
7.7 Unimodal Maps

Definition A unimodal map on the interval [a, b] is a continuous map F : [a, b] into [a, b] such

that

• F (a) = F (b) = a and

• ∃ c ∈ (a, b) such that F is strictly increasing on [a, c] and strictly decreasing on [c, b]:

a bc
a

b
Note: a map of the form

ab
a

b

is effectively unimodal under

x 7→ −x and F 7→ −F .

Definition An orientation reversing fixed point (ORFP) of a unimodal map F is a fixed point

in the interval (c, b) where F is decreasing.

Lemma:

(1) If F (c) ≤ c then all solutions tend to fixed points, which lie in [a, F (c)].

(2) If F (c) > c then there is a unique ORFP x0 ∈ (c, F (c)).

(3) If F (c) > c then orbits either tend to fixed points in [a, F 2(c)] or are attracted into [F 2(c), F (c)].

Proof:

(1) F ([a, c]) = F ([c, b]) = [a, F (c)] ⊆ [a, c]. So after one iteration x ∈ [a, c], and F is strictly

increasing on this interval, hence x < y ⇐⇒ F (x) < F (y):

u

c

s

s F(c)

If x1 < F (x1) then xi increases monotonically to the nearest fixed point.

If x1 > F (x1) then xi decreases monotonically to the nearest fixed point.

(2) Apply the Intermediate Value Theorem (IVT) to g(x) ≡ F (x) − x on [c, F (c)] noting that

F (c) > c ⇒ F 2(c) < F (c).
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(3) Exercise. (Cases split on whether F 3(c) < F 2(c) or vice versa.) 2

Lemma

(4) If F has an ORFP x0 then ∃ x−1 ∈ (a, c) and x−2 ∈ (x0, b) such that F (x−2) = x−1 and

F (x−1) = x0.

Proof:

a c b
x0 x–2x–1

Apply the IVT first to the open interval (c, b), and second, to the open interval (a, c):

Firstly, x0 ∈ (c, b) ⇒ F (c) > F (x0) = x0 and also x0 = F (x0) > F (b) = F (a) so g(x) ≡ F (x)−x0

has g(c) > 0 and g(a) < 0 so, by the IVT ∃ x−1 ∈ (a, c) such that F (x−1) = x0.

Secondly, since x−1 ∈ (a, c) we have that F (b) = a < x−1 < x0 = F (x0) so g(x) ≡ F (x) − x−1

satisfies g(b) < 0 and g(x0) > 0 which implies that ∃ x−2 ∈ (x0, b) such that F (x−2) = x−1. 2

Note: F 2(x−2) = F 2(x−1) = F 2(x0) = x0, and also x ∈ [x−1, x0] ⇒ F 2(x) ∈ [F 2(c), x0] and

x ∈ [x0, x−2] ⇒ F 2(x) ∈ [x0, F (c)]. Therefore F 2 has the graph

c

F2(c)

F2

F

F(c)

Theorem 1

If F has an ORFP x0 with preimages x−1 and x−2 as above then
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• either (i) F 2 has a horseshoe on JL ≡ [x−1, x0] and JR ≡ [x0, x−2]

• or (ii) all solutions tend to fixed points of F 2

• or (iii) F 2 is a unimodal map with an ORFP on both JL and JR.

Proof:

Which of the three cases we are in is decided by the value of F 2(c):

(i) If F 2(c) < x−1 (which is equivalent to F (c) > x−2) then it is clear from the sketch F 2 has

horseshoes:

x

x

F  (c)
−1

2F  (c)

−1

x0

F(c)

2F

−2

c 0x−1x
−2x

(ii) If F 2(c) > c then all solutions on JL ∪ JR tend to fixed points of F 2 (note that the graph

within JR could cross and recross the diagonal, resembling the figure in the proof of statement (1)

above). Hence all solutions on [a, x−1] ∪ [x−2, b] either tend to fixed points of F or are attracted

into [F 2(c), F (c)] ⊂ JL ∪ JR.

x

x

F  (c)
−1

−1

x0

−2
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F2
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F(c)
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c

c

(iii) If x−1 < F 2(c) < c then F 2 is a unimodal map on JL and JR with ORFPs that correspond

to a 2-cycle for F . The attracting set is split between two disjoint subintervals [F 2(c), F 4(c)] and

[F 3(c), F (c)], as indicated on the figure below:
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Now, applying Theorem 1 successively to F 2, F 4, F 8, . . . we can deduce

Theorem 2

If F has an ORFP then

• either (i) ∃ N such that F 2N

has a horseshoe and F is chaotic

• or (ii) ∃ N such that all solutions tend to fixed points of F 2N

and F has 2m-cycles for

0 ≤ m ≤ N − 1

• or (iii) there are 2m-cycles ∀m, and the attracting set is a Cantor set formed by the infinite

intersection of the attracting subintervals of F 2m

.

Proof

By induction. See also Glendinning, pages 313–317.
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Universality and ‘Feigenbaum’s Constant’

Numerical investigation indicates that, for the logistic map and other similar unimodal maps with

a quadratic maximum (e.g. xn+1 = µ sinxn), the distances between parameter values µk at which

successive period-doubling bifurcations occur approach an asymptotic geometrical relationship:

lim
k→∞

µk − µk−1

µk+1 − µk

= δ = 4.6692016 . . . .

Moreover, the successive forms of the logistic map restricted to the interval [x−1, x0], then flipped

and rescaled, appear to converge to a limiting functional form.

These properties can in fact be proved, and yield insight into the ‘universal’ nature of the period-

doubling transition to chaos.

To get some idea into what is going on, we will work with a slightly modified class of unimodal

maps G(x) such that Gr(0) = 1 always, and G′

r(0) = 0, i.e. the maps are centred on x = 0 and

take their maximum value of unity there.

The simplest example would be the one-parameter family Gr(x) = 1 − rx2, where r is the

bifurcation parameter, which is topologically conjugate to the standard logistic family µx(1− x)

so the well-known period-doubling cascade to chaos is preserved.

A typical member of the family Gr is shown in the figure below:

0 1–1
–1

0

1

Gk
2

Gk

Gk(0)=1

Gk(1)=λ
λ –λ

We introduce notation for particular sets of unimodal maps which are of interest:

Definition: Let Sk be the set of all unimodal maps G defined on [−1, 1], having a quadratic

maximum at (x = 0, G = 1), and having a 2k-cycle which is at the point of undergoing a period-

doubling bifurcation.

From the figure above we can see that for a map Gr ∈ Sk we can restrict the map to a smaller

interval [λ,−λ] ⊂ [−1, 1] and examine the dynamics of G2
r on this subinterval. We do this
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explicitly by introducing the rescaled co-ordinate y = λ−1x so that y ∈ [−1, 1]. Note that λ < 0.

This motivates the following definition of an operator T acting on (families of) unimodal maps

Gr:

T Gr(y) :=
1

λ
G2

r(λy),

where λ = G2
r(0) is the rescaling factor that makes T Gr into a unimodal map on [−1, 1] again.

Since T involves taking the composition of Gr with itself we can also see that T Sk = Sk−1 since

if Gr has a 2k-cycle at a period-doubling bifurcation point, then T Gr has a 2k−1-cycle which is

at a period-doubling bifurcation point.

Therefore T acts on the space of unimodal maps in a manner which can be sketched cartoon-style

as follows:

S1 S S S SS2 3 4 5 8

T{G }

T {G }
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T

T

T T

T
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Gr

The function space of unimodal maps G(x). Sets Sk are indicated by vertical lines and the action of T is

indicated by the arrows. The map G∗ is a fixed point of T .

The operator T performs a renormalisation of the family of maps {Gr} and hence, itself, forms

a dynamical system on the space of unimodal maps. It turns out that repeatedly applying T to

the family {Gr} yields convergence to a unique family of unimodal maps, and moreover, T has

a unique fixed point G∗ corresponding to a map that can be renormalised infinitely often. Such

a map must have a 2k-cycle for all k and so G∗ must correspond to a map at the accumulation

point of the period-doubling cascade. This is indicated in the cartoon above (where the thick

lines cross).

Considering now maps of the form G(x) = 1 + ax2 + bx4 + O(x6) we can find an approximate

solution to the functional equation T G = G as follows.

Suppose that the kth approximation to G∗ is a map of the form Gk(x) = 1 + akx
2 + bkx

4 + . . ..

Let λ be the value of G2
k
(0) = Gk(1). Renormalise G2

k
so that Gk+1(0) = 1 by defining

Gk+1(y) = T Gk ≡ G2
k
(λy)

λ
say, where λ = G2

k(0)

We are interested in a function G∗ that is fixed under the functional map T .

First approximation. As our first try we take Gk = 1 + akx
2 + O(x4) so that we have

Gk(1) = 1 + ak = λk

⇒ Gk+1 = T Gk =
1 + ak{1 + ak[(1 + ak)x]2}2

1 + ak

= 1 + 2a2
k(1 + ak)x

2 + O(x4)
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i.e. we have reduced the problem to solving the 1D map

ak+1 = 2a2
k(1 + ak)

which has an unstable fixed point a = −1

2
(1 +

√
3) = −1.37 ⇒ λ = −0.37. At the fixed point the

Jacobian is 4+
√

3 = 5.73: this value is an estimate of the unstable eigenvalue of TG∗ and hence

is an estimate of the convergence rate δ.

Second approximation. For a more accurate attempt we include the O(x4) terms: take Gk =

1 + akx
2 + bkx

4 + O(x6) so that Gk(1) = 1 + ak + bk = λk. Comparing the coefficients gives the

2D map

ak+1 = 2ak(ak + 2bk)λk

bk+1 = (2akbk + a3
k + 4b2

k + 6a2
kbk)λ

3
k

which has a fixed point at a = −1.5222, b = 0.1276, λ = −0.3946. Similar computation of the

eigenvalues of the Jacobian matrix (now a 2× 2 matrix) gives eigenvalues −0.49 and 4.844. This

second value is a better approximation to δ.

In fact, numerical solution shows that the functional equation T G = G has a fixed point

G∗(x) = 1 − 1.52736x2 + 0.10482x4 − 0.02671x6 − 0.00352x8 + . . .

⇒ λ = G∗(1) = −0.3995

Including many more higher-order terms and computing the Jacobian matrix numerically yields

a single eigenvalue δ = 4.6692016 . . . (sometimes called ‘Feigenbaum’s constant’) outside the unit

circle (i.e. a single unstable direction), and an infinite spectrum of eigenvalues inside the unit

circle (stable directions). So in the function space, G∗ is a hyperbolic fixed point of T . All this

has been made precise by O.E. Lanford (1982) and other authors.

Since the stable manifold S∞ of G∗ occupies ‘all but one dimension’ of the possible space of

functions, typical one-parameter families will cross S∞ transversely as we vary one parameter,

which to some degree explains why such a transition to chaos via a period-doubling cascade

appears so frequently in nonlinear systems.

The map G = µ∞x(1 − x), µ∞ = 3.5700 . . ., is on the stable manifold of G∗, and varying µ

around µ∞ gives situation (i) if µ > µ∞ (G2N

has a horseshoe for some N) or situation (iii) if

µ < µ∞ (G2N

has no ORFP for some N and cycle lengths divide 2N ).

If µ∞−µ = O(δ−N ) then, roughly speaking, it takes O(N) renormalisations for the perturbation

to grow to O(1) and eliminate the ORFP, thus explaining why µ∞ − µk ∼ Aδ−k as k → ∞.

Renormalisation is a powerful idea that has been applied to many other dynamical systems

problems, and reveals similar universal features (for example in maps of the circle).
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