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7 Chaos

Throughout these notes the notation I will denotes a closed interval in R, and the map

F : I → R will be assumed to be continuous even if this is not stated.

Proofs included here but not given in lectures are included in brackets: [** · · · **]

since they are certainly not examinable.

7.1 Introduction

In this chapter we will investigate the generation of complicated dynamics in the simplest

possible setting: discrete time maps of the interval.

We take the point of view that ‘complicated dynamics’ means ‘orbit complexity’ i.e.

the guaranteed generation of large numbers of periodic orbits (recall we use the termi-

nology N -cycles for orbits of least period N). We will begin by discussing two particular

motivating examples. Along with the investigation of the examples we will develop the

definitions we need, and prove various straightforward results.

Then we will define a more abstract class of dynamical systems: the shift map acting

on spaces of sequences of symbols. Such ‘symbolic dynamics’ turns out to provide a very

good model for ‘complicated dynamics’: in particular we can count the numbers of N -

cycles that are guaranteed to arise. We can then quite easily relate the symbolic dynamics

results to investigate any given continuous map of an interval. We can prove the existence

of N -cycles in the map using the various properties of the symbolic dynamical systems.

This is a powerful and much more general idea than we will have time to explore in the

course. Our reasoning will be largely ‘topological’ in nature, and in the nicest cases we

will look at we can actually demonstrate a topological conjugacy between the symbolic

dynamics and iteration of the map. Even in cases where the map dynamics are not

topologically conjugate, we can relate the dynamics to symbol sequences with important

and useful consequences.

We begin with a motivating example which gives a first glimpse of the idea of sym-

bolic dynamics, and enables us to define two much-loved properties of maps displaying

complicated dynamics.

Example: The Sawtooth Map

This is the map F : [0, 1] → [0, 1] defined by

xn+1 = 2xn mod 1

which appears to have interesting dynamics, and many periodic points: for example x = 0

is a fixed point, { 1
3 , 2

3} is a 2-cycle, { 1
5 , 2

5 , 4
5 , 3

5} is a 4-cycle. All these seem to be unstable

since the gradient F ′(x) is always 2.
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The Sawtooth Map xn+1 = 2xn mod 1. The 4-cycle is indicated by the blue arrows.

A very nice way to represent the dynamics is to write points x ∈ [0, 1] in terms of their

base-2 (binary) expansions, e.g.:
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Then the x → 2x mod 1 map corresponds to shifting the sequence to the left and discarding

the leading ‘1’ (if any). Checking this explicitly:
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After a little reflection, it looks as if any periodic binary expansion 0 · a0a1a2 · · · corre-

sponds to a periodic point x ∈ [0, 1] for F .

Note: binary expansions are not unique for points of the form p/2n since 0 · 0111111 · · ·
codes for the same point (x = 1

2 ) as 0 · 10000 · · ·, etc.

The Sawtooth map has many nice properties of which two are often taken as defining

‘chaos’ (but not here!). We will now define these two properties in the general setting

common to the whole of this chapter: let F : I → R be a continuous map of a a closed

bounded interval I ⊂ R into R. Let Λ be an invariant subset of I.

Definition (SDIC): A map F : I → R has sensitive dependence on initial conditions

(SDIC) on an invariant subset Λ ⊆ I if ∃ δ > 0 such that for any x ∈ Λ and ε > 0 there

exists y ∈ Λ and n > 0 such that |x − y| < ε and |Fn(x) − Fn(y)| > δ.

i.e. near any x there is always some point that separates to at least a distance δ

away. This is a formalised version of the notion that even the smallest errors in initial

conditions (or in a numerical integration scheme) inevitably grow to become as large as the

true value of the state, meaing that it becomes impossible to predict the future behaiour of

the system, even though it remains entirely deterministic. This is often referred to as the

‘butterfly effect’ and makes prediction of, for example, the weather, extremely uncertain

once one looks 5-10 days ahead.

Definition (TT): A map F : I → R is topologically transitive (abbreviated to TT) on

Λ if for all nbhds U , V which intersect Λ, there exists n > 0 such that Fn(U) ∩ V 6= ∅.
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i.e. even the smallest open sets eventually intersect and ‘mix together’ under iteration

of the map. Hence Λ cannot be decomposed into smaller disjoint open invariant sets.

These two properties are independent: for example the irrational rotation θn+1 =

θn +2πω for ω irrational is TT on the circle S1 ≃ [0, 2π]/ ∼, but points do not move away

from (or towards) each other, so this rotation map does not have SDIC. On the other

hand, the map xn+1 = 2xn on R displays SDIC (the distance between points doubles with

each iteration) but is not TT.

Remark: An equivalent property to TT is the existence of a dense orbit for F , i.e. a

trajectory that comes arbitrarily close to every point in Λ. Since it is usually much

easier to establish the existence of a dense orbit we will do this to prove TT.

Returning to the Sawtooth Map we now prove it has SDIC and is TT on Λ = [0, 1].

Proof (SDIC): Set δ = 1
4 . Given ε > 0 and x ∈ [0, 1], pick n such that 2−n−1 < ε.

Then construct the binary expansion for x, say 0 · a0a1a2 · · · an−1anan+1 · · ·. Take y to

be the point with symbol sequence 0 · a0a1a2 · · · an−1ānan+1 · · · where ān = 1 − an

means change the symbol an from a ‘0’ to a ‘1‘ or vice-versa as appropriate. Then we

see that |x − y| = 2−n−1 < ε but |Fn(x) − Fn(y)| = 1
2 > δ. 2

Proof (TT): We construct a point x which has a dense orbit, i.e. comes arbitrarily

close to any given point y ∈ [0, 1]. Let x be the point given by the binary expansion

0 · 0 1
︸︷︷︸

00 01 10 11
︸ ︷︷ ︸

000 001 010 011 100 101 110 111
︸ ︷︷ ︸

· · ·

taking all blocks of lengths 1, 2, 3, . . . in order. Then for any point y we can compute the

corresponding symbol sequence 0 · a0a1a2 · · · an−1anan+1 · · ·. Then for any n > 0 there

exists a k > 0 such that the binary expansion of F k(x) agrees with the expansion of y on

at least the first n places, implying |F k(x) − y| < 2−n, i.e. the forward orbit of x comes

arbitrarily close to any point y and this is a dense orbit. 2

Remark: As we have seen, the nicest features of a dynamical system are preserved

under topological conjugacy, enabling us to understand more complicated problems in

terms of simpler ones (e.g. nonlinear flows near a fixed point in terms of the linearised

flow). It turns out that SDIC is not preserved under topological conjugacy (see the

reelvant starred question on example sheet 4) which in part motivates our search for a

better defining characteristic of ‘chaos’.

7.2 Symbolic Dynamics

In this section we will define a new class of dynamical systems and prove that they have

nice properties. We will then set up a topological conjugacy between this nice dynamical

system and the logistic map when µ is large enough. This enables us to understand

completely the dynamics of the logistic map when µ is large enough.

Notice that, in our investigation of the sawtooth map we used binary sequences and

the action of F was equivalent to shifting the binary sequence along one place. This

motivates the definition:

Definition (sequence space on N symbols): Let

ΣN = {a = (a0a1a2 · · ·) : ai ∈ {0, 1, . . . , N − 1} ∀i ≥ 0 }

be the sequence space on N symbols; the collection of ∞ sequences of symbols, each

drawn from the set {0, 1, . . . , N − 1}.
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Points in ΣN are symbol sequences. There is a natural distance measure (metric) on

ΣN : two sequences are close together if they agree on a long initial segment. We define

the distance measure

d(a,b) =

∞∑

n=0

γ(an, bn)

3n
,

where γ(p, q) = 0 if p = q and γ(p, q) = 1 if p 6= q.

Suppose, for example, that a,b ∈ ΣN and ai = bi for 0 ≤ i < m and then am 6= bm.

Then we can compute directly that

3−m ≤ d(a,b) ≤ 3

2
3−m.

The natural evolution operator on the state space is the shift map σ:

Definition (shift map): The shift map σ : ΣN → ΣN acts by

σ(a0a1a2 · · ·) = (a1a2a3 · · ·).

Properties of σ : ΣN → ΣN

1. σ is continuous.

Proof:

d(a,b) = |a0 − b0| +
1

3
d(σ(a), σ(b))

⇒ d(σ(a), σ(b)) = 3d(a,b)

so as a → b we can guarantee σ(a) → σ(b). 2

2. σk has Nk fixed points.

Proof: σk(a) = a ⇐⇒ ak+j = aj ∀j ≥ 0 so we need only choose the initial

block (a0 · · ·ak−1) to determine a. There are clearly Nk distinct blocks of length

k. 2

3. The set of periodic points of σ, Per(σ), is dense in ΣN (i.e. periodic points exist

arbitrarily close to any given symbol sequence).

Proof: Given a ∈ ΣN and ε > 0, take n such that 3
23−n < ε. Then let

b = (a0a1 · · · an−1a0a1 · · · an−1a0 · · ·). Then we see that d(a,b) < ε and b is

clearly a periodic symbol sequence. 2

4. σ : ΣN → ΣN is TT because there exists a point a with a dense orbit.

Proof: Let a be the symbol sequence given by listing all blocks of length 1, then

all blocks of length 2, and so on, e.g. for N = 2:

a = ( 0 1
︸︷︷︸

00 01 10 11
︸ ︷︷ ︸

000 001 010 011 100 101 110 111
︸ ︷︷ ︸

· · ·).

then, given a point b ∈ ΣN and ε > 0 there exists n > 0 such that σn(a) agrees

with b in the first k places for any k. Taking k large enough that 3
23−k < ε we

then have that d(σn(a),b) ≤ 3
23−k < ε. 2

5. σ : ΣN → ΣN has SDIC.

Proof: Take δ = 1. Given a ∈ ΣN and ε > 0 there exists b ∈ ΣN and n > 0 such

that 3−n < d(a,b) < ε, i.e. a and b differ first in the nth place in the symbol

sequence. Then d(σn(a), σn(b)) > 1 since the symbol sequence σn(a) differs from

σn(b) in the first place in the sequence. 2
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Conjugacy between the logistic map and Σ2

Having proved various nice properties of σ : ΣN → ΣN (a rather abstract dynamical

system), we now make a direct link between the abstract and the ‘real’ dynamics of a

continuous map F . The idea is to be able to translate our results about σ acting on ΣN

back into results about F acting on I.

Recall that a map h : Λ → Y is surjective (or ‘onto’) if for all y ∈ Y there exists a

point x ∈ Λ such that h(x) = y. Also recall that h : Λ → Y is injective (or ‘1–1’) if

h(x1) = h(x2) ⇒ x1 = x2.

We will also (for the proof of surjectivity) need the following standard result:

Lemma 0.1 (Cantor Intersection Theorem) The intersection S∞ = ∩∞
i=0 Si of an

infinite sequence S0 ⊇ S1 ⊇ S2 ⊇ · · · of nested non-empty closed bounded subsets Si ⊂ R
n

is non-empty.

Definition (semiconjugacy): Let F : I → R be a cts map of the interval, and let

Λ ⊆ I be an invariant set. Let G : Y → Y be a cts map on a (metric) space Y . If there

exists a cts surjection h : Λ → Y such that h ◦ F = G ◦ h then we say that

F is semiconjugate to G via h.

Definition (conjugacy): If in addition h is injective (i.e. 1 − 1) and h−1 is cts, so that

h is a homeomorphism, then F is conjugate to G via h.

Theorem 1 The logistic map F (x) = µx(1 − x), when µ > 2 +
√

5, has an invariant set

Λ ⊂ [0, 1] on which F |Λ is conjugate to σ|Σ2
.

The invariant set Λ is the collection of points that, when iterated under F , remain in

[0, 1] for all time, i.e. Λ = {x ∈ I : Fn(x) ∈ I ∀ n ≥ 0}.
Before we present a proof of the theorem, we give a key ingredient in the form of an

easily-proved lemma that shows where the value 2+
√

5 comes from: for µ greater than this

value the magnitude of the slope of the logistic map is greater than unity within the parts

of [0, 1] that are mapped inside [0, 1]. The proof of the lemma is left as a straightforward

exercise.

Lemma 1.1 If µ > 2 +
√

5 then there exists λ > 1 such that |F ′(x)| > λ for all x ∈
I ∩ F−1(I).

Proof of Theorem

To prove the theorem we need to

• construct a map h : Λ → Σ2

• show h is injective (1 − 1)

• show h is surjective (for every element a of Σ2 there exists a point x ∈ Λ such that

h(x) = a)

• show h is continuous with a continuous inverse
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The Logistic Map xn+1 = µxn(1 − xn) for µ > 2 +
√

5.

Proof (construction): We can check that the set I ∩ F−1(I) is a disjoint union of

two closed intervals I0 = [0, x−] and I1 = [x+, 1] where x± = (1 ±
√

1 − 4/µ)/2 are the

points at which F (x) = 1. In the open interval (x−, x+), F maps points above x = 1 so

they cannot be part of the invariant set (in fact, iterates move rapidly off to −∞). We

define the symbol sequence a which will correspond to a point x ∈ Λ by setting

aj = 0 if F j(x) ∈ I0

aj = 1 if F j(x) ∈ I1

Then the map h : Λ → Σ2 is defined by setting h(x) = a. 2

We now prove each of the desired properties of h in turn.

[** Proof (h is injective): Suppose there exists x, y ∈ Λ with x 6= y and

h(x) = h(y) = a. Then (from the definition of a) we see that F j(x) and F j(y) are

always on the same side of x = 1
2 as each other (since they are always in the same

interval I0 or I1). This implies |F j(x) − F j(y)| < 1
2 ∀ j.

But, since |F ′(x)| > λ > 1 we have |F j(x) − F j(y)| > λj |x − y| for all j, and the

right-hand side eventually becomes greater than 1
2 so there is a contradiction here unless

|x − y| = 0 which means than in fact we must have x = y. 2 **]

[** Proof (h is surjective): Given a symbol sequence a = (a0a1a2 · · ·) we need to

show there exists x ∈ Λ such that F j(x) ∈ Iaj
∀ j.

Let J ⊂ I be a closed interval, then we will use the notation F−1(J) = {x : F (x) ∈ J} to

denote the preimage of J . From the graph of F , F−1(J) is the disjoint union of a pair of

closed subintervals, one in each of I0 and I1.

Define the set

Ia0a1···an
= {x : x ∈ Ia0

, F (x) ∈ Ia1
, . . . , Fn(x) ∈ Ian

}
= Ia0

∩ F−1(Ia1
) ∩ F−2(Ia2

) ∩ · · · ∩ F−n(Ian
).
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Now, just by combining the definitions we see that, also

Ia0a1···an
= Ia0

∩ F−1(Ia1a2···an
)

because these are both exactly the sets of points for which F j(x) ∈ Iaj
for 0 ≤ j ≤ n.

You should check that the statement Ia0a1
= Ia0

∩ F−1(Ia1
) agrees with the labelling

indicated on the sketch of F given in lectures, and possibly appearing earlier on in these

notes.

Now we use induction to assert that, if Ia1···an
is a nonempty closed interval then

F−1(Ia1···an
) consists of a pair of closed intervals which implies Ia0

∩ F−1(Ia1···an
) is

exactly one closed interval. Hence, inductively, Ia0a1···an
= Ia0

∩ F−1(Ia1···an
) is a closed

interval for all n.

Moreover,

Ia0···an
= Ia0···an−1

∩ F−n(Ian
) ⊂ Ia0···an−1

so the intervals Ia0···an
are nested closed intervals and the Cantor Intersection Theorem

implies that

Ia
def
= ∩∞

n=0Ia0···an

is not empty. So there exists x ∈ Ia with the property that F j(x) ∈ Iaj
for all j. Since h

is 1 − 1 we must have that Ia contains exactly one point. We can also see this since the

length of the intervals Ia0···an
tends to zero at least as fast as λ−n as n → ∞ because of

the condition that |F ′(x)| > λ > 1 everywhere. 2 **]

[** Proof (h and h−1 are continuous): For any pair of points x, y ∈ Λ we have

established that there exist unique symbol sequences a = h(x) and b = h(y). Now,

x → y, ⇐⇒ (since |F ′(x)| > λ > 1 everyhwhere) the iterates F j(x) and F j(y) remain

on the same side of 1
2 for longer ⇐⇒ a and b agree on a longer initial segment of

symbols ⇐⇒ d(a,b) → 0. 2 **]

Remarks:

1. In showing that h ◦ F |Λ = σ ◦ h we now know that the dynamics of F |Λ has all the

properties of σ|Σ2
, including dense periodic points, TT and SDIC.

2. The invariant set Λ is an example of a Cantor set: it is closed, contains no

intervals (a set with this property is called ‘totally disconnected’) and every point

in Λ is a limit point of a sequence of points in Λ (a set with this property is called

‘perfect’). The classic Cantor set is the ‘middle-third’ construction which arises

directly in a closed related problem, and is explored on example sheet 4.

3. Conjugacy between F |Λ and σ|Σ2
holds in fact for any µ > 4, but the proof

required more careful estimates of the rates of separation of nearby points so that

we can guarantee that h is 1 − 1.

7.3 Subshifts of Finite Type (SSFT)

A very useful refinement of the sequence space ΣN is the case where there are rules about

which symbols allowed to follow each other. Allowed symbol sequences are encoded by

an N × N transition matrix A.

Definition (transition matrix): an N × N matrix A is a transition matrix if Aij = 1

whenever symbol j is allowed to follow symbol i and Aij = 0 whenever symbol j cannot

follow symbol i.
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Note that the matrix indices now range over 0 ≤ i, j ≤ N −1 rather than 1 ≤ i, j ≤ N

- this will cause no notational or other difficulties in what follows but it is worth pointing

out.

Remark: This idea of transitions between states is very similar to that developed in the

theory of discrete-time Markov chains.

Example: Let N = 2. If only the sequences 01, 10 and 11 are allowed and 00 is not,

then

A =

(

0 1

1 1

)

.

The set of allowed sequences forms a closed subset of ΣN which we denote ΣN,A:

ΣN,A = {a ∈ ΣN : Aanan+1
= 1 ∀n ≥ 0 }.

Clearly ΣN,A is invariant under the shift σ.

Definition (SSFT): the action of σ : ΣN,A → ΣN,A defines a dynamical system called

a subshift of finite type (SSFT). We write σA as shorthand for σ|ΣN,A
.

Properties of σA

1. The number N
(n)
ij of allowed sequences ia1a2 · · · an−1j of length n + 1 from symbol

i to symbol j is given by (An)ij .

Proof: the product Aia1
Aa1a2

· · ·Aan−1j = 1 if and only if ia1a2 · · ·an−1j is an

allowed sequence. So

N
(n)
ij =

∑

a1,...,an−1

Aia1
Aa1a2

· · ·Aan−1j = (An)ij

2

2. The number of (not necessarily least) period-n orbits Pn is given by tr(An).

Proof: with the above notation, period-n orbits are exactly those sequences where

i = j, so

Pn = no. of period−n orbits =
∑

i

N
(n)
ii =

∑

i

(An)ii = tr(An).

2

3. Let Nq be the number of q-cycles (i.i. periodic orbits of least period q). Then

Pn =
∑

q|n qNq. Proof: each q-cycle contributes q points to every set Pn for which

n contains q as a factor.

Remark: We can compute tr(An) from the recurrence relation given by the

Cayley–Hamilton Theorem.

Example: A =
(

0 1
1 1

)
has characteristic polynomial P (λ) = λ2 − λ − 1 which

implies A2 − A − I = 0.

⇒ tr(Am+2) = tr(Am+1) + tr(Am),
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and hence we can compute

P1 = 1 P2 = 3 P3 = 4 P4 = 7 P5 = 11

N1 = 1 N2 = 1 N3 = 1 N4 = 1 N5 = 2

So there are exactly two distinct 5-cycles for σA, i.e. exactly 2 distinct least

period-5 allowed symbol sequences. They can be easily seen to be (01011 · · ·) and

(01111 · · ·).

Definition (irreducible): the transition matrix A is irreducible if, for all i, j

there exists n ≥ 0 such that (An)ij = 1 i.e. for all i, j there exists an allowed

symbol sequence of some length that starts with i and ends with j.

4. If A is irreducible then σA is TT.

[** Proof: We construct a dense orbit. As before, we list all allowed symbol

sequences of length 1, then of length 2, and so on, putting ‘transition’ sequences

between each if necessary. The existence of such ‘transition’ sequences is

guaranteed always, by the irreducibility of A. 2 **]

Definition (non-trivial): the transition matrix A is non-trivial if, for some i

there exists j1 and j2 (j1 6= j2) such that the sequences ij1 and ij2 are allowed.

Note: this excludes permutation matrices such as






0 0 1

0 1 0

1 0 0






which are ‘not non-trivial’ (maybe even ‘trivial’?).

5. If A is irreducible and non-trivial then σA : ΣN,A → ΣN,A has SDIC.

[** Proof: Given a sequence a = a0a1 · · · ∈ ΣN,A and ε > 0 we choose M ≥ 0

such that 1
23−M < ε. Construct b = a0a1 · · · aM bM+1bM+2 · · · bK where

aMbM+1 · · · bK is an allowed sequence from aM to bK = i (this exists by

irreducibility) and ij1 ij2 are allowed sequences (by non-triviality). Then b differs

from a either at some place n < K + 1 or at place n = K + 1 since we can choose

bK+1 = j1 or j2 whichever is not equal to aK+1.

So, by construction, d(a,b) ≤ 1
23−M and d(σn

A(a), σn
A(b)) ≥ 1 and so σA has

SDIC. 2 **]

7.4 Continuous Maps F : I → R

In this subsection we use our results on the abstract SSFT dynamical systems to prove

results about the dynamics of maps on the real line.

Definition (invariant set): Let Λ = {x ∈ I : Fn(x) ∈ I ∀ n ≥ 0} be the invariant set

for F .

Let {Ii : i = 0, . . . , N − 1} be a collection of disjoint closed bounded intervals in R.

We now consider the dynamics of F restricted to ∪N−1
i=0 Ii.

Definition (F -covering): we say Ii F -covers Ij (written Ii → Ij) if F (Ii) ⊇ Ij .
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There is a directed graph Γ (on N vertices) indicating the F -covering relations.

Example:

F(I  )

F(I  )0

1

F(x)

I I
x

10

A map F : I → R containing 2 disjoint intervals I0 and I1 which have the F -covering relations

given by the graph:

I0 1I
So I0 F -covers I1 and I1 F -covers I0 and I1.

There is a natural correspondance between the F -covering relations and the transition

matrix A defined by Aij = 1 if Ii → Ij and Aij = 0 if not.

Remark: if I0
F→ I1

F→ I2 then I0
F 2

→ I2 by continuity of F . This construction is called

the induced graph for F 2.

Lemma 1.2 Let I, J be closed intervals. If I F -covers J then there exists a closed subin-

terval K ⊆ I such that F (K) = J . i.e.

F

K I

J

A map F : I → R F -covers an interval J, and there is a closed interval K such that F (K) = J.

Proof: Let J = [p, q] be a closed interval. Then F−1(p) and F−1(q) are closed and

nonempty. Discarding parts of F−1(p) andF−1(q) if they are disconnected, we may

choose points u ∈ F−1(p) and v ∈ F−1(q) such that (u, v) ∩
(
F−1(p) ∪ F−1(q)

)
= ∅:



Version date: December 3, 2008 11

IKu vF (q) F (q)
−1 −1

p q
J

F

If the picture looks like this, we set u = sup{F−1(p)}, v = inf{F−1(q)}. There is

another case where all of F−1(q) lies to the left of all of F−1(p); in this case we take

u = sup{F−1(q)} and v = inf{F−1(p)} instead, but it is essentially equivalent.

Then set K = [u, v], a closed interval, and check, using the Intermediate Value Theorem,

that the map is surjective:

For any c: a < c < b let g(x) = F (x) − c. Then

g(u) = F (u) − c = a − c < 0

g(v) = F (v) − c = b − c > 0

and g is continuous. Hence there exists x̂ ∈ K such that g(x̂) = 0 i.e. F (x̂) = c, so c has

a preimage in K. 2

Theorem 2 F |Λ is semiconjugate to σA.

Remark: from this theorem it follows that for any symbol sequence a in ΣN,A there is a

corresponding point x ∈ Λ whose iterates follow the symbol sequence a. For example,

F |Λ has as many periodic orbits as σA does. Of course, it may be that a given F has

more periodic orbits than this - we are concerned here with those orbits that are

guaranteed by the semiconjugacy.

Proof: define the semiconjugacy h : Λ → ΣN,A by x 7→ a where a is the symbol

sequence of {Fn(x)}n≥0 such that Fn(x) ∈ Ian
for all n ≥ 0. We need to show (i) h is

continuous and (ii) h is surjective.

[** (i) h is continuous because, given ε > 0 we can choose an M such that 1
23−M < ε,

i.e. d(h(x), h(y)) < ε ⇐⇒ the symbol sequences h(x) and h(y) agree in the first M

places. This can be guaranteed by taking |x − y| small enough since the intervals Ii are

disjoint and closed, so there exists δ > 0 such that |x − y| < δ implies

Fn(x), Fn(y) ∈ Ian
for 0 ≤ n ≤ M , i.e. x and y remain in the same intervals as each

other for (at least) the first M iterates. **]

(ii) h is surjective because, given an allowed sequence a = a0a1a2 · · · ∈ ΣN,A we claim

that there exists a nested sequence of closed intervals

Ia0
⊇ Ia0a1

⊇ Ia0a1a2
⊇ · · · ⊇ Ia0a1···aM

such that x ∈ Ia0a1···aM
implies Fn(x) ∈ Ian

for all 0 ≤ n ≤ M . This is true by repeated

use of the lemma above.

Looking at the first few iterates of the map, by the lemma we can assert the existence of

a closed interval Ia0a1
⊆ Ia0

such that F (Ia0a1
) = Ia1

and also that there exists a closed

interval Ia1a2
⊆ Ia1

such that F (Ia1a2
) = Ia2

. We may now apply the lemma again to

assert the existence of a smaller closed subset Ia0a1a2
⊆ Ia0a1

⊆ Ia0
and so on,

inductively, to obtain Ia0a1···aM
. This is illustrated in the figure below:
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Ia2

Ia1

Ia0
Ia0a1a2

Ia1a2

F

F

Ia0a1

Nested intervals Ia0a1a2
⊆ Ia0a1

⊆ Ia0
and their images under F .

Now we apply the Cantor Intersection Theorem to assert that

Sa
def
= ∩∞

M=0Ia0a1···aM

is non-empty, so there exists a point x ∈ Λ such that h(x) = a, i.e. h is surjective.

Notice that the iterates of x must lie in exactly the sequence of intervals {Ian
}. 2

Remarks:

1. a crucial difference from the example in theorem 1 is that we might not have

diam(Sa) → 0 for all a, so that it might happen that Sa contains at least one

interval of points x in which case h could not a a conjugacy.

2. F |Λ semiconjugate to σA implies that F |Λ has a periodic orbit {x0, x1, . . . , xN−1}
corresponding to every periodic symbol sequence (a0a1, · · ·aN−1a0a1 · · ·) in ΣN,A.

Moreover xj ∈ Iaj
for all 0 ≤ j < N and hence this periodic orbit corresponds

exactly to a closed path Ia0
→ Ia1

→ · · · → IaN−1
→ Ia0

in the graph Γ.

3. F |Λ semiconjugate to σA with A irreducible and nontrivial does not imply that

F |Λ has SDIC or TT. This is because F could have intervals on which it is

non-expanding, see the example below. If, however, we have additional

information that shows F is suitably ‘expanding’ then we can show, in a similar

fashion to the proof of theorem 1, that h is a conjugacy which would imply that

F |Λ has SDIC and is TT.

Example: A map F (x) for which Λ = [0, 1] is an invariant set, and for which the map

h : Λ → Σ2 is surjective but which does not have SDIC or TT.

Define F̃ (x) to be the piecewise-linear map

F̃ (x) =







x + 1
2 if 0 ≤ x ≤ 1

2 ,
3
2 − x if 1

2 ≤ x ≤ 1 − 1
K

,
(

K
2 + 1

)
(1 − x) if 1 − 1

K
≤ x. ≤ 1

Fix K > 4, e.g. for concreteness think about K = 5. The graph of F̃ is as in the figure

below:
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x

1/2

F(x)

1/2

1

0
0

11−1/K

1/2+1/K

Graph of the piecewise-linear function F̃ (x).

Then, all points in the interval 1
2 + 1

K
≤ x ≤ 1− 1

K
lie on (nonhyperbolic) 2-cycles (except

x = 3
4 which is clearly a fixed point!), so these points do not move apart from, or towards,

each other (so F̃ |Λ does not have SDIC) and the 2-cycles do not ‘mix’ under iteration, so

there is no TT in this part of [0, 1] and hence F̃ |Λ is not TT.

It looks like the preimages of the interval 1
2 + 1

K
≤ x ≤ 1 − 1

K
are dense in [0, 1], so

almost all initial conditions end up on a 2-cycle, as the following figure shows:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

The first 48 (or so) iterates of the map F̃ , taking K = 5, starting from (a) x0 = 0.002 and (b)

x0 = 0.003. The colour of the iterates xn darkens as n increases. Eventually, in both cases, the

iterates settle to a (nonhyperbolic) 2-cycle near x = 3

4
.

Note, however, that there exists a smaller invariant subset Λ̃ ⊂ Λ on which F does

have SDIC and TT (remove all the preimages of the set of nonhyperbolic 2-cycles from

[0, 1] and we are left with a Cantor set of N -cycles and their preimages).

Note also that h is not continuous here so the map is not a semiconjugacy. This

arises from the fact that the intervals [0, 1
2 ] and [12 , 1] are not disjoint as we assumed the

collection {Ii} was at the start of this section.

7.5 Horseshoes and N-cycles

As we have already hinted, chaotic dynamics is better described in terms of complicated

orbit structure rather than the properties of SDIC and TT. Indeed, since SDIC is not

preserved under conjugacy, it is not as robust as we would like. A good definition of chaos

can be constructed from a fundamental topological property.
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Definition (horseshoe): F : I → R has a horseshoe if there exists a closed interval

J ⊆ I and closed subintervals I0, I1 ⊂ J with disjoint interiors such that

F (I0) = F (I1) = J .

Remark: This implies that the graph Γ contains the subgraph:

I0 1I

Definition (chaotic): F is chaotic if Fn has a horseshoe for some n ≥ 1.

Period 3 Implies Chaos

This, at first sight very surprising, result is the title of a paper by T.-Y. Li and J.A. Yorke

(American Mathematical Monthly 82, pp985–992, 1975).

Theorem 3 Let F : I → R be a continuous map on a closed bounded interval I ⊂ R. If

F has a 3-cycle then

• F 2 has a horseshoe and hence F is chaotic,

• F has an N -cycle for all N ≥ 1.

Proof: let x0 < x1 < x2be the 3-cycle, with xi+1 = F (xi) (i is taken mod 3). [Note that

the only alternative ordering to this is x2 < x1 < x0 in which case we consider the map

G(x) = −F (−x) which is clearly conjugate to F ].

F(x)

x xx0 1 2
An example of a continuous map F that has a 3-cycle.

Let I0 = [x0, x1] and I1 = [x1, x2], then F (I0) ⊇ I1 and F (I1) ⊇ I0 ∪ I1 so we have (at

least) the F -covering relations indicated by the graph:

I0 1I

Hence we have (at least) the graph
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I0 1I

of F 2-covering relations. So F 2 has a horseshoe and F is chaotic.

Moreover, the symbol sequence

a(N) = 01111 · · ·1
︸ ︷︷ ︸

01111 · · ·1
︸ ︷︷ ︸

01111 · · ·1
︸ ︷︷ ︸

0 · · ·

is allowed, for any N ≥ 2 and so there exists a point x(N) which corresponds to the

symbol sequence a(N) and which lies on an N -cycle, for any N ≥ 2. Notice that, because

I0 is visited only once per period of the period-N symbol sequence, the orbit must have

least period N .

Finally, for N = 1 we observe that the allowed sequence a(1) = 111 · · · implies the

existence of a fixed point in I1. 2

In fact, this result of Li & Yorke is only a special case of a much more general result

which was, in fact, proved earlier in time (around 1964).

Theorem 4 (Sharkovsky’s Theorem) Consider the ordering of the integers define by

1 ⊳ 2 ⊳ 4 ⊳ 23 ⊳ · · · ⊳ 2n ⊳ 2n+1 ⊳ · · ·
· · · ⊳ 2n+1.9 ⊳ 2n+1.7 ⊳ 2n+1.5 ⊳ 2n+1.3 ⊳ · · ·

· · · ⊳ 2n.9 ⊳ 2n.7 ⊳ 2n.5 ⊳ 2n.3 ⊳ · · ·
· · · ⊳ 9 ⊳ 7 ⊳ 5 ⊳ 3.

Let F : I → R be a continuous map of the interval. If F has an N -cycle than F has a

k-cycle for all k ⊳ N in the above ordering.

Proof: not in course, see Glendinning, pages 329–334. 2

Remarks: Sharkovsky’s theorem implies the following:

1. Existence of a 3-cycle implies the existence of an N -cycle for all N ≥ 1 (i.e. the Li

& Yorke result).

2. Existence of a 4-cycle implies the existence of a 1-cycle (fixed point) and a 2-cycle

but maybe no more (see example sheet 4).

3. Let m be an odd integer. The existence of a 2n.m-cycle implies the existence of a

2n+1.3-cycle which implies that F 2n+1

has a 3-cycle, which implies F is chaotic.


