
4 Lecture 4: Heteroclinic cycles and networks

4.1 Introduction

A heteroclinic orbit γ1 between two equilibria ξ1 and ξ2 of a continuous time dynamical system

ẋ = f(x) is a trajectory φt(y) that is backward asymptotic to ξ1 and forward asymptotic to ξ2. A

heteroclinic cycle is an invariant topological circle X consisting of the union of a set of equilibria

{ξ1, ..., ξk} and orbits {γ1, ..., γk}, where γi is a heteroclinic orbit between ξi and ξi+1; and ξk+1 ≡ ξ1.

If k = 1 then the single equilibrium and connecting orbit form a homoclinic cycle.

For a typical dynamical system (without symmetry), heteroclinic cycles are extremely unlikely.

However, if the heteroclinic orbits lie in invariant subspaces, the cycle can be robust (i.e. persistent)

under perturbations of the system that preserve the invariance of these subspaces. This situation

can arise if the dynamical system is symmetric (for example when it arises a a model of pattern

formation), or if it models population (or game theory) dynamics, where extinction is a preserved

quantity (for examples, refer to the book by Hofbauer and Sigmund [31]). This concept of robustness

motivates the following definition: X is a robust heteroclinic cycle if for each j, 1 ≤ j ≤ k there

exists a fixed point subspace, Pj = Fix(Σj) where Σj ⊂ G and

1. ξj is a saddle and ξj+1 is a sink in Pj

2. there is a heteroclinic connection from ξj to ξj+1 in Pj

(indices are taken mod k). In some cases in the literature all equilibria ξj and connecting orbits

lie on a single group orbit: then, after factoring out the symmetry, the cycle can be thought of as

homoclinic rather than heteroclinic. In sections 4.2 and 4.3 we discuss two well-known examples of

heteroclinic cycles. Later sections summarise recent work on cycles in R
4, and an example in R

6. A

collection of heteroclinic cycles with equilibria in common forms a heteroclinic network : networks

are discussed very briefly in the final section. A recommended general overview of the dynamics of

robust cycles is the review by Krupa [36].

4.2 The 1 : 2 mode interaction

The material in the section follows the paper by Proctor & Jones [45]. Among other papers on the

very rich dynamics in this problem are those by Dangelmayr [13], Armbruster, Guckenheimer &

Holmes [1], Julien [33], Porter & Knobloch [44] and Dawes, Postlethwaite & Proctor [16].

A mode interaction is a degenerate bifurcation at which there is a simultaneous instability to

more than one type of perturbation. There are three basic kinds: where the competing instabilities

are both steady-state, or one steady-state and one Hopf, or both Hopf. In the absence of symmetry

or any special properties the steady-state bifurcation would be a saddle-node. The analysis of these

codimension two bifurcations becomes quite involved: see Guckenheimer & Holmes [28], chapter 7.

In the Hopf cases, the existence or absence of normal form symmetry is particularly important.

In the pattern formation context there is another factor in distinguishing between different

codimension two instabilities: the wavenumbers of the instabilities matter as well as their nature

(steady or oscillatory). Consider the simultaneous instability of a one dimensional spatially uniform

state to two steady-state instabilities, as sketched in figure 12. To arrive at this situation we usually

have to vary two independent control parameters. Near the onset of the instability we propose a

solution of the form

w(x, t) = A(t)eik1x +B(t)eik2x + c.c.+ · · · .

By considering equivariance under translations in x, and reflection mx : x→ −x

τφ(x) = x− φ ; τφ(A,B) = (Aeik1φ, Beik2φ),

mx(x) = −x ; mx(A,B) = (Ā, B̄),
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Figure 12: (a) Sketch of the (k, s) plane showing growth rate s (real) as as function of wavenumber

k. (b) Sketch of the corresponding marginal stability curves s(r, k) = 0 in the (k, r) plane where r

is a real control parameter for the system.

we arrive at the usual coupled amplitude equations:

Ȧ = µ1A− a1A|A|
2 − b1A|B|2, (35)

Ḃ = µ2B − a2B|B|2 − b2B|A|2, (36)

where all coefficients are forced to be real by the reflection symmetry, as long as the wavenumbers

k1 and k2 are not resonant. By resonant we mean that for one of the kj (here, either j = 1 or 2)

the equation kj = pk1 + qk2 has non-trivial solutions for non-negative integers p and q. If there

were such a solution then the RHS of the equations would contain more terms. Cases of resonance

where |p| + |q| ≤ 3 are termed ‘strong resonances’ since then new terms appear in (35) - (36) at

quadratic or cubic order and they affect the bifurcation behaviour for small µ1 and µ2.

The 1 : 2 mode interaction corresponds to the strong resonance case k1 = 1, k2 = 2 (take j = 2,

p = 2, q = 0 in the resonance condition). From translational equivariance we see that terms ĀB

and A2 are now allowed on the RHS of (35) - (36). By rescaling we can set the coefficient of ĀB to

be +1 and that of A2 to be ±1:

Ȧ = µ1A− a1A|A|
2 − b1A|B|2 + ĀB, (37)

Ḃ = µ2B − a2B|B|2 − b2B|A|2 ±A2. (38)

Note that there is a possible inconsistency in scalings here (if, say, we wished to derive these equa-

tions through an asymptotic multiple-scales calculation from the original PDEs). For consistency

we should suppose that the original coefficients of the quadratic terms were ‘small’ compared to

those of the cubic terms: we can then justify including both quadratic and cubic terms together in

our amplitude equations.

In polar coordinates A = Reiθ, B = Seiφ we have

Ṙ = R(µ1 − a1R
2 − b1S

2) +RS cosχ, (39)

Ṡ = S(µ2 − a2S
2 − b+2 R

2) ±R2 cosχ, (40)

χ̇ =

(

∓
R2

S
− 2S

)

sinχ. (41)

Only one phase variable χ = φ−2θ is important: this is due to the translational symmetry. It turns

out that the two cases given by the choice of ± in (40) give very different bifurcation diagrams.

The ‘+’ case displays far less interesting dynamics than the ‘−’ case. Interestingly, the ‘−’ case is



the one that occurs regularly in fluid-mechanical situations, so fluid mechanics (in particular the

nonlinear Navier–Stokes term u · ∇u) is inherently ‘interesting’ (!)

From now on we will focus exclusively on the ‘−’ case.

Equilibria

• Trivial eqm A = B = 0, stable in µ1 < 0, µ2 < 0

• ‘Pure mode’ eqm A = 0, |B|2 = µ2/a2. This is a circle of equilibria: a group orbit under the

translation symmetry. Denote the two equilibria corresponding to A, B real by p±: A = 0,

B = ±
√

µ2/a2.

It is easy to check that p± lose stability when 0 = µ1 −
b1
a2
µ2 ±

√

µ2

a2

• ‘Mixed mode’ solutions M± satisfy |A| 6= 0, |B| 6= 0 and hence χ = 0 (M+) or χ = π (M−)

from (41). Amplitudes R = |A| and S = |B| satisfy

0 = µ1 ± S − a1R
2 − b1S

2,

o = µ2S ∓R2 − a2S
3 − b2R

2S,

where the ± and ∓ refer to M± respectively. There exists a continuous group orbit of each

of M±: they have entirely different stabilities (and physical interpretations) from each other

though.

Bifurcations from M+

M+ loses stability in two different ways. Firstly a Hopf bifurcation is possible when

2a1R
2 + 2a2S

2 = R2/S

as long as

a1(2a2S
2 −R2/S) + (1 − 2b1S)(1 + b2S) ≥ 0.

This Hopf bifurcation leads to a time-periodic oscillation of R and S but the phase χ = 0 is

constant. Hence this solution is a standing wave (SW). The second possibility is that χ 6= 0 after

the bifurcation. This leads to travelling waves (TW) for which R2 = 2S2 from (41), and

S2 =
2µ1 + µ2

4a1 + 2(b1 + b2) + a2
,

S cosχ =
µ2(2a1 + b1) − µ1(2b2 + a2)

4a1 + 2(b1 + b2) + a2
.

This is an example of a drift bifurcation since the TW state rotates along the group orbit of M+

equilibria. Even though χ = const the individual phases θ and φ evolve at constant rates in time:

φ̇ = −2S sinχ

θ̇ = −S sinχ

and in the (R,S, χ) coordinates TW solutions are equilibria. For typical parameter values the

bifurcation diagram in the (µ1, µ2) plane looks like figure 13. For the parameter values of figure 13

the bifurcation to TW (on the line TW ) is supercritical and that to SW (on the line SW ) is

subcritical. The global bifurcation marked het generates unstable SW periodic orbits which then

collapse onto the M+ equilibrium and disappear on the curve marked SW. The phase portrait

sketches in figure 14 illustrate the bifurcations that lead to the formation of the heteroclinic cycle.
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Figure 13: Typical bifurcation diagram for the 1 : 2 mode interaction. Stable and unstable equilibria

in each region of the parameter plane indicated (unstable solutions in parentheses ()). The robust

heteroclinic cycle exists and is stable between curves marked het and delta=1. Between delta=1

and the next solid line to the right the robust cycle exists but is unstable. a1 = 1, b1 = 2, a2 = 5,

b2 = 0. Taken from Proctor & Jones [45].
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Figure 14: Phase portraits in the (Ar , Br) plane (taking the real parts of A and B) for µ1 increasing

at fixed µ2 > 0. (a) left of the line het ; (b) on the line het ; (c) between the lines het and SW showing

unstable SW periodic orbit and the robust heteroclinic connection p+ → p−; (d) right of the line

SW : the heteroclinic connection remains.

The heteroclinic connection p+ → p− is robust since p− is a sink (stable node) within this plane,

which is an invariant subspace P− = Fix(mx) = {Im(A) = Im(B) = 0} for the dynamics. By

symmetry, within the plane P+ = Fix(τπ ◦mx) = {Re(A) = Im(B) = 0} p− is a saddle and p+ is

a sink, and a symmetrically-related heteroclinic orbit p− → p+ exists. The saddle-sink connections

are not immediately broken as µ1, µ2 are varied so the cycle persists. For the parameter values

given above it turns out that this heteroclinic cycle attracts nearby trajectories. The times that

a trajectory spends near each equilibrium increase geometrically: Tn/Tn−1 → C > 1 as n → ∞.

The stability question can be investigated by similar ‘return map’ methods as is done for periodic

orbits. The condition for the cycle to be attracting can then be calculated as δ ≡ |λc|/λe > 1
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Figure 15: The heteroclinic cycle. P+ = Fix(mx) = {Im(A) = Im(B) = 0}, P− = Fix(τπ ◦mx) =

{Re(A) = Im(B) = 0}. p± is a sink within P±.
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Figure 16: Bifurcation diagram along a path encircling µ1 = µ2 = 0 closely, showing local and

global bifurcations (filled and open dots respectively). Solid and dashed lines indicate stable and

unstable solutions. T - trivial solution A = B = 0; H - heteroclinic cycle, other solution labels are

defined in the text.

where λc and λe are the relevant (‘contracting’ and ‘expanding’) eigenvalues at p±. This yields

µ1 − b1µ2/a2 < 0 which is the straight dash-dotted line delta=1 in figure 13. When δ = 1 we have

a resonant bifurcation of the cycle and the cycle loses asymptotic stability. A stable long period

periodic orbit appears near the cycle: this is the modulated wave (MW ) solution indicated on

figure 13. The MW solution is destroyed at a Hopf bifurcation with the TW solutions, as indicated

in figure 16 which summarises the bifurcation sequence following a small circle around the origin

µ1 = µ2 = 0.

4.3 The Guckenheimer–Holmes cycle

Along with the cycle in the 1 : 2 mode interaction discussed in the previous section, the Guckenheimer–

Holmes (GH) cycle has become one of the standard examples in the literature. In fact the literature

goes back further than the GH paper [29], in at least two directions. One is that of fluid mechanics;

the other is mathematical ecology. In the fluid mechanics context, Küppers & Lortz [39] performed

a linear stability analysis of convection rolls in a rotating fluid layer, under various assumptions

(infinite domain size, Boussinesq fluid, small Froude number, infinite Prandtl number). For small

nondimensionalised rotation rates (values of a Taylor number Ta) straight rolls are linearly stable.

For larger Ta they become unstable, with the instability occuring first to rolls aligned at approxi-



mately 58◦ to the original ones. This paper was followed later by various weakly nonlinear analyses

by Busse and co-workers [12; 6] and by Soward [52]. Guckenheimer & Holmes [29] provided proofs

that the dynamics of the weakly nonlinear ODEs that had been proposed were indeed as previous

authors had described. In the mathematical ecology literature, the same ODEs had in fact been

written down by May & Leonard [40]. We will not dwell on any physical or biological interpretation

here: the mathematical description will be enough to discuss various general questions that arise

in the study of robust cycles.

Consider the absolutely irreducible representation of Z3 × Z
3
2 on R

3 generated by

σ(x1, x2, x3) = (x2, x3, x1),

κ1(x1, x2, x3) = (−x1, x2, x3).

We define κ2 and κ3 by analogy. This symmetry group arises in the pattern formation context of

hexagonal planforms in a rotating fluid layer. The rotation reduces the overall physical symmetry

from E(2) to the special Euclidean group SE(2) of translations and rotations (but no reflections)

of the fluid layer. There are exactly two (group orbits of) axial isotropy subgroups:

Σ1 = {I, κ2, κ3, κ2κ3} Fix(Σ1) = (x, 0, 0) (42)

Σ2 = {I, σ, σ2} Fix(Σ2) = (x, x, x) (43)

In phase space, the symmetries κj , which are derived from translation symmetries in physical space,

act as reflections and make the hyperplanes xj = 0 (and all subspaces that are intersections of these

planes) invariant for the dynamics. Since (42) - (43) define axial isotropy subgroups there are

guaranteed solution branches by the EBL. Equivariant amplitude equations (truncated at cubic

order) take the form

ẋ1 = x1[µ+ ax2
1 + bx2

2 + cx2
3], (44)

ẋ2 = x2[µ+ ax2
2 + bx2

3 + cx2
1], (45)

ẋ3 = x3[µ+ ax2
3 + bx2

1 + cx2
2]. (46)

Interestingly, for some combinations of the real coefficients a, b, c there exist ‘bimodal’ equilibria

with submaximal isotropy, for example

x2
1 =

µ(b − a)

a2 − bc
, x2

2 =
µ(c− a)

a2 − bc
, x3 = 0,

which only exist if c − a and b − a have the same sign. For fixed µ > 0 and a2 − bc > 0, consider

what happens as one of c− a and b− a goes through zero. We observe a local pitchfork bifurcation

of the axis equilibria as the ‘bimodal’ equilbria disappear. This change is sketched in figure 17. For
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Figure 17: Possible dynamics in the (x1, x2) invariant plane for µ > 0 and a < 0. (a), (b) bimodal

equilibria exist in the interior of the invariant plane. (c) no bimodal equilibria exist when b < a < c:

instead there is a robust connection between (x, 0, 0) and (0, x, 0).

an open set of coefficient values, the equilibrium (0, x, 0) is a sink within Fix(κ3) = (x1, x2, 0) and



there is a robust saddle-sink connecting orbit as in figure 17(c). By symmetry there are similar

connecting orbits in the other coordinate hyperplanes, leading to the formation of the cycle, see

figure 18. So, now keeping a, b and c fixed and varying µ through zero we have a steady-state
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Figure 18: (a) The Z3 × Z
3
2-symmetric May–Leonard–Busse–Heikes–Guckheimer–Holmes robust

homoclinic cycle. (b) A Z
3
2-equivariant flow containing a robust heteroclinic cycle in R

3. cj and ej

are the eigenvalues of the linearisation at the equilibrium ξj , in the ‘incoming’ (contracting) and

‘outgoing’ (expanding) directions.

bifurcation that results in heteroclinic cycling rather than in a new stable equilibrium state. It

turns out that more complicated scenarios are possible: steady-state bifurcations can give rise to

branches of periodic orbits (Field & Swift [21]) or indeed chaotic attractors (called ‘instant chaos’

by Guckenheimer & Worfolk [30]) directly at the bifurcation point.

Stability for the GH cycle in R
3

To compute stability of a heteroclinic cycle, the standard approach is to construct Poincaré return

maps using the linearised flow near each equilibrium to construct local and global maps for trajec-

tories near the cycle. The local map φ : Hin
1 → Hout

1 , where Hin
1 = {x2 = h} and Hout

1 = {x3 = h},

is illustrated in figure 18(b). The global map ψ : Hout
1 → Hin

3 is a diffeomorphism that respects

the symmetry of the flow. Such a construction enables a proper statement of the set of initial

conditions whose trajectories converge to, or diverge from, a neighbourhood of the cycle. Hofbauer

and Sigmund [31] use an equivalent method based on defining ‘average Liapounov functions’ to

investigate the behaviour of trajectories near the cycle.

A quick-and-dirty method applicable to the cycles sketched in figure 18 is to use the linearised

flow to estimate the times spent within a neighbourhood of each equilibrium. If this sequence of

times increases then the trajectory must be converging to the cycle. Working with figure 18(b),

suppose that a trajectory crosses Hin
3 and exits at Hout

2 after spending times Tn(ξ3) near ξ3 and

Tn(ξ2) near ξ2. Then

h exp(−c3Tn(ξ3) + e2Tn(ξ2)) = h, ⇒ Tn(ξ2) =
c3
e2
Tn(ξ3),

where cj and ej are the eigenvalues of the linearisation at the equilibrium ξj , in the ‘incoming’

(contracting) and ‘outgoing’ (expanding) directions. Similarly we find that Tn(ξ1) = c2

e1
Tn(ξ2)

and, considering the trajectory passing through neighbourhoods of ξ1 and ξ3 for a second time,

Tn+1(ξ3) = c1

e3
Tn(ξ1). Putting all this together we obtain

Tn+1(ξ3)/Tn(ξ3) =
c1c2c3
e1e2e3

and so the length of time spent near each equilibrium increases if
∏

cj >
∏

ej. When this inequality

becomes an equality a resonant bifurcation occurs, and trajectories move away from the cycle. As



we saw in section 4.2 for the 1 : 2 mode interaction case, resonant bifurcations typically generate

long period periodic orbits lying close to the cycle. In section 4.2 the modulated wave (MW) orbit

appeared at the line δ = 1. In the present case, for (44) - (46), the resonant bifurcation occurs when

2a = b + c, but for the amplitude equations truncated at cubic order the bifurcation is degenerate

since the equations have a conserved quantity when 2a = b+ c and the equilibrium at (x, x, x) is a

centre.

To produce a better model of reality it is of interest to consider disturbing the idealised

ODEs (44) - (46) by breaking the symmetries slightly, or adding noise perturbations. In these

cases we find that the heteroclinic cycling turns into approximately periodic oscillations between

neighbourhoods of the three equilibria. In the noisy case, the period of the oscillations T ∼ log(1/ε)

where ε is a measure of the noise amplitude.

4.4 Stability results and bifurcations

In this section we will first state a very general result giving sufficient conditions for stability of

heteroclinic cycles in R
n due to Krupa & Melbourne [37]. We will then specialise to R

4 and discuss

three particular examples.

For robust homoclinic cycles in R
4 there is a complete classification of the different types due to

Sottocornola [50; 51], applying the necessary and sufficient conditions on the group action developed

by Ashwin & Montaldi [2]. For heteroclinic cycles there are various results concerning stability and

bifurcations, but in higher dimensions the situation is less clear and little is in general known.

Intuitively, a cycle should be stable if the ‘contracting’ eigenvalue in the direction a trajectory

approaches each equilibrium is larger in magnitude than the ‘expanding’ one in the direction it

follows on leaving, but some subtleties appear due to the existence of more directions (‘transverse’

to the cycle). Of necessity we must first introduce some definitions for ‘expanding’ and ‘contracting’

to make this more precise.

Let ξ1, . . . , ξk be a sequence of equilibria for the ODEs ẋ = f(x) which form a heteroclinic cycle.

We assume

Hypotheses (H).

• ξj is a hyperbolic equilibrium point for all j

• the unstable manifold Wu(ξj) \ {ξj} lies entirely within a fixed point subspace Pj = Fix(Σj)

for some isotropy subgroup Σj .

Let Tj be the isotropy subgroup of the equilibrium ξj . We define the subspace Lj = Fix(Tj).

Then R
n can be isotypically decomposed with respect to the action of Tj into four isotypic compo-

nents:

R
n = Lj ⊕ Vj(c) ⊕ Vj(e) ⊕ Vj(t) (47)

using the fact that Tj acts trivially on Lj but non-trivially and differently on all the other spaces

since Σj−1 6= Σj , Σj ⊂ Tj and so Vj(e) is the complement to Lj in Pj . Similarly Σj−1 ⊂ Tj so

Vj(c) is the complement to Lj in Pj−1. Then for each subspace we can select the largest of the

eigenvalues of the Jacobian Df(ξj) restricted to that subspace, see table 7. Although the notation

Lj and Pj is suggestive of lines and planes, we leave open, at this stage, the possibilities that dim

Lj > 1 or dim Pj > 2. Then we can state the general result of Krupa & Melbourne.

Theorem 13 (Krupa & Melbourne [37]) Assuming hypotheses (H), the heteroclinic cycle X is

asymptotically stable if

tj < 0 and

k
∏

j=1

min(cj , ej − tj) >

k
∏

j=1

ej . (48)



Eigenvalues of Df(ξj) Subspace

radial −rj = maxλ∈spec(Df(ξj)r) Re(λ) Lj ≡ Pj−1 ∩ Pj

contracting −cj = maxλ∈spec(Df(ξj)c)Re(λ)) Pj−1 \ Lj

expanding ej = maxλ∈spec(Df(ξj)e)Re(λ)) Pj \ Lj

transverse tj = maxλ∈spec(Df(ξj)t)Re(λ)) (Pj−1 + Pj)
⊥

Table 7: Definitions of the four eigenvalue classes: −cj < 0 contracting; ej > 0 expanding; −rj < 0

radial; tj transverse. spec(Df(ξj)
r,c,e,t) denotes the spectrum of Df(ξj) restricted to the subspaces

Lj , Vj(c), Vj(e), Vj(t) respectively. Pj \Lj denotes the orthogonal complement in Pj of the subspace

Lj , see figure 19.
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Figure 19: Sketch of the subspaces Pj−1, Pj and Lj near equilibria ξj and ξj+1.

Krupa & Melbourne [37] proved that these sufficient conditions were in fact also necessary, as long

as two further hypotheses are satisfied:

Hypotheses (H’).

• the eigenspaces corresponding to cj , tj , ej+1 and tj+1 lie in the same Σj-isotypic component.

• dim Wu(ξj) = 1,

Note that the first of these conditions refers to a different isotypic decomposition to that with

respect to Tj in (47). Hypotheses (H) and (H’) are satisfied for both examples discussed previously;

the 1 : 2 mode interaction problem and the Guckenheimer–Holmes cycle. In fact, all cycles in R
3

satisfy (H’) because dim Fix(Σj) = 2 and so cj and ej+1 are the same direction (there can be no

transverse eigenvalues). For a homoclinic cycle in R
3 the condition for asymptotic stability is just

δ ≡ c/e > 1.

The existence of transverse directions introduces a subtlety into the notion of stability of a

heteroclinic cycle. Cycles with positive transverse eigenvalues (and so both the second part of

hypothesis (H) and the inequality (48) are not satisfied) may still be strongly attracting, in the

sense of being essentially asymptotically stable [42].

An invariant set X is essentially asymptotically stable (e.a.s.) if there exists a set A such that given

any real number a ∈ (0, 1), and any neighbourhood U of X , there is an open neighbourhood V ⊂ U

of X such that:

1. All trajectories starting in V \ A remain in U ,

2. All trajectories starting in V \ A are asymptotic to X ,

3. µ(V \ A)/µ(V) > a, where µ is Lebesgue measure.



This means that initial conditions in an arbitrarily large proportion of a neighbourhood are

attracted to X , if we look at smaller and smaller neighbourhoods of X .

Simple cycles in R
4

We now turn to a much more specific situation, that of simple cycles in R
4. Homoclinic cycles are

discussed in detail by Chossat et al. [8]: heteroclinic cycles are discussed by Krupa & Melbourne

[38]. The specific examples we discuss here are homoclinic cycles for simplicity. The robust cycle

X ⊂ R
4 \ {0} is simple if

• dim Pj = 2 for all j,

• X intersects each connected component of Lj \ {0} in at most one point.

Then the second part of hypothesis (H’) is always satisfied, and there is precisely one eigenvalue of

each type r, c, e, t. The first part of (H’) may or may not be satisfied; this leads to conditions for

stability that improve on (48). Define the three-dimensional subspace Q = P1 +Pk (focusing on ξ1
since all equilibria lie on a single group orbit in the homoclinic case). Then homoclinic cycles in R

4

can be classified into one of three types:

• X is of type A if Q is not a fixed point subspace,

• X is of type B if Q is a fixed point subspace and X ⊂ Q,

• X is of type C if Q is a fixed point subspace but X 6⊂ Q.

To give a flavour of these possibilities we describe examples of each, and the typical behaviour when

each undergoes a transverse bifurcation.

Type A. In this case it follows that (H’) is satisfied and condition (48) is necessary and sufficient

for stability. Consider the action of the group T generated by the two elements

σ =









0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1









and κ =









−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1









(see [10], example 9.2.12, and [9]). At cubic order the equivariant amplitude equations are

ẋ1 = µ1x1 + x1(a1x
2
1 + a2x

2
2 + a3x

2
3) + a4x2x3x4 (49)

ẋ2 = µ1x2 + x2(a1x
2
2 + a2x

2
3 + a3x

2
1) + a4x1x3x4 (50)

ẋ3 = µ1x3 + x3(a1x
2
3 + a2x

2
1 + a3x

2
2) + a4x1x2x4 (51)

ẋ4 = µ2x4 + b1x
3
4 + b2x1x2x3 (52)

It can be checked that, as in the Guckenheimer–Holmes example, when a2 < a1 < a3 < 0 there

is a homoclinic cycle for µ1 > 0, between the symmetry-related equilibria (x1, 0, 0, 0), (0, x2, 0, 0)

and (0, 0, x3, 0). The planes (x1, x2, 0, 0), (0, x2, x3, 0) and (x1, 0, x3, 0) are fixed point subspaces

for a single reflection symmetry and hence have isotropy subgroups isomorphic to Z2. Since the

only subgroup of Z2 is {I} there are no three-dimensional fixed point subspaces (alternatively, by

inspection of the form of the amplitude equations). So this cycle is of type A. Setting µ1 = 1 for

simplicity we find the eigenvalues at the equilibrium ξ1 = (
√

−1/a1, 0, 0, 0) to be

−r = −2, −c = 1 − a2/a1, e = 1 − a3/a1, t = µ2.

Hence the cycle is stable when µ2 < 0 and a2 − a1 < a1 − a3.



Resonant bifurcations from a type A cycle give rise to long-period periodic orbits, but of two

slightly different kinds depending on whether the periodic orbit twists on its way from one equilib-

rium to the next, or not ([10], p345).

Transverse bifurcations from type A cycles have similar properties to resonant ones, giving

rise to long-period orbits that remain exponentially close the the cycle (O(∆1/µ) where µ is the

bifurcation parameter and ∆ 6= 1 is a constant). An example with ODEs similar to (49) - (52)

occurs in oscillatory pattern formation in a rotating fluid layer, see Dawes[14].

Type B. In this case (H’) fails but necessary and sufficient conditions for stability are still given

by (48). A simple example of a type B cycle is given by embedding the Guckenheimer–Holmes cycle

in R
3 into a subspace x4 = 0 of R

4. For example, consider the group Z3 × Z
3
2 × Z2 generated by

σ =









0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1









κ1 =









−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









and κ4 =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1









where σ and κ1 act on R
3 just as in section 4.3 and κ4 generates the new Z2 part of the group.

The three-dimensional subspace Q = P1 +P3 = (x1, x2, x3, 0) ⊃ X is clearly Fix(κ4) so it is a fixed

point space containing the cycle X . A possible set of amplitude equations, truncated at cubic order

again is

ẋ1 = µ1x1 + x1(a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4) (53)

ẋ2 = µ1x2 + x2(a1x
2
2 + a2x

2
3 + a3x

2
1 + a4x

2
4) (54)

ẋ3 = µ1x3 + x3(a1x
2
3 + a2x

2
1 + a3x

2
2 + a4x

2
4) (55)

ẋ4 = µ2x4 + b1x
3
4 + b2x4(x

2
1 + x2

2 + x2
3) (56)

As in the type A case, a transverse bifurcation occurs when µ2 passes through zero. This pitchfork

bifurcation at each equilibrium ξj on the cycle generically produces a pair of new equilibria ξ±j . The

transverse bifurcation results in two new heteroclinic cycles, one connecting all the ξ+j equilibria

and one connecting all the ξ−j equilibria. This is sketched in figure 20; these sketches make use of

the Invariant Sphere Theorem [20]:

Theorem 14 (The Invariant Sphere Theorem) Let ẋ = µx+Q(x) be a collection of G-equivariant

ODEs in R
n such that

• Q(x) contains only polynomial terms of cubic order in x1, . . . , xn,

• Q(x) · x < 0 for all x 6= 0 (Q is then said to be contracting).

Then for every µ > 0 there exists a unique flow-invariant topological n − 1–sphere Sµ ⊂ R
n \ {0}

which is globally attracting.

The Invariant Sphere theorem enables us to sketch the dynamics of the four-dimensional examples

of type B and C cycles, by sketching a tetrahedron corresponding to the intersection of the positive

quadrant R
4
+ with the invariant 3-sphere. In the three dimensional Guckenheimer–Holmes case we

would need only to sketch the triangle formed by the projections of the three connecting orbits onto

a 2-sphere.

Figure 20(a) illustrates the dynamics of (53) - (56) in the case µ2 > 0, b1 < 0 when the transverse

bifurcation has created stable equilibria that lie on the edges 14, 24 and 34. By considering the

dynamics within the (flow-invariant) faces 124, 234 and 134 we can establish the existence of a

robust heteroclinic cycle between these three new equilibria. Hence in a transverse bifurcation from

a type B cycle we generate new global dynamics as well as new local equilibria.
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Figure 20: Tetrahedrons within the invariant 3-sphere showing original heteroclinic ‘edge’ cycles

(bold lines) and bifurcating ‘face’ cycles (dashed lines). (a) Type B cycle: ξ+1 → ξ+2 → ξ+3 → ξ+1 .

(b) Type C cycle: ξ+1 → ξ+3 → ξ+1 . A symmetrically-related cycle ξ+2 → ξ+4 → ξ+2 also exists but

the connecting orbits are not shown here.

Type C. In this case (H’) fails again, and necessary and sufficient conditions for asymptotic stability

are

c− t > e and t < 0. (57)

A well known example of a type C cycle is that of Field & Swift [21]. Consider the group Z4 × Z
4
2

acting on R
4 and generated by

σ =









0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0









and κ1 =









−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









This group action is absolutely irreducible, and gives rise to the amplitude equations

ẋ1 = µx1 + a1x1X
2 + x1(a2x

2
2 + a3x

2
3 + a4x

2
4)

ẋ2 = µx2 + a1x2X
2 + x2(a2x

2
3 + a3x

2
4 + a4x

2
1)

ẋ3 = µx3 + a1x3X
2 + x3(a2x

2
4 + a3x

2
1 + a4x

2
2)

ẋ4 = µx4 + a1x4X
2 + x4(a2x

2
1 + a3x

2
2 + a4x

2
3)

where X2 = x2
1 + x2

2 + x2
3 + x2

4. By taking a1 sufficiently negative we can ensure that the conditions

for the Invariant Sphere Theorem to hold are satisfied and all branches of equilibria bifurcate

supercritically. When in addition a2a4 < 0 there are two edge equilibria, and a heteroclinic cycle

exists between the four equilibria lying on the axes (corresponding to the vertices in the tetrahedron

in figure 20(b)). To check that this cycle is of type C we consider the union of the subspaces

containing the 43 and the 32 connections: this is Q = P4 + P3 = (0, x2, x3, x4). But Q = Fix(κ1)

so Q is a fixed point subspace that does not contain the entire cycle X . Field & Swift prove that

the cycle is stable if and only if a3 < 0 and a2 + a3 + a4 < 0 which are the conditions given in (57).

4.5 Heteroclinic networks

If a system contains more than one heteroclinic cycle they may be coupled together to form a hetero-

clinic network. Ashwin and Field (1999) provide a very general definition of a heteroclinic network;



in these notes we will only be concerned with flows in R
n where each node in the network is an equi-

librium of the flow (rather than e.g. a periodic orbit, a chaotic set or, indeed, another heteroclinic

cycle). For the example below, the following definition is sufficient. An invariant set N consisting of

equilibria {ξ1, ..., ξn} and heteroclinic orbits {γ1, ..., γm} is a (depth 1) robust heteroclinic network

if

1. (compatibility) if x ∈ γi then α(x) = ξj and ω(x) = ξk for some ξj , ξk ∈ N .

2. (transitivity) for all ξi and ξj we can find a sequence of orbits {γm1
, ..., γml

} and equilibria

{ξn1
, ..., ξnl+1

} such that ξn1
= ξi and ξnl+1

= ξj and if x ∈ γmk
then α(x) = ξnk

and

ω(x) = ξnk+1
.

3. (robustness) any compatible set of equilibria ξ1, . . . , ξn, ξn+1 ≡ ξ1, and connecting orbits

ξi → ξi+1, forms a robust heteroclinic cycle.

where α(x) and ω(x) are the usual limit sets. Transitivity means that if we draw the network as a

directed graph between equilibria, then a path exists between any two equilibria in the network.

Heteroclinic networks contain many heteroclinic ‘sub-cycles’. Unless the network has only one

cycle (i.e it is itself a heteroclinic cycle) then none of these sub-cycles can be asymptotically stable,

because each sub-cycle must contain at least one equilibrium with a two-dimensional unstable

manifold, (by the transitivity property) so there will be points near the cycle which are contained

in a heteroclinic orbit to an equilibrium not contained in the cycle. However, sub-cycles can still

be essentially asymptotically stable.

If condition 3 in the definition of essential asymptotic stability is relaxed to µ(V \ A) > 0 then

the set X is an attractor in a weaker sense and is called a Milnor attractor [43]; any set which is

e.a.s. is also a Milnor attractor.

A simple example of a heteroclinic network in R
4 with two sub-cycles was studied by Kirk

and Silber [34] (and Brannath [4]). They found that it was not possible for both sub-cycles to

be simultaneously e.a.s., however they could both be attracting in some sense, and the network

considered as a whole could be e.a.s.. Kirk and Silber also found that if one sub-cycle is unstable,

then ‘switching’ between the sub-cycles could occur. That is, a trajectory starting close to the

network may make a number of excursions near to one of the cycles, and then switch to cycling

near the other. With only two sub-cycles in their example, the switching could only occur in one

direction, so there are no initial conditions near the cycle that have ω-limit sets equal to the entire

network.

In the rest of this section we will outline the numerical results of Postlethwaite & Dawes [46] who

observed irregular switching of trajectories near a heteroclinic network in R
6. Little is known about

the behaviour near heteroclinic networks in general, and this kind of behaviour may be typical of

higher-dimensional problems.

Regular and irregular cycling sub-cycles

Postlethwaite & Dawes [46] consider Z6 × Z
6
2-symmetric ODEs in R

6, with a cubic truncation

ẋ1 = x1(1 −X2 + ex2
2 − cx2

3 − s3y
2
1 + s2y

2
2 − s1y

2
3) (58)

ẋ2 = x2(1 −X2 + ex2
3 − cx2

1 − s3y
2
2 + s2y

2
3 − s1y

2
1) (59)

ẋ3 = x3(1 −X2 + ex2
1 − cx2

2 − s3y
2
3 + s2y

2
1 − s1y

2
2) (60)

ẏ1 = y1(1 −X2 + ey2
2 − cy2

3 − s3x
2
1 + s2x

2
2 − s1x

2
3) (61)

ẏ2 = y2(1 −X2 + ey2
3 − cy2

1 − s3x
2
2 + s2x

2
3 − s1x

2
1) (62)

ẏ3 = y3(1 −X2 + ey2
1 − cy2

2 − s3x
2
3 + s2x

2
1 − s1x

2
2) (63)

where X2 =
∑3

i=1(x
2
i + y2

i ). These ODEs can be thought of as two Guckenheimer-Holmes cycles

in the subspaces (x1, x2, x3, 0, 0, 0) and (0, 0, 0, y1, y2, y3) with the possibility of more heteroclinic



orbits connecting equilibria in each cycle together. For the Guckenheimer–Holmes cycles, e and c

are the expanding and contracting eigenvalues, and there are three transverse eigenvalues s1, s2, s3.

Consider the case where sj > 0, j = 1, 2, 3. Then the network of connecting orbits between

equilibria on the axes is as given in figure 21. In this figure the equilibria ξ1 = (x1, 0, 0, 0, 0, 0) and

η1

ξ2ξ3

ξ12η η3
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Figure 21: Sketch of the network of connecting orbits between equilibria ξ1, ξ2, ξ3 and η1, η2, η3.

The ξj equilibria and ηj equilibria separately form Guckenheimer–Holmes cycles.

η1 = (0, 0, 0, y1, 0, 0); ξ2, ξ3, η2, η3 are defined similarly. The network of connections clearly contains

many other heteroclinic sub-cycles, for example ξ2 → ξ1 → η3 → ξ2 and η3 → η2 → ξ1 → η3
and symmetric copies of these. None of these sub-cycles can be asymptotically stable since each

equilibrium has a two dimensional unstable manifold. For an open region of choices of the coefficients

in the amplitude equations (58) - (63) we observe ‘cycling sub-cycles’ behaviour, illustrated by a

time series plot in figure 22, and schematically in figure 23. Both figures show a trajectory switching

from a neighbourhood of the ξ2−ξ1−η3 cycle to a neighbourhood of the η1−η3−ξ2 cycle and then

to the ξ3−ξ2−η1 cycle. For some combinations of coefficients trajectories settle down to performing

a constant number of loops n around each sub-cycle. For a single set of coefficients, varying the

initial conditions can give rise to stable looping with many different values of n. Postlethwaite &

Dawes call this ‘regular cycling’. For other combinations of coefficients, no stable regular cycling

is possible and trajectories perform a bounded but aperiodic sequence of numbers of loops around

each sub-cycle. This is the ‘irregular cycling’ case. The ‘regular’ and ‘irregular’ cases are illustrated

in figure 24.



Figure 22: Time integration of (58) - (63), showing cycling sub-cycles. Coordinates x1, . . . , y3 are

plotted, top to bottom. The cycles are visited in the order ξ2 − ξ1 − η3; η1 − η3 − ξ2; ξ3 − ξ2 − η1.

Parameter values are c = 1.0, e = 0.5, s1 = 1.4, s2 = 1.6, s3 = 1.1, t1 = 0.9, t2 = 0.7, t3 = 0.9.
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Figure 23: Schematic diagram of a cycling sub-cycles trajectory; compare with figure 22.
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Figure 24: Numbers of loops around each sub-cycle for typical trajectories in the regular and

irregular cases. c = 1.0, e = 0.5, s3 = 0.8 in both cases. (a) Regular case: after transients two

trajectories settle to n = 2 loops per sub-cycle, the third trajectory shown has not settled by cycle

80. s1 = 1.1, s2 = 1.5. (b) Irregular case: four different initial conditions converge to a bounded

aperiodic sequence of loops. s1 = 1.0, s2 = 1.4.


