4.3 The Poincaré–Bendixson Theorem

[See also Glendinning, pp132 - 136.]

Theorem (Poincaré–Bendixson): If the forward orbit $\mathcal{O}^+(\mathbf{x})$ of a point \mathbf{x} remains in a closed, bounded set $K \subset \mathbb{R}^2$ that contains no fixed points then $\omega(\mathbf{x})$ is a periodic orbit.

[**

Remark: Through any non-fixed point one can construct a line segment, called a *unidirectional interval* (UI) or *local transversal*, such that all trajectories crossing the UI do so from the same side.

Lemma: If a trajectory crosses a UI several times then the intersections either move monotonically along the UI or the trajectory is closed and periodic.

Proof of Lemma: If the trajectory is not closed then one of the diagrams

Proof of P–B Theorem:

- 1. If $\mathcal{O}^+(\mathbf{x}) \subset$ a closed, bounded set K then this implies $\omega(\mathbf{x})$ is non-empty and $\omega(\mathbf{x}) \subset K$.
- 2. Consider any $\mathbf{y} \in \omega(\mathbf{x})$. The aim is to show that $\mathcal{O}^+(\mathbf{y})$ is periodic, so we now investigate properties of $\omega(\mathbf{y})$.
- 3. $\mathcal{O}^+(\mathbf{y}) \subseteq \omega(\mathbf{x}) \subset K$ (by invariance of $\omega(\mathbf{x})$), so $\omega(\mathbf{y})$ is also non-empty, and $\omega(\mathbf{y}) \subset \omega(\mathbf{x})$. Pick a point $\mathbf{z} \in \omega(\mathbf{y})$.
- 4. Then (by the definition of ω-limit set and continuity) O⁺(y) must have an infinite sequence of intersections with the UI through z. Choose any two such intersection points, say y₁ and y₂.
- 5. Both \mathbf{y}_1 and $\mathbf{y}_2 \in \mathcal{O}^+(\mathbf{y}) \subseteq \omega(\mathbf{x})$, so (by the definition of $\omega(\mathbf{x})$) there is a subsequence of intersections of $\mathcal{O}^+(\mathbf{x})$ with the UI that tends to \mathbf{y}_1 and another subsequence that tends to \mathbf{y}_2 .
- 6. But the intersections of $\mathcal{O}^+(\mathbf{x})$ and the UI move monotonically along the UI (by the lemma) and cannot have subsequences tending to different limits. Hence we must in fact have that $\mathbf{y}_1 = \mathbf{y}_2$, and that these are equal to \mathbf{z} , so that the intersection of $\omega(\mathbf{y})$ and the UI through \mathbf{z} is exactly one point, i.e. \mathbf{z} . Hence $\mathcal{O}^+(\mathbf{y})$ is periodic. \Box

**]

occurs. In each case the trajectory leaves the hatched area and cannot return. $\hfill \Box$

(Note the implicit use of the Jordan curve lemma, which is why P–B is restricted to \mathbb{R}^2).