## 3.2 Example: Basins of Attraction

Consider the two-dimensional system (written in the complex variable z = x + iy):

$$\dot{z} = \mathrm{e}^{\mathrm{i}\alpha}(z - z^3)$$

- 1. The fixed points are at z = 0 and  $z = \pm 1$ .
- 2. The Jacobian (again in complex form) is  $e^{i\alpha}(1-3z^2)$ . At z = 0 the eigenvalues are  $\cos \alpha \pm i \sin \alpha$  and at  $z = \pm 1$  they are  $-2(\cos \alpha \pm i \sin \alpha)$ . (Check this by taking real and imaginary parts!) Hence if  $|\alpha| < \pi/2$  the origin is an unstable focus, whereas  $\pm 1$  are stable foci and the only attracting sets.
- 3. The direction of trajectories is best considered in polars  $z = re^{i\theta}$ :

$$\Rightarrow \dot{r} + ir\dot{\theta} = re^{i\alpha} - r^3 e^{i(\alpha + 2\theta)}$$

which leads to

$$\dot{r} = r \cos \alpha - r^3 \cos(\alpha + 2\theta),$$
  
$$r\dot{\theta} = r \sin \alpha - r^3 \sin(\alpha + 2\theta).$$

- 4. There is no point in calculating eigenvectors for foci. We can deduce the sense of rotation from the  $\dot{\theta}$  equation; for example when r is small and  $\alpha > 0$  we see that  $\dot{\theta} > 0$ .
- 5. The behaviour of  $\dot{r}$  as  $r \to 0$  confirms the stability results for z = 0.

All trajectories emerging from z = 0 are attracted to  $z = \pm 1$  except two which escape to infinity along the directions where  $\dot{\theta} = 0$  and  $\dot{r} > 0$  i.e.  $\theta = (\pi - \alpha)/2$  and  $\theta = (3\pi - \alpha)/2$ . These trajectories form the boundaries of the basins of attraction of  $z = \pm 1$ .

Below is the phase portrait for  $\alpha = 0.96\pi/2$ . Refer to example sheet 2 for additional details.

