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The Kuramoto–Sivashinsky Equation

1. Introduction

The Kuramoto-Sivashinsky (KS) equation is a parabolic PDE for a single scalar variable u(x, t):

ut + uxx + uxxxx +
1

2
(ux)2 = 0,

In addition to describing the nonlinear evolution of the Benjamin–Feir instability, the KS equation has
been studied as a model for interfacial instabilities, for example in flame fronts and solidification problems.
Coefficients in front of any of the terms may be removed by appropriate rescalings of u, t and x, leaving
the canonical form above. The one remaining parameter is the domain size L: the equation is solved in
0 ≤ x ≤ L with typically either periodic boundary conditions (PBC, used here) or specific fixed values for
u and ux.

The first page of the pictures handout shows the temporal evolution of solutions to both the KS
equation and the complex Ginzburg–Landau (CGL) equation, quite far from the Benjamin–Feir instability
boundary. The solutions look moderately similar - a proper statistical analysis shows that actually the
dynamics are somewhat different. But from our derivation in lectures, we can conclude that close to
the Benjamin–Feir instability boundary the KS equation should provide a good description of the CGL
behaviour.

The KS equation has obvious similarities with the Navier–Stokes (NS) equations: let v = ux, then

vt + vxx + vxxxx + vvx = 0.

The last three terms correspond, respectively, to energy input at large scales, dissipation at small scales and
nonlinear advection. Loose though this correspondence is, it is good enough to ensure striking similarities
in some situations. In particular, both KS and NS are symmetric under translations by constant amounts
in x, and under a more complicated Galilean symmetry taking u → u+U and transforming the space and
time variables appropriately.

As an alternative to solving the equation in 0 ≤ x ≤ L, we could scale the domain size to be constant,
say 2π. This would introduce a parameter in front of the uxxxx term which becomes small as L becomes
large. Hence the ‘large domain limit’ is equivalent to the small viscosity, or large ‘Reynolds number’ limit.

2. Low dimensional dynamics

We now consider varying the domain size L. For small L we hope to have ‘low-dimensional’ dynamics, so
that we could perform something like a centre manifold reduction to derive a reduced set of ODEs that
describe the KS dynamics. Being a PDE this properly involves a functional-analytic setting, and a notion
of a function space for solutions u(x, t). Using such techniques it has been demonstrated that solutions
of the KS equation are exponentially attracted to a finite-dimensional inertial manifold in phase space.
Deriving bounds on the dimension of such an inertial manifold is now a standard functional-analytic
calculation for many equations, including KS; this provides a global estimate of the complexity of the
dynamics.

One aspect of such a discussion is the definition of the dimension of a set. The usual notion of
dimension is that of topological dimension, defined inductively as follows (Robinson, 1995, p293). A set
X has topological dimension zero if, for each point x ∈ X there is an arbitrarily small neighbourhood U
of x such that ∂U ∩ X = ∅. Then, inductively, a set X is defined to have topological dimension n > 0 if,
for each point x ∈ X , there is an arbitrarily small neighbourhood U of x such that ∂U ∩X has dimension
n− 1. A more general definition of dimension allows non-integer values - one such definition is the fractal
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dimension. For the KS equation it has been proved that a universal attractor X exists and has fractal
dimension dimF (X) ≤ cL3/2. The fractal dimension dimF (X) of a set X is defined to be

dimF (X) := lim sup
ε→0

log N(X, ε)

log 1/ε
,

where N(X, ε) is the minimum number of ε-balls that cover the set X . As a check, we can confirm that
for ‘standard’ sets of integer topological dimension this definition gives the integer answer we expect. If
X has topological dimension d, then N(X, ε) = V ε−d, for some constant V , because we need of the order
of 1/ε balls of radius ε along each ‘side’ of the set. So then

log N(X, ε)

− log ε
=

log V − d log ε

− log ε
→ d as ε → 0.

For the middle-third Cantor set we can carry out the calculation and derive a non-integer value for the
fractal dimension. Recall the construction: start from the interval [0, 1] and remove the middle third to
leave two intervals [0, 1/3], [2/3, 1]. Iterate. All the points in [0, 1] that do not contain a digit ‘2’ in their
base-3 expansion are left. When we take ε = 1/3n we will need 2n ε-balls to cover the set. So

log N(X, ε)

− log ε
=

n log 2

n log 3
=

log 2

log 3
≈ 0.63.

Howver, this kind of result tells us very little about the details of the dynamics, which is really what we
would like to examine.

Translational symmetry implies that Fourier modes provide a good set of ‘basis eigenfunctions’ for a
projection of the PDE on to a set of spatial modes. This procedure corresponds very closely to a spectral
numerical scheme, also called a Galerkin truncation.

Write

u(x, t) =

∞
∑

k=−∞

ak(t) exp

(

2πikx

L

)

≡
∞
∑

−∞

ak(t)φk(x),

where the coefficients ak(t) ∈ C are the mode amplitudes. Because u(x, t) is real, a−k(t) = āk(t). We
have the usual orthogonality relations between Fourier modes, so, on substituting this ansatz into the KS
equation, multiplying by φl(x) and integrating we obtain an ODE for the amplitude al:

ȧl =

(

2πl

L

)2

al −
(

2πl

L

)4

al +
1

2

(

2π

L

)2
∑

j

j(l − j)ajal−j .

Rescaling time by a factor of (2π/L)2 we obtain:

ȧl = l2

[

1 −
(

2πl

L

)2
]

al +
1

2

∑

j

j(l − j)ajal−j .

Note that the mode a0 decouples and decays to zero:

ȧ0 = −1

2

∑

j

j2|aj |2.

Taking all modes with |j| ≤ K we have a system of K complex ODEs. For example, for K = 4 we have
the ODEs

ȧ1 =

[

1 −
(

2π

L

)2
]

a1 − 2ā1a2 − 6ā2a3 − 12ā3a4,

ȧ2 = 4

[

1 −
(

4π

L

)2
]

a2 +
1

2
a2
1 − 3ā1a3 − 8ā2a4,

ȧ3 = 9

[

1 −
(

6π

L

)2
]

a3 + 2a1a2 − ā1a4,

ȧ4 = 16

[

1 −
(

8π

L

)2
]

a4 + 2a2
2 + 3a1a3.
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Now we will investigate local bifurcations from the origin. The trivial equilibrium aj = 0 for all j is
stable for L < 2π. There is a local bifurcation from the origin at L = 2mπ for all integers m ≥ 1. A
centre manifold reduction onto a 2-real-dimensional centre manifold yields

ȧm = m2

(

µ − 1

12
|am|2

)

am + O(|am|4),

i.e. a ‘pitchfork bifurcation of revolution’ - the phase of am can be ignored, and this corresponds to the
x-translational symmetry of the KS PDE. The bifurcation parameter µ is defined via L = 2πm(1 + µ).
This reduction is most useful for the first bifurcation, m = 1. In this case as it is a supercritical bifurcation
there must exist a stable, predominantly mode-1, solution for L > 2π.

Near L = 4π (m = 2) the origin is already unstable. But if all other modes with m > 2 are decaying,
it makes sense to eliminate them and leave a1 and a2 describing the dynamics on a 4D ‘centre-unstable’
manifold. Define a new bifurcation parameter by 4[1 − (4π/L)2] = 16µ (hence 1 − (2π/L)2 = 3/4 + µ).
Then a centre manifold reduction eliminating a3 and a4 gives

a3 = h3(a1, ā1, a2, ā2) =
1

6
a1a2 + O(3)

a4 = h4(a1, ā1, a2, ā2) =
1

24
a2
2 + O(3)

Hence

ȧ1 =

(

3

4
+ µ

)

a1 − 2ā1a2 − a1|a2|2

ȧ2 = 16µa2 +
1

2
a2
1 −

1

3
a2|a2|2 −

1

2
a2|a1|2

After rescaling −2a2 = â2 and dropping the hat we obtain:

ȧ1 =

(

3

4
+ µ

)

a1 + ā1a2 −
1

4
a1|a2|2

ȧ2 = 16µa2 − a2
1 −

1

12
a2|a2|2 −

1

2
a2|a1|2

which is now in the standard form that we analysed for the 1 : 2 mode interaction. Note that here
there is only one bifurcation parameter µ, so the dynamics cut a line through some part of our previous
two-parameter bifurcation diagrams, see handout, page 2.

It turns out that numerical investigations of this 2-mode system are almost identical to the PDE
dynamics at least up to L ≈ 6π.

3. Heteroclinic dynamics - low dimensional temporal intermittency

The 2-mode system derived at the end of the last section naturally gives rise to intermittent dynamics for
sets of coefficients for which the robust heteroclinic cycle is stable. More details of this can be found in
the discussion of the 1 : 2 mode interaction, for example from lecture notes available from my web page,
or as discussed earlier in the course. It is interesting to note that the convective form of the nonlinearity
vvx guarantees that the low-order dynamics is of the ‘interesting’ kind, i.e. the ‘−’ case rather than the
‘+’ case in the 1 : 2 mode interaction. Moreover, the Fourier mode truncation of the KS equation contains
many invariant subspaces (for example, take all the modes with mode numbers that are a multiple of
any given integer). Within each of these subspaces there is the possibility of intermittent dynamics in an
analogous low-order system of ODEs. Time integrations, as on pages 4 and 5 of the pictures handout,
show the intermittency very clearly, particularly in figures 14, 15 and 34.

4. Intermediate size domains

From the pictures on pages 3, 4 and 5 of the handout (taken from Hyman et al. 1986) it is clear that for
larger L there is a sequence of alternating stable equilibria, or other simple attractors, and intermittent or
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chaotic dynamics. The last figure on page 5 shows the power spectrum of the solution averaged over time.
This indicates that the solution still has a dominant spatial scale even in large domains, and illustrated
in the top figure on page 1. In fact, as the wavelet analysis of Wittenberg & Holmes shows, about 80% of
the energy is concentrated in spatial scales around the maximum.

5. Large domains

The power spectrum shows three distinct ranges of scales: at large scales the spectrum is almost flat,
at intermediate ‘active’ scales there is a very short ‘inertial range’ with a slope ∼ k−4, roughly for
1/

√
2 < k < 1. For smaller scales the power spectrum decays exponentially.

Page 6 of the handout shows a solution of the KS equation obtained in a very large domain (L = 5000).
Although close up (top figure) the solution has a preferred spatial scale and looks ‘cellular’ in the sense
of the figure on page 1 of the handout, it is clear that the solution is much ‘rougher’ when looked at over
large scales. Thus the evolution on long spatial scales is of interest, and is a different kind of problem to
the pattern forming instability apparent at the active scales. It has been found that the large scales evolve
effectively stochastically, forced by the active scales. The statistics for fluctuations on the large scales are
Gaussian, and similar to those found for the forced Burgers equation, also known as the KPZ (Kardar -
Parisi - Zhang) equation:

ht = νhxx +
λ

2
(hx)2 + η(x, t)

where η(x, t) is a delta-correlated gaussian white noise term providing random forcing (i.e. at each timestep
a gaussian iid increment is added to the RHS). Convergence of statistics to those of KPZ is only observed
in large domains, L > Lc ≈ 2500 typically, and on long timescales, t > tc ≈ 7000. The most useful
statistical quantity is the RMS interface width W (t) = 〈h̃(x, t)2〉x where h̃(x, t) = h(x, t) − 〈h(x, t)〉x is
the normalised interface position, and the 〈· · ·〉x denotes a spatial average. On intermediate timescales
t < tc numerics indicate W (t) ∼ t1/4, a scaling that can be derived from the linearised noisy diffusion
equation

ht = νhxx + η(x, t)

which is known as the Edwards-Wilkinson equation. On longer timescales t > tc there is a crossover to
the faster, and nonlinear, KPZ scaling W (t) ∼ t1/3.

The active scales are, in turn, forced by the large scales - their dynamics are not qualitatively changed
if the large-scale dynamics is replaced by stochastic forcing. In the absence of any large-scale dynamics,
the active scales revert to spatially ordered solutions, as illustrated by the figure 8 from the paper by
Wittenberg & Holmes (1999). Bohr et al. (1998) contains more discussion of this and related points.

Spatiotemporal dynamics in large systems is necessarily high-dimensional because distant parts of
the system are effectively decoupled from each other. This is due to the existence of a finite correlation
length for the dynamics; one of many ways of quantifying spatiotemporally complicated dynamics. The
correlation length ξ is usually given as the inverse decay rate of the correlation function: < u(x)u(x+r) >
− < u >2∼ exp(−r/ξ). If disturbances to the solution propagate with a finite speed bounded above by
c then the correlation length is bounded by Kc/λ where K is a constant and λ is the largest (positive)
Lyapounov exponent for the dynamics (the largest exponential rate at which nearby trajectories in phase
space separate). Points in the domain that are separated by a distance larger than ξ are effectively
decoupled from each other. Hence, heuristically, the dimension of the underlying attractor in phase space
should grow linearly with the system volume, here the domain length L.

Bursts in boundary layers

One fluid mechanical example of wide interest that displays intermittent dynamics is the formation of
turbulent streaks (streamwise vortices) in the boundary layer flows near a flat wall, as illustrated on
page 7 of the handout. Experimental measurements show that the vortices periodically go through a
‘burst–sweep’ cycle which ejects fluid particles from near the wall out into the main stream of the flow.
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The vortices have a well-defined horizontal scale and spacing, and can be analysed through a Galerkin
truncation very similar to (though more involved than) that for the KS equation above.

It turns out (and for the details, see the book by Holmes et al.) that the burst–sweep cycle is generated
by the interaction of low wavenumber modes essentially in the same way as the 1 : 2 mode interaction
comes about in the KS equation. Indeed it contains subspaces where modes interact exactly as in the 1 : 2
resonance:

ȧ2 = a2 + ā2a4 + a2|a2|2 + a2|a4|2 + d1(t)

ȧ4 = a4 + a2
2 + a4|a4|2 + a4|a2|2 + d2(t)

where I have omitted coefficients in front of every term on the RHS. The behaviour of these equations is
shown in the bifurcation diagram on page 7. Of course, there is stability in other directions to consider;
here we find that another kind of heteroclinic cycle between the mixed modes M+ is possible; this behaviour
was not possible in the original plain vanilla 1 : 2 resonance problem.

A summary of the dynamics for varying α ∼ 1/Re is as follows:

Range of α Behaviour
2.41 < α trivial eqm at origin is stable
2.3 < α < 2.41 ‘almost pure’ mode 2 bifurcates from origin and is stable
2.0 < α < 2.3 het cycle as in 1 : 2 resonance problem
1.61 < α < 2.0 M+ mixed mode stable
1.35 < α < 1.61 new kind of cycling between M+ modes
α < 1.32 new cycle loses stability: more irregular dynamics take over

There is one further complication in all this: the terms dj(t) on the RHS represent random forcings
of the boundary layer by the flow in the outside region, well above the wall, through the pressure term
in the NS equation. Analytically, the problem is to determine the change in the behaviour of trajectories
close to a robust heteroclinic cycle when random noise is added to the system. The result is generally that
the dynamics within a burst are unaffected, but the durations of the quiescent periods between bursts
are random variables, with a probability distribution that can be calculated analytically in simple enough
cases. The mean quiescent period scales as

T = c1 −
1

λ+

log ε

where c1 is a constant, λ+ is the unstable eigenvalue at the saddle point on the cycle, and ε is a measure
of the noise amplitude. This formula closely resembles the kind of result we derived using approximations
within a small box near a saddle point composed with a global map near the unstable manifold of the
saddle, so it is not really that surprising. Page 9 shows the regularising effect of noise or pressure fluctu-
ations on the dynamics; the heteroclinic behaviour in the absence of noise is replaced by (slightly noisy)
time-periodic oscillations. The bottom graph shows a close agreement between the analytically derived
probability density function for the lengths of quiescent periods and the results for real simulations of the
standard 1 : 2 ODEs with gaussian noise added.

To summarise, the bursting dynamics of this boundary layer problem are intrinsic to the fluid flow near
the wall; the triggers for each of the burst–sweep cycles are determined by external fluctuations acting as
noisy perturbations added to the dynamics.
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