o fn(0) =1 and the limit function is not continuous at x = 0.

In Analysis II a stronger form of convergence for sequences of functions is introduced: uniform convergence.
It is proved that a uniform limit of continuous functions is continuous. But in general limits of continuous
functions need not be continuous.

Explain why it is plausible that

00 2
. T
sinx = a:” (1—ﬂ>.
T™n
n=1

By comparing the coefficient of z3 in this expression with that in the standard power series for sin x, show
that >, 1/n? = w2/6. Do you think this is a valid argument?

Answer: Yes, it is a valid argument, but we don’t have the theoretical tools to prove it at this point! In
simple terms, we know that the standard power series for sinx converges everywhere in R - in this sense
sinz is a very ‘nice’ function. The infinite product formula can, in some sense, be ‘multiplied out’ to give
a power series for sinx; this power series would then have to be the same power series as the standard
one.

More detail: The more technical term for functions such as sin z that are analytic (complex-differentiable)
in the whole of C is ‘entire’; see Complex Analysis or Complex Methods. The Weierstrass Factorization
Theorem (not in the undergraduate Tripos I think) asserts that entire functions can be written as an
infinite product of terms, each of which has only a single zero. Thus both the infinite product and the
standard power series for sinz ‘make sense’, i.e. are convergent, in a non-empty open set in the complex
plane (in fact, in this case they both converge in the whole of C). Hence they must take the same values
on this ‘overlap’ region and we should expect the coefficients to be equal.

10. Let f(z) be a continuous function which has a ‘period three orbit’, i.e. there exist points zg < z1 < 2

such that f(x;) = x;41, taking i mod 3. Sketch a possible graph of y = f(x), adding the diagonal line
y=x.

(i) By considering g(z) = f(z) — « show that there exists a point ¢ such that f(¢) = ¢. (This is called a
‘fixed point’ for f(z).)

* (ii) By considering h(z) = f(f(z)) — x, show that there exist points ¢1, ca (not equal to each other) such

that f(c1) = ¢o and f(c2) = ¢;. (This is, naturally, called a ‘period two orbit’.)

Answer: (i) Consider the interval [x1,x2]. Note that g(x) is continuous because f(x) is. Also g(z1) =
x9 —x1 > 0 and g(xa) = xo — 2 < 0; now apply the Intermediate Value Theorem. Note that we must
have ©1 < ¢ < 2 since neither r1 nor xo are themselves fized points.

(it) Consider the interval [xo,x1]. As in part (i), h(x) is continuous, and we see that h(zo) = x2 — 29 <0
and h(z1) = xg —x1 > 0. So, applying the IVT we find that there exists a period two point c1 satisfying
ro<c1 <.

It is important to check that this point ¢; is NOT the same point as the ¢ we found in part (i): notice
that if f(c) = c then f(f(c)) = c. If we had considered the interval [x1,x2] in part (ii) then we wouldn’t
have been able to rule this possibility out. A straightforward extension of this argument enables us to find
distinct period-n points for any n > 0. Hence the dynamics of the iterated map x;41 = f(x;) are pretty
complicated. This application of the IVT is the basis of the result due to Li & Yorke (1975) known by the
title of their paper: ‘Period three implies chaos’.

Comments and queries are welcome, and should be sent to J.H.P.Dawes@damtp.cam. ac.uk.
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