
2 Lecture 2: Amplitude equations and Hopf bifurcations

This lecture completes the brief discussion of steady-state bifurcations by discussing vector fields

that describe the dynamics near a bifurcation. From such a set of ‘amplitude equations’ we can

calculate conditions for stability of the bifurcating branches in terms of the coefficients of the

nonlinear terms. In very many cases it is sufficient to calculate the form of the nonlinear terms only

up to cubic order in the variables. Although a very general, systematic theory exists for determining

the structure of these amplitude equations we will deal instead in specific examples to fix the ideas

clearly. For these simple examples the axial isotropy subgroups can be found by inspection. For

more complicated examples there are better methods for finding axial isotropy subgroups, using the

trace formula, see [25], pp76–78.

The second half of the lecture contains a few remarks on oscillatory (Hopf) bifurcations with

symmetry. The central message is very similar to that in the steady-state case, but there are a few

subtleties worth pointing out. One example of Hopf bifurcation is given; with O(2) symmetry.

2.1 Worked examples

The trivial representation

The trivial representation is reducible for all n > 1. In the case n = 1 we have a one dimensional

bifurcation problem with only a trivial symmetry group. So the generic bifurcation is a saddle-node

bifurcation: two solution branches bifurcate, one stable and one unstable, and both have the full

symmetry group of the problem.

D2 symmetry: one dimensional representations

From the character table in figure 1 we see that D2 has four one dimensional real (and hence

absolutely irreducible) representations. If the symmetry group elements act as in the trivial rep-

resentation χ1 on the one-dimensional centre manifold, the Taylor series expansion of f(x) at the

bifurcation point (without loss of generality) µ = 0, x = 0 is unconstrained by equivariance, hence,

in the absence of any other information (for example that the solution x = 0 persists on both sides

of the bifurcation point) we expect to have a saddle-node bifurcation: ẋ = µ + cx2 + h.o.t., for c

a real constant. If however we knew also from physical considerations that the x = 0 solution re-

mained a solution for all µ close to the bifurcation point then we would expect to see a transcritical

bifurcation instead: ẋ = µx − cx2 + h.o.t.

In the other cases χ2, . . . , χ4 the presence of symmetries acting as −1 removes even powers of x

from the Taylor series for f near the bifurcation point: equivariance implies f(−x) = −f(x) and so

ẋ = µx± cx3 + h.o.t. and hence a pitchfork bifurcation takes place on the centre manifold. In each

case the new solution branches retain the symmetries that act as +1 in the representation. Stability

is computed just as for ‘standard’ pitchfork bifurcations: there are subcritical and supercritical cases.

D3
∼= S3 symmetry: 1D and 2D irreps

As discussed in section 1.2 (example 2) the ‘natural permutation action’ of S3 on R3 is reducible. On

the subspace V = {(x, x, x)} all elements of S3 leave points unchanged (they ‘act as multiplication

by +1’) because (1, 1, 1)T is an eigenvector for all the permutation matrices. Hence if we had a

bifurcation where the centre manifold was V it would generically be a saddle-node bifurcation.

On the orthogonal complement V ⊥ we see geometrically that the permutation matrices have

order two or three and correspond to reflections and rotations of that plane, respectively. The

action on V ⊥ is irreducible and is isomorphic to the symmetry group D3 = 〈ρ, mx〉 of an equilateral

triangle, see figure 2. This is representation χ3 in figure 2. Using, for convenience, complex notation



z = x + iy for points in R
2, the 2D absolutely irreducible representation of

D3 = {I, ρ, ρ2, mx, md, md′}

is generated by

ρ(z) = e2πi/3z, mx(z) = z̄.

Up to conjugacy there is one axial isotropy subgroup Σ = {I, mx} ∼= Z2; Fix(Σ) = (x, 0) which

is one dimensional. Applying the EBL we can assert the existence of a branch of solutions with

Z2 symmetry in a generic bifurcation with this irrep of D3. By conjugacy there are also axial

isotropy subgroups {I, md} and {I, md′} which have fixed point spaces x(cos 2π/3, sin 2π/3) and

x(cos 4π/3, sin 4π/3). To investigate this bifurcation further we calculate the first few terms of the

equivariant ODEs ż = f(x). Requiring equivariance with respect to this action of D3 leads to the

normal form

ż = µz + bz̄2 + cz|z|2 + O(4)

(truncated at cubic order) where b and c are coefficients and are required to be real by equivariance.

In terms of x and y the truncated normal form is

ẋ = µx + b(x2 − y2) + cx(x2 + y2) + O(4), (4)

ẏ = µy − 2bxy + cy(x2 + y2) + O(4). (5)

Restricting (4)-(5) to the subspace Fix(Σ) = (x, 0) we see that generically the Z2-symmetric solution

branch bifurcates transcritically. It can be checked that in this case NG(Σ)/Σ ∼= {I}. In contrast

to a standard transcritical bifurcation without symmetry it can be checked that the solution branch

is unstable on both sides of the bifurcation point. This is a case of a more general result for axial

branches when the amplitude equations for a bifurcation problem contain quadratic terms, see [27],

p39.

2.2 D4 symmetry: branching and stability

As for D3 it is easiest to use a single complex coordinate z = x + iy to describe the only 2D irrep

of D4:

ρ(z) = iz, mx(z) = z̄.

In this case there are two group orbits of axial branches, with representative isotropy subgroups

Σ1 = {I, mx} ∼= Z2 and Σ2 = {I, md} ∼= Z2. The corresponding fixed point subspaces are Fix(Σ1) =

(x, 0) and Fix(Σ2) = (x, x). By the EBL there are therefore generically two distinct group orbits

of branches of equilibria produced in this bifurcation; Σ1 and Σ2 are not conjugate and so the

characteristics (for example stability) of these two solution branches will differ.

Normaliser calculations show that both of these branches bifurcate as pitchforks:

N(Σ1) = {I, mx, ρ2, mxρ2} since ρ2mxρ2 = mx

N(Σ2) = {I, md, ρ
2, ρ2md} since ρ2mdρ

2 = md

so N(Σ1)/Σ1
∼= {I, ρ2} ∼= Z2 and equally for Σ2. ρ2 acts as minus the identity matrix on R2 and

forces the bifurcation branches to be pitchforks.

To compute the equivariant normal form ż = f(z) we suppose that f(z) contains a term czpz̄q

in its Taylor series, where c is a constant and p and q are integers. Then equivariance with respect

to ρ and mx respectively implies

iczpz̄q = cip−qzpz̄q,

czpz̄q = cz̄pzq.
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Figure 5: Generic branching behaviour for D4-symmetric steady state bifurcation in R2. Solid

and dashed lines indicate stable and unstable branches respectively. Type 1 and 2 branches have

isotropy subgroups conjugate to Σ1, Σ2 respectively.

Hence c ∈ R and p− q ≡ 1 mod 4; any equivariant term must therefore be of odd total order p + q.

The lowest order polynomial terms that satisfy these constraints are c1z, c2z̄
3 and c3z

2z̄. Hence

the amplitude equation is

ż = µz − âz̄3 − b̂z|z|2 + O(5), (6)

which in real co-ordinates can be written as

ẋ = µx − ax3 − bxy2

ẏ = µy − ay3 − bx2y

defining a = â+b̂, b = b̂−3â. This calculation can also be carried out in real coordinates throughout,

see [32] pp111–118.

Stability of the bifurcating branches follows in the usual way. It turns out that exactly one of

the two types of branch (x, 0) (type 1) and (x, x) (type 2) is stable if and only if both branches

bifurcate supercritically. The bifurcation possibilities are summarised in figure 5.

2.3 D5 symmetry: not a transcritical bifurcation

As in the previous two examples the 2D irrep of D5 is generated by:

ρ(z) = e2πi/5z, mx(z) = z̄.

which leads to a D5-equivariant normal form

ż = µz − az|z|2 + bz̄4 + O(5)

Just as for the D3 case, there is one non-zero axial solution branch (x, 0) with isotropy subgroup

Σ = {I, mx} ∼= Z2. Within Fix(Σ) the dynamics are given by

ẋ = µx − ax3 + bx4 + O(5)



and hence the conditions for a pitchfork bifurcation are satisfied, that is:

fµ = 0, fxx = 0, but fµx 6= 0, fxxx 6= 0.

However, the normaliser calculation gives N(Σ)/Σ ∼= {I} because if a power of ρ, ρk ∈ N(Σ),

1 ≤ k ≤ 4 then we would require

e−2πik/5mx

(

e2πik/5z
)

= z̄ ⇒ e−4πik/5z̄ = z̄ (7)

which cannot hold. A similar calculation shows mxρk /∈ N(Σ). So N(Σ) = {I, mx} = Σ acts

trivially on Fix(Σ). So we would naively expect the dynamics on Fix(Σ), in this case, not to

be constrained by symmetry, and so might be expected to be a transcritical, but it is not. This

provides an example of the second case mentioned in the remark at the end of section 1.5: when

N(Σ)/Σ ∼= {I} we cannot infer that the bifurcation is transcritical.

2.4 D
n

symmetry: the general case, n ≥ 5

The results above for D3 and D4 are not really typical of the general situation for bifurcation

symmetric under the 2D irrep of Dn. A detailed discussion of the cases n ≥ 5 can be found in [25]

pp97–103. For the action

ρ(z) = e2πi/nz, mx(z) = z̄.

we find that the axial isotropy subgroups Σ1 = {I, mx} and Σ2 = {I, ρmx} are conjugate if n is

odd. They are not conjugate if n is even. However because the normal form takes the general form

ż = p(u, v, µ)z + q(u, v, µ)z̄n−1

(where p and q are polynomials in the invariants u = |z|2 and v = zn + z̄n and in µ the bifuration

parameter), both branches, in the case n even, bifurcate in the same direction. So the bifurcation

diagrams look very similar in the cases of odd and even n, but the group-theoretic details differ.

2.5 Steady-state bifurcation with O(2) symmetry

In the ‘limit n → ∞’ we have a continuous rotation symmetry, and the group Dn is replaced by

O(2) - the rotations and reflections of a circle. The group O(2) arises naturally when describing

instabilities of axisymmetric flows, for example when confined in a cylindrical domain.

Compact (i.e. nice) continuous symmetry groups have countably many irreps. In the case of

O(2) the most interesting irreps are those given by

τθ(z) = eimθz, mx(z) = z̄,

where mx and θ ∈ [0, 2π) generate the group O(2) ∼= Z2 × S1 and m ∈ Z indicates the possible

m-fold actions of τθ on R2. For this irrep the calculations are very similar to those above: there is

an axial isotropy subgroup Σ = {mx, τ2π/m} with a one-dimensional fixed point subspace Fix(Σ) =

(x, 0). For the m-fold action of the rotation, this new solution branch has Dm symmetry and the

amplitude equation is

ż = p(|z|2, µ)z = µz − az|z|2 + O(5)

where, as above, p is a polynomial in µ and the invariant |z|2. This bifurcation is sometimes known

as a ‘pitchfork of revolution’ because all points z with the same phase are equivalent. Equilibrium

points |z|2 = µ/a (at leading order) all have a zero eigenvalue in their Jacobians. This corresponds

to perturbations around the circle |z|2 = µ/a and shows that the continuum of equilibria has a



direction of ‘neutral stability’. The underlying reason for this is the continuous rotation symmetry,

which leads to a continuous group orbit. This is important for physical systems as these zero

eigenvalues are often involved in secondary bifurcations leading to solutions that drift along this

group orbit. Physically the steady solution breaks a reflection symmetry and rotates, typically with

a constant rotation rate, in the azimuthal direction.

2.6 Hopf bifurcations with symmetry

First we digress to discuss the phase-shift symmetry that naturally arises in Hopf bifurcation prob-

lems in ‘normal form’.

Normal form symmetry

The idea of a normal form is to take a system of ODEs in Rn at a bifurcation point and apply

successive near-identity coordinate transformations to try to simplify the terms in the Taylor series

expansion as much as possible. More specifically, write

ẋ = f(x) ≡ Lx + fk(x) + hk(x) + h.o.t.

where L is a matrix describing the linear terms, fk(x) contains terms of order 2 up to k − 1 that

we assume we have already dealt with, and hk(x) contains all the polynomial terms of order k. A

near-identity coordinate transformation x → y ≈ x, |x|, |y| ≪ 1 looks like

x = y + Pk(y)

where Pk(y) contains polynomial terms of order k (the same order as hk). Then, can we deduce a

simpler ODE for y than the one we start with for x? We have

y = x − Pk(y)

= x − Pk(x − Pk(y))

= x − Pk(x) + O(k + 1)

so

ẏ = ẋ − DPkẋ + O(k + 1)

= Lx + fk(x) + hk(x) − DPkLx + O(k + 1)

where the derivative matrix DPk is the usual one:

DPk =








∂Pk1

∂x1

∂Pk1

∂x2

· · · ∂Pk1

∂xn

∂Pk2

∂x1

· · ·
...

... · · · · · · ∂Pkn

∂xn








= O(k − 1).

Now note that the terms at orders 2 up to k are unchanged by this change of variable, in that

fk(x) = fk(y + Pk(y))

= fk(y) + O(k + 1), and,

hk(x) = hk(y) + O(k + 1)

so

ẏ = L(y + Pk(y)) + fk(y) + hk(y) − DPkLy + O(k + 1)

= Ly + fk(y)
︸ ︷︷ ︸

same as before

+ hk(y) + LPk(y) − DPkLy
︸ ︷︷ ︸

terms of order k

+O(k + 1).



Now we can freely choose the coefficients of the polynomial terms in Pk, and we can use them to

eliminate some (and possibly all) of the terms of order k in hk(y). Because x ≈ y for small x

there will be an open disc containing the origin on which the transformation is invertible. This

guarantees that the new and old systems of ODEs have qualitatively equivalent dynamics. This

process is inhibited by resonances between the eigenvalues of L and so in general not all terms are

removable at every order. On the other hand, if the eigenvalues are non-resonance at all orders k

(say they are 1 and
√

2), then in principle all nonlinear terms could be removed by successive near-

identity coordinate transformations. However, there may not be a neighbourhood of the equilibrium

where this infinite sequence of coordinate transformations are all invertible, so we usually truncate

the procedure at some order N . Once as many nonlinear terms as possible have been removed, the

system is said to be in Birkhoff normal form (truncated at some finite order N):

ẏ = Ly + polynomials up to order N = Ly + gN (y). (8)

There is freedom to choose how to eliminate terms in many cases, but there is one choice that

yields a transformed system with an extra symmetry property - this is particularly useful for Hopf

bifurcations.

Theorem 10 (Normal form symmetry) Let the system of ODEs (8) have an equilibrium at

y = 0 that has all eigenvalues of the linearisation L lying on the imaginary axis. Then there is a

choice of near-identity coordinate changes after which the nonlinear part of the truncated normal

form commutes with the matrices exp(sLT ) for all s ∈ R, i.e.

gN

(
exp(sLT )y

)
= exp(sLT )gN(y)

The matrix exp(sLT ) is called the normal form symmetry. This result is due to Elphick et al.

Physica D 29, 95–127 (1987). See also Wiggins, pp290–301.

Note that it is possible (for example in the Takens–Bogdanov bifurcation) that the linearisation

L does not commute with exp(sLT ).

Hopf bifurcation without symmetry

At a Hopf bifurcation point, after we have chosen coordinates to put the linearisation in normal

form, L =

(
0 −ω

ω 0

)

for some ω ∈ R. Then

exp(sLT ) =

(
cos sω sin sω

− sin sω cos sω

)

which geometrically is just a rotation matrix. So we can make coordinate changes so that the only

nonlinear terms that survive in the normal form are those that commute with this rotation. These

are of the form

(y2
1 + y2

2)
m

(
Am −Bm

Bm Am

) (
y1

y2

)

where Am and Bm are real constants, for each m ≥ 1, and the terms have order 2m + 1, i.e. in

particular all even order terms are removable. In complex notation, writing z = y1 + iy2 this result

means that the normal form looks like

ż = iωz + (A1 + iB1)z|z|2 + (A2 + iB2)z|z|4 + O(|z|7)

or, equivalently, in polar coordinates z = reiθ:

ṙ = A1r
3 + A2r

5 + O(r7),

θ̇ = ω + B1r
2 + B2r

4 + O(r6).



Note that the ṙ equation contains no θ-dependence: in the truncated normal form they are decoupled

by the special form of the terms. We must remember that arbitrarily high-order terms coupling θ to

r still exist in the original ODEs, but (by the Implicit Function Theorem) these higher-order terms

do not affect our conclusions about the existence of periodic orbits near the bifurcation, although

they do affect the qualitative structure of the dynamics in more complicated bifurcations.

2.7 The Equivariant Hopf Theorem

We have seen that generic steady-state bifurcations with symmetry are given by absolutely irre-

ducible representations of the symmetry group. In this section we discuss the corresponding generic

case for the group action when we have complex conjugate eigenvalues crossing the imaginary axis.

We begin by proving that single copies of absolutely irreducible representations of G will not give

rise to Hopf bifurcations.

Theorem 11 ([27], p90, Lemma 4.2) Suppose the Jacobian matrix at the bifurcation point L =

Df(0,0) has a non-real eigenvalue. Then either

• G acts non-absolutely irreducibly on Rn, or

• there exists subspaces V1, V2 such that V1 ⊕V2 ⊆ Rn and G acts isomorphically and absolutely

irreducibly on V1 and V2.

Proof: Suppose neither of these conditions is true, then we can write Rn = V1 ⊕ · · · ⊕ Vk, an

isotypic decomposition in which each G acts absolutely irreducibly, and distinctly, on each of the

Vj . From Theorem 2 we can conclude that L(Vj) ⊆ Vj and, because G acts absolutely irreducibly

on each Vj we must have

L|Vj
= cjIdim(Vj)

i.e. the Jacobian is a real multiple of the identity matrix when restricted to each Vj . So L = Df |(0,0)

is diagonal and has only real eigenvalues. 2

So in order to have a Hopf bifurcation, and eigenvalues ±iω, one or other of the conclusions in the

theorem must hold. As one might imagine, it transpires [25] that one or other of these cases holds

generically for Hopf bifurcations; these are the simplest possible situations to arrange conditional

on allowing purely imaginary eigenvalues. In either of these cases the group action is said to be

G-simple. The first case (G acts irreducibly but not absolutely irreducibly) arises when the group G
contains only rotations, for example G = SO(2). For problems involving orthogonal groups or their

subgroups which contain reflections (as will be the case in problems considered later), the second

case occurs.

Commuting matrices

Another view of the dichotomy of the generic representations of G for Hopf bifurcation is to start

from the full symmetry group of the bifurcation problem: G × S1 where S1 is the circle group of

phase shifts discussed above. The action of G × S1 on the center manifold Rn must generically be

irreducible; if it is not, we can split the action into actions on a subspace V and its complement V ⊥.

Then, as in the steady-state case, small perturbations to the linearisation matrix Df |V ⊥ move some

but not all of the eigenvalues off the imaginary axis and we have a different bifurcation problem.

Given that the action of G × S1 is irreducible we can investigate the possible actions of G on Rn

that are compatible with this. We will assume that the set of commuting matrices is isomorphic to

C and ignore the H case here.



In suitable coordinates, θ ∈ S1 acts on R
n/2 ⊕ R

n/2 by the rotation

Rθ =

(
cos θI − sin θI

sin θI cos θI

)

.

Any matrix L that commutes with S1 must then take the form

L =

(
A B

−B A

)

(9)

(including the matrices ρ̃(g) representing elements g ∈ G). The eigenvalues of L are then the

(complex) eigenvalues of the matrix A + iB.

• If the action of G is irreducible then the eigenvalues of L have geometric multiplicity n/2

(suppose they are a ± ib) and, given L takes the form 9, L must in fact be in the Jordan

normal form

L =

(
aI bI

−bI aI

)

• If the action of G is not irreducible yet generic, then there are exactly two copies of the same

irreducible representation by theorem 11. Suppose then Rg takes the form

Rg =

(
Pg 0

0 Pg

)

where Pg is an irreducible representation of G. Now L commutes with Rg if and only if

PgA = APg, and PgB = BPg

but A and B are independent n/2×n/2 matrices, so for the set of commuting matrices to be

isomorphic to C we require A = aI and B = bI to be real multiples of the identity matrix,

that is, Pg must be an absolutely irreducible representation, not just an irreducible one.

In summary, in both cases, after choosing a nice basis, a commuting matrix L = Df can be

assumed to take the form

Df =

(
µIn/2 −ωIn/2

ωIn/2 µIn/2

)

for real parameters µ and ω.

The Equivariant Hopf Theorem

The analogous result for the existence of periodic branches of solutions to Hopf bifurcation problems

is the Equivariant Hopf Theorem [26]:

Theorem 12 (The Equivariant Hopf Theorem) Let G be a (compact Lie) group acting irre-

ducibly and G-simply on Rn and let ẋ = f(x, µ) be a G-equivariant smooth bifurcation problem

with

Df |(0,0) =

(
0 −In/2

In/2 0

)

,

where In/2 denotes the n/2 × n/2 identity matrix. Then there exist real functions c(µ) and ω(µ)

such that the eigenvalues of Df |(0,µ) are c(µ) ± iω(µ) and, after time rescaling, ω(0) = 1. We also

assume that there is a non-degenerate bifurcation at µ = 0: c(0) = 0 and c′(0) 6= 0. Then there

exist branches of periodic solutions with period close to 2π having isotropy subgroup Σ ⊂ G × S1

whenever dim Fix(Σ) = 2.



Proof: See [26], or [25], p275, Theorem 4.1.

A key feature of the Equivariant Hopf Theorem is that isotropy subgroups Σ are subgroups of

G × S1, not subgroups of G, but in the statement of the theorem we require f(x, µ) to be only

G-equivariant, not G × S1-equivariant. This is an important distinction. If f(x, µ) is, in fact,

G × S1-equivariant it is said to be in ‘normal form’, as discussed above. The effects of (high-

order) terms which break the S1 symmetry are discussed in general by [25], and by [53] for the

particular example of a Hopf bifurcation with D4 symmetry. Most of the time only the cubic order

truncation of the normal form is considered in the literature: in this case the subspace Fix(Σ)

is invariant for the dynamics of f(x, µ) and the proof of the Equivariant Hopf Theorem loosely

amounts to restricting the dynamics to each two-dimensional fixed point subspace Fix(Σ) within

which ẋ = f(x, µ) describes a generic Hopf bifurcation without symmetry, giving rise to a periodic

orbit with symmetry group Σ. Indeed, since the phase shifts in the S1 group act on any fixed point

subspace of G (they are in the normaliser since they commute with every element of G), it is not

possible to have odd-dimensional fixed-point subspaces.

The symmetries of branches of periodic orbits are very likely to contain combinations of spatial

symmetries and temporal shifts - these are called spatio-temporal symmetries. Solution branches

guaranteed by the Equivariant Hopf Theorem are called C-axial branches, by analogy with the

steady-state case.

2.8 Hopf bifurcation with O(2) symmetry

We have seen already that the interesting irreducible representations of O(2) are on R2 ∼= C and

that they are absolutely irreducible. We consider the Hopf bifurcation problem where O(2) acts as

two copies of this absolutely irreducible representation: the centre manifold is then C ⊕ C and we

take coordinates (w1, w2). Then the linearised system takes the form

d

dt

(
w1

w2

)

= L

(
w1

w2

)

=

(
0 −ω

ω 0

) (
w1

w2

)

and so the phase shift exp(sLT ) acts on C ⊕ C by

exp(sLT )(w1, w2) = (w1 cos sω + w2 sin sω,−w1 sin sω + w2 cos sω).

Recall that the two copies of the standard action of O(2) on C ⊕ C are generated by

ρθ(w1, w2) = (eiθw1, e
iθw2), mx(w1, w2) = (w̄1, w̄2).

The linear change of coordinates

z1 = (w̄1 − iw̄2)/2, z2 = (w1 − iw2)/2,

produces a neater action of G × S1, relabelling the phase shift symmetry τφ:

ρθ(z1, z2) = (e−iθz1, e
iθz2),

mx(z1, z2) = (z2, z1),

τφ(z1, z2) = (eiφz1, e
iφz2).

We denote an element g ◦ τφ of G × S1 by square brackets: [g, φ].

C-axial branches

To apply the Equivariant Hopf Theorem we identify isotropy subgroups with two-dimensional fixed-

point subspaces. There are exactly two group orbits of these, with representatives

ΣSW = {[I, 0], [mx, 0], [ρπ, π], [mxρπ, π]]}, Fix(ΣSW ) = (z, z),

ΣRW = {[ρθ, θ] : ∀0 ≤ θ ≤ 2π}, Fix(ΣRW ) = (z, 0).



The first of these solutions is often referred to as a standing wave since at every point in time it

has a reflection symmetry, and the second half-period of the oscillation is a symmetric image of the

first half-period of the motion. The second solution is often referred to as a rotating wave. It has

no spatial symmetry, but phase shifts in time act in the same way as shifts in space. The isotropy

subgroup ΣSW
∼= Z2 × Z2 is a direct product, and ΣRW

∼= S1 is isomorphic to the circle group.

Equivariance can be used, as before, to deduce the normal form, truncated at cubic order, for the

Hopf bifurcation:

ż1 = z1[µ + iω − a1|z1|2 − a2|z2|2],
ż2 = z2[µ + iω − a1|z2|2 − a2|z1|2],

where a1 and a2 are complex coefficients. Writing zj = rje
iφj we see that the phase variables φj

decouple and we are in fact left with the same equations as for the steady-state bifurcation with

D4 symmetry. So the possible generic bifurcation behaviours can be read off from figure 5!

2.9 Hopf bifurcation with D4 symmetry

To be added at some later point...


