
3 Lecture 3: From PDEs to ODEs

In this lecture we will apply the theoretical framework outlined in the first two lectures to pattern

formation problems on the plane. Many continuum physical systems can be described in terms of

PDEs, often either reaction–diffusion systems or Navier–Stokes equations. Very often these physical

systems show instabilities of an initially spatially uniform and time-independent state that result in

a spatially periodic regular pattern. The symmetric bifurcation theory we have discussed enables us

to draw up a classification a priori of possible spatially periodic patterns. The amplitude equations

describing the branching behaviour and stability are determined by equivariance, and the specific

physics of a system determines the values of the coefficients of nonlinear terms in the amplitude

equations. The values of the coefficients determine which possible pattern is selected by the system.

The first step is to see how we can reduce a set of PDEs to a set of symmetric ODEs. Then we

analyse the properties of the ODEs. We will focus only on PDEs that are Euclidean-symmetric and

defined on a physical domain R2 × Ω where Ω is bounded (for example the vertical direction for a

fluid layer). We will see that there are various difficulties associated with the unbounded domain

R2 and we in fact will circumvent this in a rather drastic way: we will consider instead a bounded

region D ⊂ R2 with periodic boundary conditions on the edges.

3.1 Euclidean symmetry

The general framework which we consider applies to any physical problem governed by a set of m

PDEs for a function u : R2 × Ω → Rm with a bifurcation parameter we denote by µ. We write the

PDEs schematically as

∂u(x, ω, t)

∂t
= F(u, µ), (10)

for x ∈ R2, ω ∈ Ω, and assume there exists a trivial solution u(x, ω, t) = 0 for all values of the

real parameter µ. The state u = 0 is assumed to be invariant under the group E(2) of Euclidean

transformations in the plane. Exploring this in a bit more detail, we start from the natural action

of E(2) on R2. E(2) is generated by rotations about the origin ρθ, a reflection mx and translations

T(ξ,η) acting on (x, y) by:

Rθ

(

x1

x2

)

=

(

cos θ − sin θ

sin θ cos θ

) (

x1

x2

)

mx(x1, x2) = (x1,−x2), (11)

T(ξ,η)(x1, x2) = (x1 + ξ, x2 + η). (12)

The elements Rθ and mx generate the group O(2) and hence E(2) = O(2)× R2, a semi-direct

product of O(2) and the translation group R2. This action of E(2) on R2 leads to an action on a

space F of (vector-valued) functions on R
2 × Ω:

gu(x, ω, t) = ρ̃(g)u(g−1x, ω, t) (13)

T(ξ,η)u(x1, x2, ω, t) = u(x1 − ξ, x2 − η, ω, t) (14)

where g ∈ O(2) is composed of rotations Rθ and the reflection mx. ρ̃(g) is a representation of O(2)

on Rm which for this section we will take to be trivial (the scalar representation). Different choices

for the representation ρ lead to pseudoscalar representations and rather different pattern forming

behaviour. We will discuss this in section 3.5. In the action (13)-(14) we have assumed that g acts

trivially on the bounded variables ω ∈ Ω. We assume that the E(2)-invariant state u = 0 loses

stability to perturbations ẽik·x at a finite wavenumber |k| = kc via a steady-state bifurcation at

µ = 0. This is the typical situation, but presents two serious problems from a bifurcation point of

view:



Lattice HL ℓ1 ℓ2 k1 k2

Square D4 (1, 0) (0, 1) (1, 0) (0, 1)

Hexagonal D6 (1, 1/
√

3) (0, 2/
√

3) (1, 0) (−1,
√

3)/2

Rhombic D2 (1,− cotφ) (0, cosecφ) (1, 0) (cosφ, sinφ)

Table 1: Holohedries and generators for planar lattices generated by two equal length vectors. For

rhombic lattices 0 < φ < π/2, φ 6= π/3. Taken from [27], p130, table 5.1.

• wavenumbers near k = kc have growth rates that are arbitrarily close to zero,

• all Fourier modes ei(k·x) with |k| = kc are equivalent, and all are simultaneously marginal at

the bifurcation point.

The first of these problems means that it is impossible to apply the centre manifold theorem directly

to the PDE: we cannot separate the modes of instability into ‘active’ modes with neutral or positive

growth rates and ’passive’ modes with a growth rate uniformly less than −δ for some δ > 0 that

could be eliminated by centre manifold reduction.

The second problem means that at the bifurcation point there is an uncountable number of

modes corresponding to every horizontal direction: our ‘centre manifold’, if it existed, would have

to be infinite dimensional.

Happily there is a way around both these problems that has been used repeatedly in the liter-

ature. It has the advantages of simplicity and relevance to numerical work, and the disadvantage

in that with it we are able only to analyse ‘parts’ of the problem. This approach is to restrict our

attention to perturbation modes which are periodic with respect to a doubly-periodic lattice in the

plane. This corresponds numerically to ‘approximating’ unbounded domains with ‘large’ domains

and applying periodic boundary conditions.

3.2 Spatially periodic lattices

A planar lattice L is a set of integer linear combinations of two independent vectors ℓ1 and ℓ2:

L = {nℓ1 +mℓ2 : n,m ∈ Z}

There are three lattices generated by two wavevectors of the same length: square (vectors at 90◦),

hexagonal (vectors at 120◦) and rhombic (vectors aligned at some other angle). The function space

F restricts to a space of doubly-periodic functions:

FL = {u ∈ F : u(x+ ℓ, ω, t) = u(x, ω, t) ∀ ℓ ∈ L}. (15)

Because FL is the fixed point subspace of the action of L on F it is flow-invariant and so solutions

that are doubly-periodic are also solutions to the original PDE. Translational symmetries also

decompose F into isotypic components made up of different Fourier components: this is a different

way to say that eigenfunctions of the linearised operator for the PDE are Fourier plane waves.

On the subspace FL we no longer have the full symmetry group E(2) ≡ O(2)× R2. The

Euclidean symmetries lead to a smaller symmetry group ΓL = HL × T 2
L which is a semi-direct

product of two groups. T 2
L
∼= R

2/L is the group of translational symmetries of the system modulo

the lattice translations (which preserve the lattice itself). It is a normal subgroup of ΓL. The group

HL is the subgroup of O(2) (rotations and reflections about the origin) which preserves the lattice.

It is often referred to as the holohedry of the lattice. Generators for the square, hexagonal and

rhombic lattices are given in table 1

To each lattice we associate a dual lattice L∗ generated by two linearly independent wavevectors

k1 and k2 that satisfy ki · ℓj = δij (the Kronecker δij):

L∗ = {nk1 +mk2 : n,m ∈ Z}.



The dual lattices for the square and rhombic cases are illustrated in figure 3.2. The dual lattice in

the hexagonal case is illustrated in figure 3.3.
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Figure 6: (a) Dual lattice L∗ for the square case. Two critical circles are shown, intersecting the

lattice in 4 and 8 points respectively. (b) Dual lattice L∗ for the rhombic case.

3.3 Steady bifurcation on a hexagonal lattice

Many spatially extended physical systems are observed to form regular patterns with hexagonal

symmetry. In this section we will show how symmetric bifurcation behaviour enables us to derive

amplitude equations that model the appearance of hexagonal patterns, and gives stability conditions

that, in turn, control pattern selection. We will consider only the scalar case. The results in this

section are discussed by Hoyle [32], section 5.4; by Golubitsky & Stewart [27], and by Golubitsky

et al [25] in ‘case study’ 4. The original references are papers by Buzano & Golubitsky [7] and

Golubitsky, Swift and Knobloch [24].

For an E(2)-equivariant PDE all horizontal directions are equivalent. Restricting attention to

the lattice of allowed wavevectors L∗ we find, in the hexagonal case, that typically the lattice

intersects the circle of critical wavevectors in 6 or 12 points. By taking finer and finer lattices L∗

we can in fact ensure that there are as many intersection points as we wish between the circle and

L∗. This corresponds to considering a larger and larger physical domain with periodic boundary

conditions. Since the observed experimental patterns have a wavelength which is far smaller than

the typical box size, we restrict our attention to the cases with small numbers of intersection points,

and hence coarser lattices. Finer lattices lead to the presence of ‘hidden symmetries’ which affect the

calculations in intuitively natural, but slightly complicated, ways [18; 15]. The 6 point intersection

is the simplest, and called the ‘fundamental’ representation.

The ‘fundamental’ case

Suppose that a solution to the linear problem is eik·xf(ω) where k lies on the critical circle |k| = kc

and f(ω) is a vector in Rm that describes the solution for the bounded variables. Then we look for

a solution in the form

u(x, ω, t) =

3
∑

j=1

zj(t)e
ikj ·xf(ω) + c.c. (16)

where z1, . . . , z3 are amplitudes of the three plane waves, and +c.c. denotes the complex conjugate,

in order that u(x, ω, t) is real.

The E(2) symmetry is reduced toD6 × T 2 which acts on the centre manifold C
3 with coordinates

(z1, z2, z3) by

ρ(z1, z2, z3) = (z̄2, z̄3, z̄1) (17)
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Figure 7: (a) Dual lattice L∗ for the hexagonal case. Two critical circles are shown, intersecting the

lattice in 6 and 12 points respectively. (b) Wavevectors k1,k2,k3 for the fundamental case. Note

that k1 + k2 + k3 = 0 so k1 and k2 are sufficient to generate the lattice.

mx(z1, z2, z3) = (z1, z3, z2) (18)

τp(z1, z2, z3) = (z1e
−ik1·p, z2e

−ik2·p, z3e
−ik3·p). (19)

where p = (p1, p2) is a translation vector in the two-torus T 2 = R2/L. This group action follows

directly from the definition of the action on functions: gu(x) ≡ u(g−1x). For example, in detail for

the π/3 rotation ρ:

ρu(x) ≡ u(ρ−1x) = ρ(z1e
ik1·x + z2e

ik2·x + z3e
ik3·x + c.c.)

= z1e
ik1·ρ−1

x + z2e
ik2·ρ−1

x + z3e
ik3·ρ−1

x + c.c.

= z1e
iρk1·x + z2e

iρk2·x + z3e
iρk3·x + c.c.

= z1e
−ik3·x + z2e

−ik1·x + z3e
−ik2·x + c.c.

i.e. the action on (z1, z2, z3) is as in (17).

Axial branches and isotropy subgroups

We can easily check that the representation of D6 × T 2 given by (17) - (19) is absolutely irreducible.

Then the equivariant branching lemma can be applied to determine the generic branching behaviour

in the bifurcation. From table 2 we see that there are two axial branches: rolls and hexagons. There

are two types of hexagons because points (x, x, x) with x > 0 and x < 0 are not on the same group

orbit. Physically there are differences in the hexagonal planforms they represent; see figure 8. Up-

hexagons have isolated regions of up-flow (‘plumes’ in the thermal convection setting) surrounded

by connected regions of downflow. For down-hexagons the flow directions are reversed in the two

regions. There is no ‘up/down’ symmetry connecting the two flow states: in the case that there is

an up/down symmetry we have a different bifurcation problem: this case is discussed in section 3.4.

We will discuss the computation of amplitude equations informally, arguing only for the form

of the equations up to cubic order, rather than presenting a general formulation. Considering the

first amplitude equation ż1 = f1(z1, z2, z3) we see that translation equivariance (19) means that the

only terms that can appear at quadratic and cubic orders are

z̄2z̄3, z1|z1|2, z1|z2|2, z1|z3|2.

The equivariance of the first of these follows from

τp(z̄2z̄3) = z̄2e
ik2·pz̄3e

ik3·p = z̄2z̄3e
−ik1·p



Point Isotropy subgroup Σ dim Fix(Σ)

(z1, z2, z3) (generators)

Trivial (0, 0, 0) D6 × T 2 0

Rolls (x, 0, 0) O(2) × Z2 1

mx, τ(0,p2), ρ
3

+ Hexagons (x, x, x), x > 0 D6 1

ρ, mx

− Hexagons (x, x, x), x < 0 D6 1

ρ, mx

Rectangles (x1, x2, x2) D2
∼= Z2 × Z2 2

ρ3, mx

Triangles (z, z, z) D3 2

mx, ρ

Table 2: Scalar bifurcation on the hexagonal lattice, ‘fundamental’case: fixed point subspaces and

isotropy subgroups. xj ∈ R, z ∈ C. The +/− Hexagon branches have the same symmetry but are

not on the same group orbit.
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Figure 8: Planforms for axial branches for bifurcation on a hexagonal planar lattice: (a) up-

hexagons; (b) down-hexagons; (c) rolls.

so z̄2z̄3 transforms as z1 under translational symmetries. Equivariance with respect to the π rotation

ρ3 implies

ρ3ż1 = ρ3f1(z1, z2, z3) = f1(ρ
3(z1, z2, z3)) = f1(z̄1, z̄2, z̄3)

⇒ ¯̇z1 = f1(z̄1, z̄2, z̄3) = f1(z1, z2, z3)

so all coefficients in f1(z1, z2, z3) are forced to be real. Also, the reflection symmetry mx forces the

amplitude equation to be symmetric in z2 and z3. Hence the first amplitude equation takes the

form

ż1 = f1(z1, z2, z3) ≡ µz1 + εz̄2z̄3 + a1z1|z1|2 + a2z1(|z2|2 + |z3|2)
+z̄2z̄3(b1|z1|2 + b2(|z2|2 + |z3|2) + c1z

2
1z2z3 +O(5). (20)

Applying the rotations ρ2 and ρ4 yields the amplitude equations for z2 and z3:

ż2 = f2(z1, z2, z3) ≡ µz2 + εz̄1z̄3 + a1z2|z2|2 + a2z2(|z1|2 + |z3|2)



+z̄1z̄3(b1|z2|2 + b2(|z1|2 + |z3|2) + c1z
2
2z1z3 +O(5), (21)

ż3 = f3(z1, z2, z3) ≡ µz3 + εz̄1z̄2 + a1z3|z3|2 + a2z3(|z1|2 + |z2|2)
+z̄1z̄2(b1|z3|2 + b2(|z1|2 + |z2|2) + c1z

2
3z1z2 +O(5). (22)

From the amplitude equations we can write down branching equations for the various solution types,

and hence calculate stability in terms of the various normal form coefficients.

Stability of rolls and hexagons

Stability calculations can, of course, be carried out by brute force, writing down the 6× 6 Jacobian

matrix from (20) - (22) and evaluating it on each solution branch. Such calculations reveal, for

example, that although only the axial branches of rolls and hexagons exist near the bifurcation

point, a branch of rectangle equilibria exists in µ > 0 for an open set of coefficients and gives rise

to secondary bifurcations, as shown in figure 9.

But there is a faster way, exploiting the symmetric structure of the Jacobian, and the isotypic

decomposition discussed in section 1.2. By theorem 2 the isotypic decomposition gives a set of

coordinates in which the Jacobian L ≡ Df(0, 0) is block-diagonal. Finding these coordinates vastly

simplifies the eigenvalue calculations. First we choose a solution branch and its isotropy subgroup

Σ. Then, to find the right coordinates we write R
n as a direct product of subspaces on which Σ

acts irreducibly. If Σ acts by a different irreducible representation on each subspace then life is very

straightforward: the Jacobian is diagonal, and we can read off the eigenvalues as these diagonal

entries. We now summarise the details for rolls and hexagons: the results are presented in table 3.

Rolls. The isotropy subgroup ΣR
∼= O(2) × Z2 acts as the identity I on the one dimensional

subspace Fix(ΣR) = (x, 0, 0). This is the first isotypic component.

On the subspace (ix, 0, 0) we see that mx and τ(0,η) act as I and ρ3 acts as −I. So O(2)×Z2 acts

as Z2 on this subspace, another irreducible representation. With respect to the usual coordinates

(x1, y1, x2, y2, x3, y3) where zj = xj + iyj, and writing fj(z1, z2, z3) = f r
j + if i

j in real and imaginary

parts, we can compute that these two one-dimensional isotypic components give

L
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






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


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
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






















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






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




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






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
























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1

∂y1

We can now evaluate the derivatives
∂fr

1

∂x1

and
∂fi

1

∂y1

on the solution branch. The first one of these has

sign sgn(a1) which gives the direction of branching. The second gives zero corresponding to neutral



stability to perturbations in the direction of the wavevector k1: there is a continuous group orbit

of roll solutions given by translations in the (1, 0) direction.

For the remaining eigenvalues, consider the (four real dimensional) subspace (0, z2, z3) on which

mx(z2, z3) acts as
(

0 I2
I2 0

)

, where I2 denotes the 2 × 2 identity matrix, ρ3(z2, z3) = (z̄2, z̄3) and

τ(0,η)(z2, z3) = (z2e
−i

√
3η/2, z3e

i
√

3η/2). Working in real coordinates (x2, y2, x3, y3) we find that any

commuting matrix is forced to take the form









a 0 c 0

0 a 0 −c
c 0 a 0

0 −c 0 a









where a = ∂f r
2/∂x2 and c = ∂f r

2/∂x3. Hence the eigenvalues are a± c, each of multiplicity two.

Hexagons. Hexagons have an isotropy subgroup ΣH
∼= D6 which acts trivially on the subspace

(x, x, x): this yields an eigenvalue

∂f r
1

∂x1
+
∂f r

1

∂x2
+
∂f r

1

∂x3
≡ ∂f r

1

∂x1
+ 2

∂f r
1

∂x2
, (23)

using symmetry. It can similarly be checked that on the subspace (ix, ix, ix) ρ acts as −1 and mx

acts as +1: this is another isotypic component, and gives the eigenvalue

∂f i
1

∂y1
+
∂f i

1

∂y2
+
∂f i

1

∂y3
. (24)

The other four eigenvalues come from two different two-dimensional isotypic components:

R{(1,−1, 0), (0, 1,−1)} and R{(i,−i, 0), (0,−i, i)}.

On the first of these, ρ acts as
(

−1 1
−1 0

)

and mx acts as
(

1 0
1 −1

)

; these generate an irreducible repre-

sentation isomorphic to the 2D irrep of D3. The matrices generating the irrep are not orthogonal by

our (bad but obvious) choice of coordinates. After checking absolute irreducibility we can conclude

that the eigenvalue

∂f r
1

∂x1
− ∂f r

1

∂x2
(25)

occurs, with multiplicity two.

On the final subspace, R{(i,−i, 0), (0,−i, i)}, there is a faithful action of D6 generated by ρ

acting as
(

1 1
−1 0

)

(note that ρ3 = −I, so ρ has order six), and by mx acting as
(

1 0
−1 −1

)

. This is

absolutely irreducible and so the eigenvalue is

∂f i
1

∂y1
− ∂f i

1

∂y2
(26)

again, with multiplicity two. Direct calculation shows that this eigenvalue is zero. The translational

symmetries of the problem imply that hexagons have two zero eigenvalues because there is a two-

dimensional (in fact a two-torus) group orbit of hexagon solutions given by translations in the two

independent directions in the plane. From (26) being zero we can now simplify (24):

∂f i
1

∂y1
+
∂f i

1

∂y2
+
∂f i

1

∂y3
≡ 3

∂f i
1

∂y1
.

Table 3 lists the branching equations and eigenvalues for the axial branches rolls and hexagons,

and for rectangles. The rolls branch has a single zero eigenvalue corresponding to neutral stability



Name Branching equation Eigenvalues Stability conditions Multiplicity

Rolls 0 = µ+ a1x
2 + · · · ∂fr

1

∂x1

sgn(a1)

∂fi
1

∂y1

0

∂fr
2

∂x2

± ∂fr
2

∂x3

±εx+ (a2 − a1)x
2 2 each

± Hexagons 0 = µ+ εx
∂fr

1

∂x1

+ 2
∂fr

1

∂x2

εx+ 2(a1 + 2a2)x
2

+(a1 + 2a2)x
2 + · · · 3

∂fi
1

∂y1

∓3εx+ 3(c1 − b1 − 2b2)x
3

∂fr
1

∂x1

− ∂fr
1

∂x2

∓2εx+ 2(a1 − a2)x
2 2

∂fi
1

∂y1

− ∂fi
1

∂y2

0 2

Table 3: Scalar bifurcation on the hexagonal lattice, ‘fundamental’case: branching equations, eigen-

value expressions and those expressions evaluated near x = 0, for the axial branches rolls and

hexagons. A solution branch is stable when all the stability conditions are negative.

to perturbations in the direction of the wavevector k1: there is a continuous group orbit of roll

solutions given by translations in the (1, 0) direction. Notice that translations in the (0, 1) direction

have no effect. By contrast, the hexagon branches have two zero eigenvalues.

Figure 9 sketches a typical bifurcation diagram in the case a2 − a1 < 0, a1 < 0, for which

rolls bifurcate supercritically and are stable for large positive µ. Notice that hexagons bifurcate

transcritically. Both up-hexagons and the trivial (no pattern) solution are stable for µ1 = ε2/[4(a1+

2a2)] < µ < 0 and both rolls and up-hexagons are stable in the range µ2 = ε2a1/(a1 − a2)
2 < µ <

−ε2(2a1 + a2)/(a1 − a2)
2 = µ3. The bifurcation at µ = µ2 is a pitchfork, and the bifurcation at

µ = µ3 is transcritical (in fact it is the bifurcation with D3 symmetry on R
2 that we met in the

last lecture).

mu

rolls

up−hex

rect

down−hex

mu mu mu1 2 30

Figure 9: Typical bifurcation diagram for bifurcation on a hexagonal planar lattice, in the case

a2 − a1 < 0 and a1 < 0.



Point Isotropy subgroup Σ dim Fix(Σ)

(z1, z2, z3) (generators)

Trivial (0, 0, 0) D6 × T 2 × Z2 0

Rolls (x, 0, 0) O(2) × Z2 × Z2 1

mx, τ(0,p2), ρ
3, mh ◦ [π, 0]

Hexagons (x, x, x) D6 1

ρ, mx

Triangles (ix, ix, ix) D̃6 1

mx, ρ ◦mh

Patchwork Quilt (0, x, x) Z2 × Z2 × Z2 1

mx, ρ3, mh ◦ [0, 2π√
3
]

Table 4: Scalar bifurcation on the hexagonal lattice with midplane reflection symmetry, in the

‘fundamental’case: axial branches, fixed point subspaces and isotropy subgroups. xj ∈ R. The

patchwork quilt solution is often just called ‘rhombs’.

3.4 Hexagonal patterns with a midplane reflection symmetry

In many thermal convection experiments the fluid is close to the idealised case in which fluid proper-

ties such as viscosity and thermal conductivity do not vary significantly with temperature, and the

fluid is almost incompressible. In this case the fluid is said to obey the Boussinesq approximation,

and the governing Navier–Stokes equations have an extra symmetry of reflection in a horizontal

plane at the mid-level of the fluid layer. In other words, hot rising fluid behaves symmetrically to

cold falling fluid. In this situation, and when the boundary conditions at the upper and lower sides

of the fluid layer are the same, there is an extra symmetry in the bifurcation problem because the

part of the eigenfunction that deals with the vertical structure is even about the midplane. In terms

of the amplitudes (z1, z2, z3) the extra symmetry mh acts as −1:

mh(z1, z2, z3) = −(z1, z2, z3).

The full symmetry group of the problem is now D6 × T 2 × Z2 and the analysis of the previous

subsection needs to be reworked to take this symmetry into account.

In this case it transpires that there are four axial branches. These are listed in table 4. Compared

to the original problem without midplane symmetry, the ‘up-hexagons’ and ‘down-hexagons’ now

lie on the same group orbit, so their stability and branching directions must be the same. Rolls have

gained an extra symmetry which forces the regions of upflow and downflow to be symmetrically

related, which was not necessarily the case in the original problem. The amplitude equations are

simplified because the action of mh removes the quadratic terms in (20)-(22). The cubic truncation

turns out not to be sufficient to distinguish the relative stability of hexagons and triangles. This

can be seen easily from the form of the cubic terms: they do not contain the phase information

that distinguishes (x, x, x) from (ix, ix, ix). Terms at fifth order are needed to determine stability

completely. The form of the first amplitude equation, up to fifth order, is

ż1 = µz1 + z1(a1|z1|2 + a2(|z2|2 + |z3|2)) + z1(f11|z1|4 + f12|z1|2|z2|2 + · · ·
· · · + f33|z3|4) + z̄2z̄3(d1z1z2z3 + d2z̄1z̄2z̄3) +O(7), (27)

with the equations for ż2 and ż3 following by rotation symmetries as before. The calculations of

the eigenvalues follows from isotypic decomposition as before, and is summarised in table 5. The

calculations for rolls and hexagons are very similar to those in the previous case. The calculation

for triangles is similar to that for hexagons. The calculation for the patchwork quilt solution is set

out below.



Patchwork Quilt. The symmetriesmx, ρ3 and [0, 2π/
√

3]◦mh that generate the isotropy subgroup

of patchwork quilt all act as +1 on the subspace (0, x, x); the first isotypic component. On the

subspace (0, x,−x) mx acts as −1 but the other two generators act as +1 still. This defines a

second isotypic component, with eigenvalue

∂f r
2

∂x2
− ∂f r

3

∂x3
.

Similarly, on the subspace (0, ix, ix), ρ3 acts as −1 but mx and [0, 2π/
√

3] ◦mh act as +1. Hence

∂f i
2

∂y2
+
∂f i

3

∂y3
(28)

must be an eigenvalue. The fourth isotypic component is (0, ix,−ix) on which mx and ρ3 act as −1

and [0, 2π/
√

3] ◦mh acts as +1. The fourth eigenvalue is

∂f i
2

∂y2
− ∂f i

3

∂y3
. (29)

Both (29) and (28) turn out to be zero: as expected because there is again a group orbit of patchwork

quilt equilibria forming a two-torus.

The last two eigenvalues must come from perturbations in the first coordinate: isotypic compo-

nents are (x, 0, 0) and (ix, 0, 0) on which mx acts as +1 and [0, 2π/
√

3]◦mh acts as −1. On the first

of these ρ3 acts as +1 and on the second, ρ3 acts as −1. So the actions are irreducible and different

to all those we determined for the other isotypic components. The resulting eigenvalues are

∂f r
1

∂x1
and

∂f i
1

∂y1
,

which are in fact equal when evaluated on the cubic truncation.

All four branches bifurcate as pitchforks due to the absence of quadratic terms: in each fixed

point subspace of an isotropy subgroup there is an element of the normaliser that acts as −1 ensuring

that each bifurcation is a symmetric pitchfork. From the stability conditions, some observations on

the possible bifurcation behaviours near µ = 0 is can be made:

• if all four axial branches bifurcate supercritically then exactly one is stable,

• the stability of rolls is determined by cubic order terms,

• if rolls are unstable then a fifth order term determines which of hexagons and triangles is

stable,

• patchwork quilt is unstable except possibly in the degenerate case a1 = a2.

Planforms for the triangle and patchwork quilt solutions are shown in figure 10.

3.5 Pseudoscalar planforms

In the previous section we assumed that the action of E(2) on the function u in our pattern forming

PDE (10) was as equation (13) - (14) with ρ the trivial representation. In this section we discuss

another choice for the action of E(2) that applies directly to the incompressible 2D Navier–Stokes

equations. It turns out that any planar system of ‘pattern forming’ PDEs lies in one of two classes,

scalar and pseudoscalar, and can be reduced to a PDE for a function taking values in R rather than

Rm; see Melbourne [41].

The pseudoscalar action of E(2) on a real-valued function u is given by

gu(x, ω, t) = det(g) u(g−1x, ω, t) (30)



Name Branching equation Eigenvalues Stability Mult

conditions

Rolls 0 = µ+ a1x
2 + · · · ∂fr

1

∂x1

sgn(a1)

(x, 0, 0)
∂fi

1

∂y1

0

∂fr
2

∂x2

± ∂fr
2

∂x3

sgn(a2 − a1) 2 each

Hexagons 0 = µ+ (a1 + 2a2)x
2 ∂fr

1

∂x1

+ 2
∂fr

1

∂x2

sgn(a1 + 2a2)

(x, x, x) +x4(f11 + · · · + f33 + d1 + d2) + · · · 3
∂fi

1

∂y1

−sgn(d2)

∂fr
1

∂x1

− ∂fr
1

∂x2

sgn(a1 − a2) 2

∂fi
1

∂y1

− ∂fi
1

∂y2

0 2

Triangles 0 = µ+ (a1 + 2a2)x
2 ∂fi

1

∂y1

+ 2
∂fi

1

∂y2

sgn(a1 + 2a2)

(ix, ix, ix) +x4(f11 + · · · + f33 + d1 − d2) + · · · 3
∂fr

1

∂x1

sgn(d2)

∂fi
1

∂y1

− ∂fi
1

∂y2

sgn(a1 − a2) 2

∂fr
1

∂x1

− ∂fr
1

∂x2

0 2

Patchwork 0 = µ+ (a1 + a2)x
2 + · · · ∂fr

2

∂x2

+
∂fr

3

∂x3

sgn(a1 + a2)

quilt
∂fr

2

∂x2

− ∂fr
3

∂x3

sgn(a1 − a2)

(0, x, x)
∂fi

2

∂y2

+
∂fi

3

∂y3

0

∂fi
2

∂y2

− ∂fi
3

∂y3

0

∂fr
1

∂x1

−sgn(a1 − a2)

∂fi
1

∂y1

−sgn(a1 − a2)

Table 5: Scalar bifurcation on the hexagonal lattice, with midplane reflection symmetry, in the

‘fundamental’case: branching equations, eigenvalue expressions and those expressions evaluated

near x = 0, for the axial branches rolls and hexagons. A solution branch is stable when all the

stability conditions are negative.

where det(g) = +1 if g is composed only of translations and rotations, and det(g) = −1 if g contains

a reflection. An important example of a pseudoscalar PDE is the 2D Navier–Stokes equation written

in terms of the streamfunction ψ(x, y, t), see Bosch Vivancos et al. [3]. Let (u, v) be the components

of the 2D velocity field, then u = ∂yψ, v = −∂xψ and

∂t∇2ψ + J [ψ,∇2ψ] = ν∇4ψ + f(x, y, t),

where J [p, q] = ∂xp∂yq − ∂xq∂yp and we have taken ẑ · ∇× the usual Navier–Stokes equation.

f(x, y, t) denotes a general forcing term.

The reduction to a spatially periodic lattice (here we will take a hexagonal one) goes through

as before, and we examine perturbations to a putative solution ψ = 0 that are linear combinations

of three plane waves, as (16):

ψ(x, y, t) =

3
∑

j=1

zj(t)e
ikj ·x + c.c. (31)
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Figure 10: Planforms for axial branches for bifurcation on a hexagonal planar lattice with a midplane

reflection symmetry: (a) triangles; (b) patchwork quilt (also called ‘rhombs’).

Name Streamfunction Isotropy subgroup Σ dim Fix(Σ)

(z1, z2, z3) ψ(x, y) (generators)

Trivial 0 D6 × T 2 0

(0, 0, 0)

Pseudo-rolls cosx O(2) × Z2 1

(x, 0, 0) ρ3, τ(0,p2), mx ◦ [π, 0]

Pseudo-hexagons cosk1 · x + cosk2 · x + cosk3 · x Z6 1

(x, x, x) ρ

Pseudo-triangles sink1 · x + sink2 · x + sink3 · x D̃3 1

(ix, ix, ix) mx ◦ ρ, ρ2

Pseudo-rectangles cosk2 · x − cosk3 · x Z2 × Z2 1

(0, x,−x) mx, ρ3

Table 6: Pseudoscalar bifurcation on the hexagonal lattice, in the ‘fundamental’case: axial branches,

fixed point subspaces and isotropy subgroups. xj ∈ R.

where, as before, c.c. denotes complex conjugate, and we have ignored the bounded variables ω ∈ Ω.

The action of the reduced symmetry group D6 × T 2 on the centre manifold C3 spanned by the three

mode amplitudes (z1, z2, z3) is

ρ(z1, z2, z3) = (z̄2, z̄3, z̄1) (32)

mx(z1, z2, z3) = −(z1, z3, z2) (33)

τp(z1, z2, z3) = (z1e
−ik1·p, z2e

−ik2·p, z3e
−ik3·p). (34)

where p = (p1, p2) is a translation vector in the two-torus T 2 ∼= R
2/L. Note that the actions of

ρ and τp are unchanged, but that (33) differs from (18). This change has radical consequences:

there are now four axial branches, rather than two, and the bifurcation problem with D6 × T 2

symmetry now looks similar to the one with a midplane reflection studied in section 3.4. The axial

branches are listed in table 6. The other difference is in the visualisation of these planforms: because

orientation is important, and instead of plotting level sets of the streamfunction ψ, we need to plot

planar velocity vectors. This produces planform pictures that have the required symmetries (and

no more!), as shown in figure 11. Further details of stability, and pseudoscalar bifurcations on the
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Figure 11: Pseudoscalar planforms for axial branches for bifurcation on a hexagonal planar lattice.

Velocity vectors (u, v) = (ψy,−ψx) are shown. (a) pseudo-rolls; (b) pseudo-hexagons; (c) pseudo-

triangles (d) pseudo-rectangles.

planar rhombic and square lattices can be found in [5] and [27].


