(. unimodal lviaps

Definition A unimodal map on the interval [a,b] is a continuous map F : [a,b] into [a,b] such
that

e F(a)=F(b) =a and
e Jc € (a,b) such that F is strictly increasing on [a, ¢] and strictly decreasing on [c, b]:

Note: a map of the form

b a

b

is effectively unimodal under

a C b

r— —x and F— —F.

Definition An orientation reversing fixed point (ORFP) of a unimodal map F' is a fixed point

in the interval (¢, b) where F' is decreasing.

Lemma:

(1) If F(c) < c then all solutions tend to fixed points, which lie in [a, F(c)].

(2) If F(c) > c then there is a unique ORFP z¢ € (¢, F(c)).

(3) If F(c) > c then orbits either tend to fixed points in [a, F%(c)] or are attracted into [F2(c), F(c)].

Proof:
(1) F([a,c]) = F([e,b]) = [a, F(c)] C [a,c]. So after one iteration =z € [a,c|, and F' is strictly
increasing on this interval, hence x < y <= F(x) < F(y):

rF(0)

If 21 < F(x1) then z; increases monotonically to the nearest fixed point.
If x1 > F(z1) then x; decreases monotonically to the nearest fixed point.

2) Apply the Intermediate Value Theorem (IVT) to g(x) = F(x) — x on [c, F(c)] noting that
F(c) > c= F?(c) < F(c).
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(3) Exercise. (Cases split on whether F3(c) < F2(c) or vice versa.) O

Lemma
(4) If F has an ORFP z( then 3 x_1 € (a,¢) and x_5 € (x9,b) such that F(x_3) = x_1 and
F(:L‘_l) = Z9.

Proof:

X1 X X
a C b

Apply the IVT first to the open interval (c,b), and second, to the open interval (a,c):

Firstly, xg € (¢,b) = F(c) > F(x¢) = x¢ and also xg = F(xg) > F(b) = F(a) so g(x) = F(x)—x
has g(c¢) > 0 and g(a) < 0 so, by the IVT 3 z_1 € (a,¢) such that F(x_1) = xo.

Secondly, since x_1 € (a,c) we have that F(b) = a < x_1 < g = F(x¢) so g(x) = F(z) —x_1
satisfies g(b) < 0 and g(xg) > 0 which implies that 3 z_5 € (x¢,b) such that F(x_3) =2z_1. O

Note: F%(z_5) = F?(z_1) = F?(x9) = z0, and also * € [z_1,20] = F?(z) € [F?(c),r0] and
T € [0, 2_9] = F?(x) € [wg, F(c)]. Therefore F? has the graph
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Theorem 1
If F" has an ORFP x4 with preimages x_1 and z_5 as above then



e cither (1) £/~ has a norseshoe on Jy = |[r—1, x| and Jr = |0, LT—-2|
e or (ii) all solutions tend to fixed points of [

e or (iii) F? is a unimodal map with an ORFP on both J;, and Jx.

Proof:
Which of the three cases we are in is decided by the value of F?(c):

(i) If F%(c) < x_1 (which is equivalent to F(c) > x_3) then it is clear from the sketch F? has

horseshoes:

(ii) If F2(c) > c then all solutions on Ji, U Jg tend to fixed points of F? (note that the graph
within Jg could cross and recross the diagonal, resembling the figure in the proof of statement (1)
above). Hence all solutions on [a,z_1] U [z_2, b] either tend to fixed points of F' or are attracted

into [F2(c), F(c)] € Ji U Jp.
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(iii) If z_1 < F?(¢) < ¢ then F? is a unimodal map on J, and Jg with ORFPs that correspond
to a 2-cycle for F. The attracting set is split between two disjoint subintervals [F2(c), F*(c)] and
[F3(c), F(c)], as indicated on the figure below:
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Now, applying Theorem 1 successively to F2, F4 F8 ... we can deduce

Theorem 2

If F' has an ORFP then
e cither (i) 3 N such that F2" has a horseshoe and F is chaotic

e or (ii) 3 N such that all solutions tend to fixed points of F' 2" and F has 2™-cycles for
0<m<N-1

e or (iii) there are 2™-cycles Vm, and the attracting set is a Cantor set formed by the infinite
intersection of the attracting subintervals of F2".

Proof

By induction. See also Glendinning, pages 313-317.



Universality and ‘Feigenbaum’s Constant’

Numerical investigation indicates that, for the logistic map and other similar unimodal maps with
a quadratic maximum (e.g. x,11 = psinz,), the distances between parameter values j at which
successive period-doubling bifurcations occur approach an asymptotic geometrical relationship:

lim BEHEL 5 46692016 . . .

k—oo i1 — Mk
Moreover, the successive forms of the logistic map restricted to the interval [z_1, 2], then flipped
and rescaled, appear to converge to a limiting functional form.

These properties can in fact be proved, and yield insight into the ‘universal’ nature of the period-
doubling transition to chaos.

To get some idea into what is going on, we will work with a slightly modified class of unimodal
maps G(z) such that G,(0) = 1 always, and G..(0) = 0, i.e. the maps are centred on z = 0 and
take their maximum value of unity there.

The simplest example would be the one-parameter family G,(z) = 1 — rz?, where r is the
bifurcation parameter, which is topologically conjugate to the standard logistic family px(1 —x)
so the well-known period-doubling cascade to chaos is preserved.
A typical member of the family G, is shown in the figure below:
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We introduce notation for particular sets of unimodal maps which are of interest:

Definition: Let Sj be the set of all unimodal maps G defined on [—1, 1], having a quadratic
maximum at (z = 0,G = 1), and having a 2*-cycle which is at the point of undergoing a period-
doubling bifurcation.

From the figure above we can see that for a map G, € S we can restrict the map to a smaller
interval [\, —A] C [~1,1] and examine the dynamics of G2 on this subinterval. We do this



explicltly Dy 1ntroducing tie rescaled co-ordinate y = A ~x SO that y € |[—1, 1]. INote that A < U.
This motivates the following definition of an operator 7 acting on (families of) unimodal maps

G,:
L
TGr(y) = XGT(AZ/),
where A\ = G2(0) is the rescaling factor that makes 7 G, into a unimodal map on [—1, 1] again.

Since 7 involves taking the composition of G, with itself we can also see that 7S, = Si_1 since

2k—1

if G, has a 2¥-cycle at a period-doubling bifurcation point, then 7G, has a -cycle which is

at a period-doubling bifurcation point.

Therefore 7 acts on the space of unimodal maps in a manner which can be sketched cartoon-style
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as follows:

r

The function space of unimodal maps G(z). Sets Sj are indicated by vertical lines and the action of T is

indicated by the arrows. The map G* is a fixed point of T

The operator 7 performs a renormalisation of the family of maps {G,} and hence, itself, forms
a dynamical system on the space of unimodal maps. It turns out that repeatedly applying 7 to
the family {G,} yields convergence to a unique family of unimodal maps, and moreover, 7 has
a unique fixed point G* corresponding to a map that can be renormalised infinitely often. Such
a map must have a 2F-cycle for all k£ and so G* must correspond to a map at the accumulation
point of the period-doubling cascade. This is indicated in the cartoon above (where the thick
lines cross).

Considering now maps of the form G(z) = 1 + az? + bz* + O(2%) we can find an approximate
solution to the functional equation 7G = G as follows.

Suppose that the k* approximation to G* is a map of the form Gp(x) =1+ apa® + byt + .. ..
Let A be the value of G%(0) = Gi(1). Renormalise G2 so that Gj1(0) = 1 by defining

G7(\y)
A\

Gri1(y) =TGy = say, where A = G%(0)

We are interested in a function G* that is fixed under the functional map 7.

First approximation. As our first try we take Gy = 1 + azz? + O(z*) so that we have
Gr(1) =1+ar =\
14 ap{l +agf(1+ ak)x]2}2

= Gpu1 =7G, = T =14 2a2(1 + az)z? + O(z)




l1.e. We nhave reduced the problem to solving tne 11U map
2
ak+1 = 2a;(1 + ak)

which has an unstable fixed point a = —5(1 + v/3) = —1.37 = A = —0.37. At the fixed point the
Jacobian is 4 4+ v/3 = 5.73: this value is an estimate of the unstable eigenvalue of TG* and hence
is an estimate of the convergence rate 9.

Second approximation. For a more accurate attempt we include the O(z*) terms: take G} =
1+ apx? 4 bpa* + O(2®) so that Gi(1) = 1+ ag + by = \,. Comparing the coefficients gives the
2D map

ap+1 = 2ap(ag + 2bgp) A
bp1 = (2apby, + aj + 4b} + 6aibr) N}

which has a fixed point at a = —1.5222, b = 0.1276, A\ = —0.3946. Similar computation of the
eigenvalues of the Jacobian matrix (now a 2 x 2 matrix) gives eigenvalues —0.49 and 4.844. This
second value is a better approximation to 4.

In fact, numerical solution shows that the functional equation 7G = G has a fixed point

G*(x) = 1—1.5273622 4 0.104822% — 0.026712° — 0.0035225 + ...
=)\ = G*(1) = —0.3995

Including many more higher-order terms and computing the Jacobian matrix numerically yields
a single eigenvalue 0 = 4.6692016. .. (sometimes called ‘Feigenbaum’s constant’) outside the unit
circle (i.e. a single unstable direction), and an infinite spectrum of eigenvalues inside the unit
circle (stable directions). So in the function space, G* is a hyperbolic fixed point of 7. All this
has been made precise by O.E. Lanford (1982) and other authors.

Since the stable manifold S,, of G* occupies ‘all but one dimension’ of the possible space of
functions, typical one-parameter families will cross S, transversely as we vary one parameter,
which to some degree explains why such a transition to chaos via a period-doubling cascade
appears so frequently in nonlinear systems.

The map G = poox(l — ), peo = 3.5700..., is on the stable manifold of G*, and varying p
around Jioo gives situation (i) if g > oo (G2" has a horseshoe for some N) or situation (iii) if
w < fhoo (GQN has no ORFP for some N and cycle lengths divide 27V).

If fioo — p1 = O(67V) then, roughly speaking, it takes O(NN) renormalisations for the perturbation
to grow to O(1) and eliminate the ORFP, thus explaining why fieo — pr ~ Ad™F as k — oo.

Renormalisation is a powerful idea that has been applied to many other dynamical systems
problems, and reveals similar universal features (for example in maps of the circle).
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