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Abstract. We survey left 3-Engel elements in groups.

1 Introduction

An element a of a group G is left Engel if for each x ∈ G there exists a non-negative
integer n(x) such that

[[[x, a], a], . . . , a]︸ ︷︷ ︸
n(x)

= 1.

If n(x) is bounded above, then a is bounded left Engel. More precisely, a is left
n-Engel if n(x) ≤ n for all x ∈ G.

Recall that the Hirsch-Plotkin radical, HP(G), of G is the product of its locally
nilpotent normal subgroups. It is straightforward to see that every element of HP(G)
is left Engel in G and the converse is known for some classes of groups, including
solvable groups and finite groups (more generally, groups satisfying the maximal
condition on subgroups) [3, 6]. The converse is not true in general, not even for
bounded left Engel elements. In fact, whereas it is clear that a left 2-Engel element
is always in HP(G), this remains an open question for left 3-Engel elements. There
have been breakthroughs in recent years. In [17] it is shown that every left 3-Engel
element of odd order is contained in HP(G). In [7] this result is generalised to in-
clude elements of every order, by replacing left 3-Engel with a stronger condition
that we call strong left 3-Engel. Left 3-Engel elements of odd order are strong left
3-Engel.

The results of [24] imply that, in order to show that every left 3-Engel element
of finite order is in HP(G), it suffices to consider elements of order 2. By looking at
a similar setting for Lie algebras, there are reasons to doubt that elements of order
2 must be in HP(G) however. Little is known about left 4-Engel elements, although
there are some interesting results in [2].

Groups of prime power exponent satisfy some Engel type conditions and the so-
lution to the restricted Burnside problem also uses the fact that the associated Lie
ring satisfies certain Engel type identities [29, 30]. Burnside [5] observed that every
element of a group of exponent 3 is a left 2-Engel element, and so the fact that every
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left 2-Engel element lies in the Hirsch-Plotkin radical can be seen as the underlying
reason why groups of exponent 3 are locally finite. For groups of 2-power exponent
there is a close link with left Engel elements. If a is an involution in a finitely
generated group G of exponent 2n, then

[[[x, a], a], . . . , a︸ ︷︷ ︸
n+1

] = [x, a](−2)n = 1.

Thus a is a left (n+ 1)-Engel element of G. Hence, if G/G2n−1
is finite and the left

(n+ 1)-Engel elements of G are in HP(G), then G is finite. For sufficiently large n,
the variety of groups of exponent 2n is not locally finite [13, 18], so for sufficiently
large n there are left n-Engel elements not contained in HP(G). Since groups of ex-
ponent 4 are locally finite [23], if all left 4-Engel elements of a group G of exponent
8 are in HP(G), then G is locally finite.

Is a left 3-Engel element of prime power order in a group G contained in HP(G)?
We reduce this question to elements of prime order using the following result by
Abdollahi [1]: for every prime p and every left 3-Engel element x of finite p-power,
xp is in the Baer radical of G and, in particular, 〈xp〉G is locally nilpotent. For the
case p = 2 this implies the local finiteness of groups of exponent 4, originally proved
by Sanov [23]. It is also proved in [1] that two left 3-Engel elements generate a
nilpotent group of class at most 4, and this bound is achieved.

We now swap the role of a and x in the definition of a left Engel element. Thus
a ∈ G is a right Engel element if for each x ∈ G there exists a non-negative integer
n(x) such that

[a,n(x) x] = 1.

If n(x) is bounded above by n, then a is a right n-Engel element. By a result of
Heineken [11], if a is a right n-Engel element of G, then a−1 is a left (n + 1)-Engel
element.

In [19] Newell proved that if a is a right 3-Engel element of G, then a ∈ HP(G);
in fact he proved the stronger result that 〈a〉G is nilpotent of class at most 3. A
natural question arises whether 〈a〉G is nilpotent when a is a left 3-Engel element of
G. In [22] it was shown that this is not the case by giving an example of a locally
finite 2-group with a left 3-Engel element a such that 〈a〉G is not nilpotent and in
[8] this was generalised to an infinite family of examples. In [9] this was extended
to include every odd prime. Thus for each prime p there is a locally finite p-group
G containing a left 3-Engel element a such that 〈a〉G is not nilpotent.

The structure of this survey is as follows. In Section 2 we discuss (strong) sandwich
elements in Lie algebras and groups. We give a consistent power-conjugate presen-
tation [12, Section 9.4] of the largest 3-generator sandwich group, which is nilpotent
of class 5 and at most 3 if all elements have odd order. We then present one of our
main results: every finitely generated strong sandwich group is nilpotent. It follows
that a strong left 3-Engel element of a group G always lies in HP(G); we mention
applications for groups of exponents 5, 9 and 8. We do not know if all sandwich
groups of rank 4 are nilpotent, but in Section 3 we give partial results. We show
that there is a largest finite sandwich group of rank 4 generated by involutions. In
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Section 3.1 we obtain a new reduction theorem for sandwich groups of rank 4 with
generators that have two commuting pairs. In Section 3.2 we report some results of
computations in residually nilpotent sandwich groups of rank 5 generated by invo-
lutions. In particular, we show that these are finite if there are at least 3 commuting
pairs among the generators. Finally, in Sections 4 and 5 we consider the global
nilpotence problem for the normal closure of left 3-Engel elements in locally finite
p-groups.

2 Local nilpotence of (strong) sandwich groups

and strong left 3-Engel elements

The approach of [7, 17] is by working with sandwich groups; these are group-theoretic
analogues of sandwich Lie algebras introduced by Kostrikin [14]. Kostrikin and
Zel’manov [16] proved that sandwich Lie algebras are locally nilpotent and this is
a key ingredient to both Kostrikin’s solution to the restricted Burnside problem for
groups of prime exponent [15], and Zel’manov’s general solution [29, 30].

2.1 Sandwich Lie algebras

As for group commutators, we use the left normed convention for Lie products.

Definition. An element a of a Lie algebra L is a sandwich element if axa = 0
and axya = 0 for all x, y ∈ L. A Lie algebra is a sandwich Lie algebra if it can be
generated (as Lie algebra) by sandwich elements.

The second condition is superfluous in odd characteristic: 0 = x(yaa) = xyaa −
2xaya+ xaay = 2axya. In characteristic 2 it is needed as this example shows.

Example. Consider the largest vector space L = 〈a, b, c〉 over GF(2) subject to
Id(c) being abelian, bc = 0 and bxb = axa = cxc = 0, for all x ∈ L. Then L is a Lie
algebra generated by a, b, ab, c(ab)n, and c(ab)na for n ≥ 0. To show that L is non-
nilpotent (or, equivalently, infinite dimensional), we give a concrete example where
these generators are basis elements. Let y = ab, un = c(ab)n and vn+1 = c(ab)na.
We have the following multiplication table for these basis elements of L.

ab = y,
ya = yb = 0,

una = vn+1, unb = 0, uny = un+1,
vna = 0, vnb = un, vny = vn+1,
unvm = 0, vnvm = 0, unum = 0.

It suffices to show that the Jacobi identity holds for these generators. Since the
characteristic is 2, we deduce that:

aby + bya+ yab = 0,
unab+ abun + buna = vn+1b+ yun = 2un+1 = 0,
vnab+ abvn + bvna = yvn + una = 2un+1 = 0,
unay + ayun + yuna = vn+1y + un+1a = 2vn+2 = 0,
vnby + byvn + yvnb = uny + vn+1b = 2un+1 = 0.
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2.2 3-generator sandwich groups

In [26] the notion of a sandwich group was introduced.

Definition. A subset X of a group G is a sandwich set if 〈a, bg〉 is nilpotent of
class at most 2 for all a, b ∈ X and g ∈ 〈X〉. If G is generated by a sandwich set,
then G is a sandwich group.

The connection with left 3-Engel elements arises because the following are equiva-
lent.

(1) If a is a left 3-Engel element of a group G, then a is in the locally nilpotent
radical of G.
(2) Every finitely generated sandwich group is nilpotent.

The equivalence is a consequence of the following: if a is a left 3-Engel element
in G, then 〈a〉G is a sandwich group; every element of a sandwich set X is left 3-
Engel in 〈X〉.

A significant feature of sandwich groups is that there is a largest sandwich group of
any given rank [26].

Theorem 2.1 Let R = 〈x, y, z〉 be the free sandwich group of rank 3. If the gener-
ators have odd order, then R has class at most 3, else R has class 5.

We obtained in [26] the following consistent power-conjugate presentation for R.

Let e1(z, zx, y) = [z, x, y, y].

Generators

x1 = e1(z, zx, y), x2 = e1(x, xy, z), x3 = e1(y, yz, x),

x4 = [z, x, [z, y]], x5 = [x, y, [x, z]], x6 = [y, z, [y, x]],
x7 = [z, x, y], x8 = [z, y, x]

x9 = [z, x], x10 = [z, y], x11 = [x, y]

x12 = x, x13 = y, x14 = z.

Relations

x2
1 = x2

2 = x2
3 = 1, x2

4 = x2
5 = x2

6 = x3x2x1,

xx12
4 = x4x3, xx13

4 = x4x1, xx13
5 = x5x1, xx14

5 = x5x2,
xx12

6 = x6x3, xx14
6 = x6x2,

xx9
7 = x7x2x3, xx10

7 = x7x1, xx11
7 = x7x1, xx12

7 = x7x5x3x2,
xx13

7 = x7x1, xx14
7 = x7x4x3x2,

xx9
8 = x8x3, xx10

8 = x8x2x1, xx11
8 = x8x3, xx12

8 = x8x3,
xx13

8 = x8x6x3, xx14
8 = x8x4x3,
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xx10
9 = x9x4, xx11

9 = x9x5, xx13
9 = x9x7, xx11

10 = x10x6, xx12
10 = x10x8,

xx14
11 = x11x8x

−1
7 x6x5x4x3, xx13

12 = x12x11, xx14
12 = x12x

−1
9 , xx14

13 = x13x
−1
10 .

2.3 (Strong) sandwich groups and strong left 3-Engel ele-
ments

The results of [17] imply that a group G generated by a finite sandwich set consisting
of elements of odd order is nilpotent. Thus every left 3-Engel element of odd order
in G is in HP(G).

We wish to extend this result to include groups generated by elements of any order.
We take a cue from the definition of sandwich algebras. In [7] we introduced the
notion of a strong sandwich set.

Definition. A subset X of a group G is a strong sandwich set if:

(1) 〈a, bg〉 is nilpotent of class at most 2 for all a, b ∈ X and g ∈ 〈X〉;
(2) 〈a, bf , cg〉 is nilpotent of class at most 3 for all a, b, c ∈ X and f, g ∈ 〈X〉.
If G is generated by a strong sandwich set, then it is a strong sandwich group.

Remark. A strong sandwich group is somewhat analogous to a sandwich Lie alge-
bra: if all the elements of X have odd order, then condition (2) is superfluous. This
follows from Theorem 2.1.

There is also a connection to left 3-Engel elements. We first need a definition.

Definition. An element a of a group G is a strong left 3-Engel element if:

(1) 〈a, ag〉 is nilpotent of class at most 2 for all g ∈ G.
(2) 〈a, af , ag〉 is nilpotent of class at most 3 for all f, g ∈ G.

Remark. Notice that a is left 3-Engel in G if and only if it satisfies (1). Con-
dition (2) is superfluous when a has odd order. Therefore a left 3-Engel element of
odd order is a strong left 3-Engel element.

Strong left 3-Engel elements and strong sandwich groups are related because the
following are equivalent.

(1) If a is a strong left 3-Engel element of G, then 〈a〉G is locally nilpotent.
(2) Every finitely generated strong sandwich group is nilpotent.

The following results obtained in [7] about finitely generated strong sandwich groups
generalise work of Jabara and Traustason [17].

Theorem 2.2 Every finitely generated strong sandwich group is nilpotent.

Theorem 2.3 If a is a strong left 3-Engel element of a group G, then 〈a〉G is locally
nilpotent.

A key ingredient in proving these results was the following [7].
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Proposition 2.4 Let X be a strong sandwich set in a group G and let a, b ∈ X.
Then X ∪ {[a, b]} is also a strong sandwich set in G.

We discuss briefly how Theorem 2.2 was proved using this proposition. Let X =
{x1, x2, . . . , xr} be a strong sandwich set and let X consist of all commutators in X
(in any order and with any bracketing). Iterated use of Proposition 2.4 shows that
X is a strong sandwich set. As every 3-generator strong sandwich group is nilpotent
of class at most 3, the Hall-Witt identity essentially reduces to the Jacobi identity.
So for every u, v, w ∈ X

[u, [v, w]] = [u, v, w][u,w, v]−1.

As a result, we applied the same basic approach as used in Chanyshev’s proof of the
local nilpotence of sandwich Lie algebras [27, Section 3.2]. We mention applications
to groups of exponents 5, 9 and 8.

Theorem A [26]. A group of exponent 5 is locally finite if and only if it satis-
fies the law

[z, [y, x, x, x], [y, x, x, x], [y, x, x, x]] = 1.

Remark. This result implies in particular that a group of exponent 5 is locally fi-
nite if and only if all of its 3-generator subgroups are finite; it was originally proved
by Vaughan-Lee [28].

Theorem B [17]. Let w be a word in n variables x1, . . . , xn where the variety
of groups satisfying the law w3 = 1 is a locally finite variety of groups of exponent
9. Then the same is true for the variety of groups on n + 1 variables satisfying the
law (x3

n+1w
3)3 = 1.

Remark. We can use Theorem B to construct an explicit sequence of words.
Define the word wn = wn(x1, . . . , xn) in n variables recursively by w1 = x1 and
wn+1 = x3

n+1w
3
n. The variety of groups satisfying the law x3

1 = 1 is locally finite by
Burnside and by repeated application of Theorem B we see that, for each n ≥ 1,
the variety of groups satisfying the law w3

n is a locally finite variety of groups of
exponent 9.

Theorem C [7]. Assume all groups of exponent 8 satisfying a law w = 1 in n
variables x1, . . . , xn are locally nilpotent. Let V be the variety on n + 3 variables
satisfying both [xn+1, w, w, w] = 1 and 〈w,wxn+2 , wxn+3〉 is nilpotent of class at most
3. Then V is locally nilpotent.

Remark. Starting for example with w = x4
1, Theorem C gives us a sequence of

locally nilpotent varieties.

3 Left 3-Engel involutions

Theorem 2.3 implies that if a left 3-Engel element has odd order, then its normal
closure is locally nilpotent. This observation and [24] imply that, to generalise this
to left 3-Engel elements of arbitrary finite order, it suffices to consider elements of
order 2. Despite Theorems 2.2 and 2.3, the question whether the normal closure of
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a left 3-Engel involution is locally nilpotent remains open. The best general result
is the following.

Theorem 3.1 Let x be a left 3-Engel involution in a group G. If 〈x〉G has no
elements of order 8, then 〈x〉G is locally nilpotent.

Even this apparently slight progress was surprisingly difficult to establish. The dif-
ficulty comes from the fact that we do not know initially that 〈x〉G is a 2-group.
Once we have a 2-group, it is clear that 〈x〉G has exponent 4 and thus it is locally
finite by Sanov [23].

Consider sandwich groups generated by involutions. From [26] we know that such
a group is nilpotent if its rank is at most 3. The largest sandwich group of rank 3
generated by involutions has order 213 and class 5.

3.1 Rank 4 sandwich groups generated by involutions

It remains unknown whether sandwich groups of rank 4 generated by involutions
are nilpotent. Nickel’s nilpotent quotient algorithm [21] is available in both GAP
[10] and Magma [4]. Using these implementations, we proved that such a group
has a largest nilpotent quotient of order 2776 and class 13. The calculation took 18
days of CPU time using Magma 2.27-3 on a computer with a 2.6 GHz processor.

We have some partial results on the nilpotence of such groups. Before present-
ing them, we need the following definition.

Definition. Let G be a sandwich group generated by a finite set X = {a1, . . . , ar} of
sandwich elements. The commutativity graph, V (G), of G is an (undirected) graph
whose vertices are the generators X, and a pair of distinct vertices ai and aj are
joined by an edge if and only if ai and aj commute.

Remarks. (1) The commutativity graph of the free r-generator sandwich group
has no edges. The largest r-generator sandwich group with commutativity graph
the complete graph on r vertices is the free abelian group of rank r.

(2) Let H and K be the largest r-generator sandwich groups with commutativ-
ity graphs V (H) and V (K) respectively. If V (H) ⊆ V (K), then K is isomorphic to
a quotient of H.

Assume for the remainder of the section that G is a sandwich group generated
by 4 involutions. If V (G) is the complete graph, then G is elementary abelian of
order 16. There is just one type of commutativity graph with 5 edges, namely

ba

yx
@
@
@�

�
�

and the largest sandwich group 〈x, y, a, b〉 with this commutativity graph is 〈x, y〉×
〈a, b〉 = D8×C2

2 , a group of order 32. If the commutativity graph has 4 edges, then
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there are two types of graphs to consider: either the two removed edges are adjacent
or not.

ba

yx
@
@
@�

�
�

xa

bc
@
@
@�

�
�

The largest sandwich group with the first commutativity graph is 〈x, y〉 × 〈a, b〉 =
D8×D8, it has order 64. For the second group, observe that a and bc commute with
each of b and ac. Thus

〈a, b, c〉 = 〈a, bc〉 o 〈c〉 = D8 o C2,

the standard wreath product of D8 by C2. Thus the largest sandwich group with
the second commutativity graph is 〈a, b, c〉×〈x〉 = (D8oC2)×C2, a group of order 256.

Next, we consider the case when the commutativity graph has 3 edges. This is
much more difficult. There are three types of commutativity graphs:

zx

ya
α =

@
@
@ ca

β =
bx

�
�
�

ba
γ =

yx

The largest sandwich group with the first commutativity graph is

Gα = 〈x, y, z〉 × 〈a〉 = R× C

where R is the largest sandwich group generated by involutions x, y, z. From [26]
we know that R is nilpotent of class at most 5. The results of [24] show that the
others are finite.

3.1.1 Sandwich groups with commutativity graph β

Let Gβ = 〈x, a, b, c〉 be a sandwich group where x, a, b, c are involutions and Gβ has
commutativity graph

ca

β =
bx

�
�
�

In [24] it was shown that Gβ has order 228 and class 9. It has the following consistent
power-conjugate presentation.

Let

t(a) = [[xc, xa], [xa, xb]], t(b) = [[xa, xb], [xb, xc]], t(c) = [[xb, xc], [xc, xa]]

and
y(a) = [x, xbc, xa], y(b) = [x, xca, xb], y(c) = [x, xab, xc].
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Generators

b1 = [t(a), b], b2 = t(a), b3 = t(b)
b4 = y(b), b5 = y(b)a, b6 = y(a), b7 = y(a)b, b8 = y(a)c,

b9 = [x, xab][xc, xabc], b10 = [x, xab], b11 = [x, xbc][xa, xabc],
b12 = [x, xbc], b13 = [x, xac][xb, xabc], b14 = [x, xac], b15 = [x, xabc][xc, xab],
b16 = [x, xabc][xa, xbc], b17 = [x, xabc],

b18 = x, b19 = xa, b20 = xb, b21 = xc, b22 = xab, b23 = xca,
b24 = xbc, b25 = xabc,

b26 = a, b27 = b, b28 = c.

Relations

b2
1 = . . . = b2

28 = 1.

bb27
2 = b2b1, b

b28
2 = b2b1, b

b26
3 = b3b1, b

b28
3 = b3b1

bb19
4 = b4b2, b

b21
4 = b4b3b2, b

b22
4 = b4b2b1, b

b23
4 = b4b3, b

b24
4 = b4b3b2b1,

bb25
4 = b4b3, b

b26
4 = b5, b

b28
4 = b8b6b4

bb18
5 = b5b2, b

b20
5 = b5b2b1, b

b21
5 = b5b3b1, b

b23
5 = b5b3b2b1,

bb24
5 = b5b3b1, b

b25
5 = b5b3b2, b

b26
5 = b4, b

b28
5 = b8b6b5,

bb20
6 = b6b3, b

b21
6 = b6b3b2, b

b22
6 = b6b3b1, b

b23
6 = b6b3b2b1, b

b24
6 = b6b2,

bb25
6 = b6b2, b

b27
6 = b7, b

b28
6 = b8,

bb18
7 = b7b3, b

b19
7 = b7b3b1, b

b21
7 = b7b2b1, b

b23
7 = b7b2b1

bb24
7 = b7b3b2b1, b

b25
7 = b7b3b2, b

b27
7 = b6, b

b28
7 = b8b7b6,

bb18
8 = b8b3b2, b

b19
8 = b8b3b2b1, b

b20
8 = b8b2b1, b

b22
8 = b8b2b1,

bb24
8 = b8b3b1, b

b25
8 = b8b3, b

b27
8 = b8b7b6, b

b28
8 = b6,

bb12
9 = b9b1, b

b14
9 = b9b1, b

b18
9 = b9b6b4,

bb19
9 = b9b6b5, b

b20
9 = b9b7b4, b

b21
9 = b9b6b4,

bb22
9 = b9b7b5, b

b23
9 = b9b6b5, b

b24
9 = b9b7b4,

bb25
9 = b9b7b5,
bb11

10 = b10b1, b
b12
10 = b10b3, b

b13
10 = b10b1, b

b14
10 = b10b2,

bb16
10 = b10b1, b

b17
10 = b10b3b2, b

b21
10 = b10b6b4,

bb23
10 = b10b6b5, b

b24
10 = b10b7b4, b

b25
10 = b10b7b5,

bb28
10 = b10b9,
bb14

11 = b11b1, b
b18
11 = b11b6, b

b19
11 = b11b6,

bb20
11 = b11b7, b

b21
11 = b11b8, b

b22
11 = b11b7, b

b23
11 = b11b8, b

b24
11 = b11b8b7b6,

bb25
11 = b11b8b7b6,
bb13

12 = b12b1, b
b14
12 = b12b3b2, b

b15
12 = b12b1,

bb17
12 = b12b2, b

b19
12 = b12b6, b

b22
12 = b12b7, b

b23
12 = b12b8, b

b25
12 = b12b8b7b6,

bb26
12 = b12b11,
bb18

13 = b13b4, b
b19
13 = b13b5, b

b20
13 = b13b4

bb21
13 = b13b8b6b4, b

b22
13 = b13b5, b

b23
13 = b13b8b6b5, b

b24
13 = b13b8b6b4

bb25
13 = b13b8b6b5,
bb15

14 = b14b1, b
b16
14 = b14b1, b

b17
14 = b14b3, b

b20
14 = b14b4,
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bb22
14 = b14b5, b

b24
14 = b14b8b6b4, b

b25
14 = b14b8b6b5, b

b27
14 = b14b13,

bb18
15 = b15b6b4b3b2, b

b19
15 = b15b6b5b3b2b1,

bb20
15 = b15b7b4b3b2b1, b

b21
15 = b15b6b4b3b2, b

b22
15 = b15b7b5b3b2, b

b23
15 = b15b6b5b3b2b1,

bb24
15 = b15b7b4b3b2b1, b

b25
15 = b15b7b5b3b2,

bb18
16 = b16b6b2, b

b19
16 = b16b6b2, b

b20
16 = b16b7b2b1,

bb21
16 = b16b8b2b1, b

b22
16 = b16b7b2b1, b

b23
16 = b16b8b2b1, b

b24
16 = b16b8b7b6b2,

bb25
16 = b16b8b7b6b2,
bb19

17 = b17b6b2, b
b20
17 = b17b4b3, b

b21
17 = b17b6b4b3b2, b

b22
17 = b17b7b5b3b2,

bb23
17 = b17b8b6b5b3, b

b24
17 = b17b8b7b6b2, b

b26
17 = b17b16, b

b27
17 = b17b16b15,

bb28
17 = b17b15,

bb22
18 = b18b10, b

b23
18 = b18b14, b

b24
18 = b18b12, b

b25
18 = b18b17, b

b26
18 = b19,

bb27
18 = b20, b

b28
18 = b21,

bb20
19 = b19b10, b

b21
19 = b19b14, b

b24
19 = b19b17b16, b

b25
19 = b19b12b11, b

b26
19 = b18,

bb27
19 = b22, b

b28
19 = b23,

bb21
20 = b20b12, b

b23
20 = b20b17b16b15, b

b25
20 = b20b14b13, b

b26
20 = b22, b

b27
20 = b18,

bb28
20 = b24,
bb22

21 = b21b17b15, b
b25
21 = b21b10b9, b

b26
21 = b23, b

b27
21 = b24, b

b28
21 = b18,

bb23
22 = b22b12b11, b

b24
22 = b22b14b13, b

b26
22 = b20, b

b27
22 = b19, b

b28
22 = b25,

bb24
23 = b23b10b9, b

b26
23 = b21, b

b27
23 = b25, b

b28
23 = b19,

bb26
24 = b25, b

b27
24 = b21, b

b28
24 = b20,

bb26
25 = b24, b

b27
25 = b23, b

b28
25 = b22.

3.1.2 Sandwich groups with commutativity graph γ

Let Gγ = 〈a, b, x, y〉 be a sandwich group where a, b, x, y are involutions and Gγ has
commutativity graph

ba
γ =

yx

In [24], it was shown that Gγ has order 220 and class 9. It has the following consis-
tent power-conjugate presentation.

Generators

e1 = [x, b, [y, a], x, y, [x, b]], e2 = [x, b, [y, a], y, x, [y, a]],
e3 = [x, b, [y, a], x, y, x], e4 = [x, b, [y, a], y, x, y],
e5 = [x, b, [y, a], x, y], e6 = [x, b, [y, a], y, x],
e7 = [x, b, [y, a], x], e8 = [x, b, [y, a], y],
e9 = [x, b, y, x], e10 = [x, [y, a], y]

e11 = [x, b, [y, a]], e12 = [x, b, y], e13 = [x, [y, a]],
e14 = [x, y]

e15 = [x, b], e16 = [y, a], e17 = x, e18 = y
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e19 = a, e20 = b.

Relations

e2
1 = e2

2 = . . . = e2
20 = 1.

ee20
3 = e3e1, e

e19
4 = e4e2, e

e15
5 = e5e1, e

e17
5 = e5e3,

ee16
6 = e6e2, e

e18
6 = e6e4, e

e12
7 = e7e1, e

e14
7 = e7e3, e

e18
7 = e7e5,

ee13
8 = e8e2, e

e14
8 = e8e4, e

e17
8 = e8e6

ee11
9 = e9e1, e

e13
9 = e9e3, e

e16
9 = e9e5e4e2, e

e19
9 = e9e7e6e1,

ee11
10 = e10e2, e

e12
10 = e10e4, e

e15
10 = e10e6e3e1, e

e20
10 = e10e8e5e2,

ee14
11 = e11e6e5e4e3, e

e17
11 = e11e7, e

e18
11 = e11e8,

ee13
12 = e12e6e5e4e3, e

e16
12 = e12e8, e

e17
12 = e12e9, e

e19
12 = e12e11e8,

ee15
13 = e13e7, e

e18
13 = e13e10, e

e20
13 = e13e11e7,

ee15
14 = e14e9, e

e16
14 = e14e10, e

e19
14 = e14e13e10, e

e20
14 = e14e12e9,

ee16
15 = e15e11, e

e18
15 = e15e12, e

e17
16 = e16e13,

ee18
17 = e17e14, e

e20
17 = e17e15, e

e19
18 = e18e16.

3.1.3 Sandwich groups whose commutativity graph have 2 edges

Let G = 〈a, x, y, z〉 be a sandwich group where a, x, y, z are involutions and G has

ya

zx
δ =

We know little about such groups. In the remainder of this section we prove the
following “reduction” theorem.

Theorem 3.2 If [[z, x], [z, a]] = 1 and [[z, y], [z, a]] = 1, then G is nilpotent.

Remark. We used the Magma implementation of the nilpotent quotient algorithm
to determine that the largest nilpotent quotient Q of G has order 271 and class 10.
If we impose the two relations of Theorem 3.2, then Q has order 238 and class 9.

Let N =
⋃∞
i=0 Zi(G). As G is finitely generated, it suffices to show that G/N is

nilpotent. Since G is finitely generated, G/N has trivial centre. Without loss of
generality, we can thus assume that Z(G) = 1. Under this assumption, we will
prove that G = 1. Our lengthy proof of this claim concludes in Proposition 3.21
where we prove that G is nilpotent.

The next two results do not rely on this assumption. The first is particularly
useful.

Proposition 3.3 Let u ∈ G where u commutes with each of x, y, [x, z], [y, z], and
[a, z]. Then u = 1.

Proof We first show that if v ∈ G commutes with each of x, y, z and [z, a], then
v = 1. As a first step, we prove that [v, a] commutes with x, y, z and [z, a]. Since
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each of a and v commutes with x, y and [z, a], it is clear that [v, a] commutes with
each, so it suffices to show that [v, a] commutes with z. This follows from

[v, a]z = [v, az] = [v, a[a, z]] = [v, [z, a]a] = [v, a][v, [z, a]]a = [v, a].

Thus each of v, [v, a] and [v,2 a] commutes with each of x, y and z. However, [v,2 a]
commutes also with a. Thus [v,2 a] ∈ Z(G) so [v,2 a] = 1. It follows that [v, a] = 1,
so v = 1.

Next, notice that [u, z] commutes with x, y, [x, z], [y, z] and [a, z]. Note that z com-
mutes with [x, z], [y, z] and [a, z], so [u, z] commutes with each of these elements. It
thus suffices to show that [u, z] commutes with x and y. This follows from

[u, z]x = [u, z[z, x]] = [u, [z, x]z] = [u, z][u, [z, x]]z = [u, z],
[u, z]y = [u, z[z, y]] = [u, [z, y]z] = [u, z][u, [z, y]]z = [u, z].

Thus [u, z, z] commutes with x, y and [z, a], but [u, z, z] also commutes with z. From
the first paragraph we deduce that [u, z, z] = 1. Hence [u, z] commutes with each of
x, y, z and [z, a] and thus it follows again from the first paragraph that [u, z] = 1.
The same argument shows that u = 1. �

Below we use the following power-conjugate presentation for the largest sandwich
group of rank 3 generated by involutions; it is an immediate consequence of that
given in Section 2.2.

Let e1(z, zx, y) = [z, x, y, y].

Generators

x1 = e1(z, zx, y), x2 = e1(x, xy, z), x3 = e1(y, yz, x),

x4 = [z, x, [z, y]], x5 = [x, y, [x, z]], x6 = [y, z, [y, x]],
x7 = [z, x, y], x8 = [z, y, x]

x9 = [z, x], x10 = [z, y], x11 = [x, y]

x12 = x, x13 = y, x14 = z.

Relations

x2
1 = · · · = x2

6 = 1, x3 = x2x1, x2
7 = x1, x2

8 = x3, x2
9 = · · · = x2

14 = 1,
xx12

4 = x4x2x1, xx13
4 = x4x1, xx13

5 = x5x1, xx14
5 = x5x2,

xx12
6 = x6x2x1, xx14

6 = x6x2,
xx9

7 = x7x1, xx10
7 = x7x1, xx11

7 = x7x1, xx12
7 = x7x5x1,

xx13
7 = x7x1, xx14

7 = x7x4x1,
xx9

8 = x8x2x1, xx10
8 = x8x2x1, xx11

8 = x8x2x1, xx12
8 = x8x2x1,

xx13
8 = x8x6x2x1, xx14

8 = x8x4x2x1,
xx10

9 = x9x4, xx11
9 = x9x5, xx13

9 = x9x7, xx11
10 = x10x6, xx12

10 = x10x8,
xx14

11 = x11x8x7x6x5x4x2, xx13
12 = x12x11, xx14

12 = x12x9, xx14
13 = x13x10.
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Lemma 3.4 γ3(〈[x, y], [z, a]〉) = 1.

Proof Notice that 1 = [x, y2] = [x, y]2 and 1 = [z, a2] = [z, a]2. So

[[x, y], [a, z], [a, z]] = [[x, y], [z, a], [x, y]] = ([a, z][x, y])4

and thus it suffices to show that [[x, y], [z, a], [z, a]] ∈ Z2(G) = 1. Calculating in the
sandwich group 〈x, y, az〉, using the presentation above, we see that

[[x, y], [a, z], [a, z]] = [x, y, az, az] = [x11, x14, x14] = [x8x7x6x5x4x2, x14] = x2.

Observe that x2 commutes with x, y and az, and also with a. We finish the proof
by showing that [[x, y], [a, z], [a, z], z] commutes with each of a, x, y and z. We will
calculate in the sandwich group 〈ā, b̄, c̄, x̄〉, where ā = a, b̄ = x, c̄ = xy and x̄ = z.
Since it has commutativity graph β, we can use the relations satisfied by such a
group. We have already seen that [[x, y], [a, z], [a, z]] commutes with [z, a] = [x̄, ā]
and x = b̄. We will use this in the following calculation:

[[x, y], [z, a], [z, a]] = [b̄c̄, [x̄, ā], [x̄, ā]]

= [[x̄, ā]b̄c̄, [x̄, ā]] (commutes with b̄ = x)

= [[x̄, ā]c̄, [x̄, ā]b̄]

= [x̄c̄x̄āc̄, x̄b̄x̄āb̄]

= [x̄c̄, x̄b̄xāb̄]x̄
āc̄

[x̄āc̄, x̄b̄x̄āb̄]

= [x̄c̄, x̄āb̄]x̄
āc̄

[x̄c̄, x̄b̄]x̄
āb̄x̄āc̄ [x̄āc̄, x̄āb̄][x̄āc̄, x̄b̄]x̄

āb̄

= (b17b15)b23bb22b23
12 bb26

12 (b17b16b15)b22

= b16b11b2b1.

This element commutes with b̄ = x and thus

b16b11b2b1 = (b16b11b2b1)b27 = b16b11b2b1b1,

so b1 = 1. Hence
[[x, y], [z, a], [z, a], z] = [b16b11b2, b18] = b2

commutes with each of x, z and a. Since [x, y] = [y, x], we see by symmetry that b2

also commutes with y. �

We deduce that b2 = 1. We analyse some consequences. Consider the elements:

b11 = [x̄b̄c̄, x̄][x̄ā, x̄āb̄c̄] = [z, z[x,y]][za, za[x,y]];
b6 = [b11, b18] = [b11, x̄] = [b11, z];
b8b7 = [b6, b27b28] = [b6, [x, y]];

all are symmetric in x, y.

Since b1 = b2 = 1, we deduce that b8b7 commutes with each of x, a and z, and
by symmetry also with y; thus b8b7 = 1. Recall that 1 = [x, y, az, az] = x2 in
〈x, y, az〉. In summary:

Lemma 3.5
(1) x2 = 1 in 〈x, y, az〉.
(2) b1 = b2 = 1, b8 = b7 and b16 = b11 in 〈a, x, xy, z〉 and 〈a, y, yx, z〉.
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From now on, we use the conditions given in the statement of Theorem 3.2. Since
[zy, za] = [z, y, [z, a]] = 1, we deduce that 〈z, za, zy, x〉 is a β-group. We will later
work with this subgroup. First we prove a crucial lemma.

Lemma 3.6 [z, a, x] = [z, x, a] and [z, a, y] = [z, y, a].

Proof Since [z, x, [z, a]] = 1, it follows that [z, x, a] = [xz, a] commutes with z.
Hence

[z, x, a] = [xz, a] = [xz, a]z = [x, az] = [az, x] = [z, a, x].

The latter claim is proved similarly. �

Lemma 3.7 [x, y, z, z] = 1.

Proof We calculate in the β-group 〈ā, b̄, c̄, x̄〉 = 〈a, x, xy, z〉. We know that

b1 = b2 = 1, b8 = b7, b16 = b11.

Furthermore
1 = [za, zx] = [x̄ā, x̄b̄] = b10.

As a consequence,

1 = [b10, b12] = b3

1 = [b10, b28] = b9

1 = [b9, b19] = b6b5

1 = [b9, b22] = b7b5

1 = [b9, b20] = b7b4.

The last three identities imply that b4 = b5 = b6 = b7 = b8. We show that this
common element is trivial. We consider

[z, z[x,y], za] = [x̄, x̄b̄c̄, x̄ā] = [b12, b19] = b6.

From the presentation, bx6 = bb̄6 = bb27
6 = b7 = b6, so b6 commutes with x. Also b6

commutes with [z, x] = b18b20 and [z, a] = b18b19. As b6 is symmetric in x and y, it
commutes with y and [z, y]. Proposition 3.3 implies that b6 = 1. Hence

b4 = b5 = b6 = b7 = b8 = 1.

Next, consider [z, z[x,y]][za, za[x,y]] = b12b
b26
12 = b11. Observe that b11 commutes with

each of x = b27, [z, x] = b18b20 and [z, a] = b18b19. As b11 is symmetric in x and y, it
commutes with y and [z, y]. Proposition 3.3 implies that b11 = 1. Hence

b16 = b11 = 1.

Finally, we consider [x, y, z, z] = [z, z[x,y]] = b12. Observe that b12 commutes with
each of x = b27, [z, x] = b18b20 and [z, a] = b18b19. As b12 is symmetric in x and y, it
commutes with y and [z, y]. Proposition 3.3 implies that b12 = [x, y, z, z] = 1. �

Remark. We know from the presentation for 〈x, y, z〉 that γ5(〈x, y, z〉) is gen-
erated by [x, y, z, z], [z, x, y, y] and [z, y, x, x], and their product is trivial. Also
[x, y, z, z] = 1. Hence γ5(〈x, y, z〉) is cyclic, and generated by [z, x, y, y] = [z, y, x, x].



15

Lemma 3.8 〈x, y, az〉 is nilpotent of class at most 4 and [[az, x], [az, y]] = 1.

Proof As 〈x, y, az〉 is a sandwich group, we know from the presentation of the largest
such group that γ5(〈x, y, az〉) is generated by [x, y, az, az], [az, x, y, y] and [az, y, x, x].
The product of these elements is trivial and Lemma 3.5 implies that [x, y, az, az] = 1.
Using Lemma 3.6 and the presentation for the γ-group 〈x̄, ā, b̄, ȳ〉 = 〈xz, x, a, y〉, we
deduce that

[az, x, y, y] = [xz, a, y, y] = [x̄, b̄, ȳ, ȳ] = [e12, e18] = 1.

Hence 〈x, y, az〉 is nilpotent of class at most 4. For the last claim, notice that
[az, x, [az, y]] commutes with z by the assumptions of Theorem 3.2 and, as 〈x, y, az〉
is nilpotent of class at most 4, it commutes with x and y, and it obviously commutes
with a. Hence [az, x, [az, y]] ∈ Z(G) = 1. �

Lemma 3.9 In the β-group 〈ā, b̄, c̄, x〉 = 〈z, za, zy, x〉, the following relations hold:

b1 = b2 = b3 = b4 = b5 = b6 = b7 = b9 = b10 = 1.

Proof Observe that 1 = [zx, za] = [āx, b̄] = [x, ā, b̄] = xxāxb̄xāb̄ from which it follows
that xāb̄ = xxāxb̄. In particular,

1 = [x, xāb̄] = b10.

As a consequence,

1 = [b10, b11] = b1

1 = [b10, b14] = b2

1 = [b10, b12] = b3

1 = [b10, b28] = b9

1 = [b9, b18] = b6b4

1 = [b9, b19] = b6b5

1 = [b9, b20] = b7b4.

From the last three identities, b4 = b5 = b6 = b7. We show that this common element
is trivial. We consider t = [z, a, x, [z, y, x, x]]. Calculating first in 〈z, za, zy, x〉,

t = [āb̄, x, [āc̄, x, x]] = [b26b27, b18, b14] = [bb26b27
18 b18, b14] = [b22b18, b14] = b5.

From the presentation, [b5, [z, a]] = [b5, b26b27] = b4b5 = 1.

We next consider t in the γ-group 〈x̄, ā, b̄, ȳ〉 = 〈xz, x, a, y〉. We first find some
relations in this group. Using the fact that 〈x, y, az〉 is nilpotent of class at most 4
and Lemma 3.6, we deduce that

1 = [az, x, [x, y], y] = [xz, a, [x, y], y] = [x̄, b̄, [ā, ȳ], ȳ] = [e11, e18] = e8.

As a consequence,

1 = [e8, e13] = e2

1 = [e8, e14] = e4

1 = [e8, e17] = e6.
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We use the facts that [z, a, x] = [z, x, a] from Lemma 3.6 and [z, y, x, x] = [z, x, y, y].
Hence

t = [[z, x, a], [z, x, y, y]]

= [[xz, a], [xzx, y, y]]

= [[x̄, b̄], [āx̄, ȳ, ȳ]]

= [x̄, b̄, [[ā, ȳ][ā, ȳ, x̄][x̄, ȳ], ȳ]]

= [x̄, b̄, [ā, ȳ, x̄, ȳ][x̄,ȳ]]

= [e15, e
e14
10 ]

= [e15, e10]

= e3e1.

From the presentation, we deduce that t commutes with y = ȳ = e18 and x = ā = e19.
Both [z, x, a] and [z, x, y, y] commute with z. Hence t commutes with z and thus
with [z, x] and [z, y]. Thus t commutes with each of x, y, [z, x], [z, y] and [z, a].
Proposition 3.3 implies that t = 1. Hence b5 = 1. �

Lemma 3.10 〈x, y, z〉 is nilpotent of class at most 4 and [[z, x], [z, y]] = 1.

Proof In the β-group 〈ā, b̄, c̄, x〉 = 〈z, za, zy, x〉
[z, y, x, x] = [xzz

y

, x] = [x̄āc̄, x] = b14.

The expressions for both b14 and b13 = [z, y, x, x, [z, a]] = [b14, b26b27] are symmetric
in x and y. We read from the presentation that:

[b13, [z, a]] = [b13, b26b27] = 1;

[b13, x] = [b13, b18] = b4 = 1;

[b13, [z, x]] = [b13, [ā, x]] = [b13, b18b19] = b5b4 = 1.

As b13 is symmetric in x and y, it commutes with y and [z, y], so by Proposition 3.3
it is trivial. Hence [z, y, x, x] = b14 commutes with [z, a]. It clearly commutes with
each of x, y, [z, x] and [z, y], so by Proposition 3.3 it is trivial. Therefore 〈x, y, z〉
is nilpotent of class at most 4. Hence [z, x, [z, y]] commutes with each of x, y, [z, x]
and [z, y]. As [z, a] commutes with both [z, x] and [z, y] it follows that [z, x, [z, y]]
commutes with [z, a]. Proposition 3.3 implies that [z, x, [z, y]] = 1. �

Lemma 3.11 In the γ-group 〈x̄, ā, b̄, ȳ〉 = 〈xz, x, a, y〉 the following relations hold:

e1 = e2 = e3 = e4 = e5 = e6 = e7 = e8 = e10 = 1, e11 = e9.

Proof We have seen in the proof of Lemma 3.9 that e2 = e4 = e6 = e8 = 1. As
〈x, y, z〉 is nilpotent of class at most 4,

1 = [z, x, y, y]

= [xzx, y, y]

= [x̄ā, ȳ, ȳ]

= [[x̄, ȳ][x̄, ȳ, ā][ā, ȳ], y]

= [x̄, ȳ, ā, ȳ][ā,ȳ]

= [e14, e19, e18]e16

= [e13e10, e18]e16

= ee16
10

= e10.
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Also
1 = [e10, e15, e20] = [e3e1, e20] = e1

1 = [e10, e15] = e3

1 = [e10, e20] = e5.

We consider [z, x, a, [z, x, [x, y]]]. Both [z, x, a] and [z, x, [x, y]] commute with each
of z and x so [z, x, a, [z, x, [x, y]]] commutes with each. We compute in the γ-group
〈xz, x, a, y〉. Note that

[z, x, a, [z, x, [x, y]]] = [xz, a, [xz, [x, y]]] = [x̄, b̄, [x̄, [ā, ȳ]]] = [e15, e13] = e7.

From the presentation, e7 commutes with e20 = b̄ = a and e18 = ȳ = y. It follows
that e7 ∈ Z(G) = 1.

Finally, we consider [z, x, a, [z, x, y]]. By Lemma 3.10 we know that [z, x, y] com-
mutes with z and as [z, x, a] also commutes with z we see that [z, x, a, [z, x, y]]
commutes with z. From the γ-group presentation, we deduce that

[z, x, a, [z, x, y]] = [xz, a, [xzx, y]]

= [x̄, b̄, [x̄ā, ȳ]]

= [e15, e
e19
14 e16]

= [e15, e14e13e16]

= e9e11.

We also see that e9e11 commutes with e20 = b̄ = a, e18 = ȳ = y and e17 = x. Hence
e9e11 ∈ Z(G) = 1. �

Lemma 3.12 In the β-group 〈ā, b̄, c̄, x̄〉 = 〈a, x, xy, z〉 the following relations hold:

b1 = b2 = b3 = b4 = b5 = b6 = b7 = b8 = b9 = b10 = b11 = b12 = b16 = 1, b15 = b13.

Proof All equalities were established in the proof of Lemma 3.7 apart from b15 = b13.
In the proof of Lemma 3.11 we show that [z, x, a, [z, x, [x, y]]] = e7 = 1. We now view
it as an element of 〈a, x, xy, z〉. Our relations already imply that γ3(〈x̄〉〈ā,b̄,c̄〉) = 1.
This simplifies our computations:

1 = [z, x, a, [z, x, [x, y]]]

= [x̄x̄āx̄b̄x̄āb̄, x̄x̄b̄x̄b̄c̄x̄c̄]

= [x̄ā, x̄b̄c̄][x̄ā, x̄c̄][x̄āb̄, x̄b̄c̄][x̄āb̄, x̄c̄]

= b17b14b14b13b17b15

= b13b15.

This finishes the proof. �

Armed with the last two lemmas, we finish the proof of the reduction theorem
via a series of technical lemmas.

Lemma 3.13
(a) [z, a, x, y] = [z, x, a, y] = [z, x, y, a].
(b) [z, a, x, y, x] = [z, x, a, y, x] = [z, x, y, a, x] = [z, x, y, x, a].
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Proof (a) As [z, x, a] = [z, a, x], it suffices to show that [z, x, a, y] = [z, x, y, a].
Calculating in 〈x̄, ā, b̄, ȳ〉 = 〈xz, x, a, y〉, we deduce that

[z, x, y, a] = [x̄ā, ȳ, b̄] = [[x̄, ȳ][x̄, ȳ, ā][ā, ȳ], b̄] = e12,

and
[z, x, a, y] = [x̄, b̄, ȳ] = [e15, e18] = e12.

(b) By (a) the first three equalities hold, and thus it only remains to show that
[z, x, a, y, x] = [z, x, y, x, a]. Now [z, x, a, y, x] = [e12, e19] = e11. Also

[z, x, y, x, a] = [x̄ā, ȳ, ā, b̄]

= [[x̄, ȳ][x̄, ȳ, ā][ā, ȳ], ā, b̄]

= [x̄, ȳ, ā, b̄]

= [e14, e19, e20]

= [e13, e20]

= e11.

This finishes the proof. �

Lemma 3.14 [z, x, y, x, [z, a, y]] = [z, x, y, x, [z, a], y] = [z, a, x, y, x, [z, y]] = [z, a, x, y, x, z, y].

Proof Notice that [z, x, y, x] = [z, x, [y, x]] and [z, a, x, y, x] = [z, a, x, [y, x]]. Cal-
culating in 〈a, x, xy, z〉, we deduce that

[z, x, [y, x], [z, a]] = [z, a, x, [y, x], z] = b17b14.

Hence the 2nd and 4th terms are equal. The Hall-Witt identity implies that

1 = [z, a, y, [z, x, y, x]]y[y, [z, x, y, x], [z, a]][z,x,y,x][z, x, y, x, [z, a], y][z,a]

= [z, a, y, [z, x, y, x]][z, x, y, x, [z, a], y][z,a].

Thus
[z, x, y, x, [z, a, y]] = [z, x, y, x, [z, a], y][z,a]. (1)

Notice that [z, a, y] = [z, y, a]. Using the Hall-Witt identity again, we get

1 = [z, y, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y]][z,x,y,x][z, x, y, x, [z, y], a][z,y]

= [z, y, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y]],

where we use the fact that [z, x, y, x, a] commutes with [z, x, y, x], which can for
example be read from the presentation for 〈xz, x, a, y〉. Thus

[z, x, y, x, [z, y, a]] = [z, x, y, x, a, [z, y]]a. (2)

As [z, x, [y, x], [z, a]] = b17b14 commutes with a, and the same is true for y and
[z, a], we see from (1) that [z, x, y, x, [z, a, y]] commutes with a. As this element also
commutes with z, the conjugation by a and [z, a] in (1) and (2) can be dropped and
the claimed equalities hold. �

Lemma 3.15 [z, x, y, x, [z, a, y, x]] = [z, x, y, x, [z, a, y], x] = [z, x, y, x, [z, a], y, x] =
[z, a, x, y, x, [z, y, x]].
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Proof It follows from Lemma 3.14 that the 2nd and 3rd terms are equal. We use
the Hall-Witt identity to deduce that

1 = [z, a, y, x, [z, x, y, x]]x[x, [z, x, y, x], [z, a, y, x]][z,x,y,x][z, x, y, x, [z, a, y], x][z,a,y]

= [z, a, y, x, [z, x, y, x]][z, x, y, x, [z, a, y], x][z,a,y].

Thus
[z, x, y, x, [z, a, y, x]] = [z, x, y, x, [z, a, y], x][z,a,y]. (3)

We also deduce that

1 = [z, y, x, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y, x]][z,x,y,x][z, x, y, x, [z, y, x], a][z,y,x]

= [z, y, x, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y, x]],

since [a, [z, x, [y, x]]] commutes with [z, x, [y, x]] in 〈a, x, xy, z〉. Thus

[z, x, y, x, [z, y, x, a]] = [z, x, y, x, a, [z, y, x]]a. (4)

From the proof of Lemma 3.14, we see that [z, x, y, x, [z, a, y]] commutes with a. The
same is true for x and [z, a, y] and thus it follows from (3) that [z, x, y, x, [z, a, y, x]]
commutes with a. Calculating in the γ-group 〈x̄, ā, b̄, ȳ〉 = 〈yz, y, a, x〉, we see that

[z, y, a, x, [z, y]] = [x̄, b̄, ȳ, x̄ā] = e11e9 = 1.

Thus [z, x, y, x, [z, a, y, x]] commutes with [z, y] and hence also with [z, y, a] = [z, a, y].
Therefore the conjugation by a and [z, a, y] can be dropped and the lemma follows
from (3) and (4) and Lemma 3.14. �

Lemma 3.16 [z, x, y, x, [z, a, y, x, y]] = [z, x, y, x, [z, a, y, x], y] = [z, a, x, y, x, [z, y, x, y]].

Proof The Hall-Witt identity implies that

1 = [z, a, y, x, y, [z, x, y, x]]y[y, [z, x, y, x], [z, a, y, x]][z,x,y,x][z, x, y, x, [z, a, y, x], y][z,a,y,x]

= [z, a, y, x, y, [z, x, y, x]][z, x, y, x, [z, a, y, x], y][z,a,y,x],

so
[z, x, y, x, [z, a, y, x, y]] = [z, x, y, x, [z, a, y, x], y][z,a,y,x]. (5)

From the proof of Lemma 3.15, we see that [z, x, y, x, [z, a, y, x]] commutes with
[z, a, y] and clearly y commutes with [z, a, y]. It can be read from the presentation
for 〈yz, y, a, x〉 that [z, y, a, x] = [z, a, y, x] commutes with [z, a, y] = [z, y, a]. It
follows that the RHS, and thus LHS, of (5) commutes with [z, a, y]. Clearly the
LHS also commutes with x. Hence it commutes with [z, a, y, x] and

[z, x, y, x, [z, a, y, x, y]] = [z, x, y, x, [z, a, y, x], y]. (6)

Also

1 = [z, y, x, y, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y, x, y]][z,x,y,x][z, x, y, x, [z, y, x, y], a][z,y,x,y]

= [z, y, x, y, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y, x, y]].

Thus
[z, x, y, x, [z, y, x, y, a]] = [z, x, y, x, a, [z, y, x, y]]a.

By the proof of Lemma 3.15, the RHS of (6) commutes with a. Hence

[z, x, y, x, [z, y, x, y, a]] = [z, x, y, x, a, [z, y, x, y]].

This finishes the proof. �
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Lemma 3.17 [z, x, y, x, [z, a, y, x, y]] = [z, a, x, y, x, [z, y, x, y]] = 1.

Proof From Lemma 3.16,

u := [z, x, y, x, [z, a, y, x, y]] = [z, a, x, y, x, [z, y, x, y]].

Each of [z, x, y, x] and [z, a, y, x, y] commutes with each of x, y and [z, y]. That
[z, a, y, x, y] = [z, y, a, x, y] commutes with [z, y] can be read from the presentation
for 〈yz, y, a, x〉. Thus the LHS commutes with x, y, [z, y] and by symmetry the RHS
commutes with [z, x]. Thus u commutes with each of x, y, [z, x] and [z, y]. We now
show that u commutes with a:

ua = [z, a, x, y, x, [z, y, x, y]a]

= [z, a, x, y, x, [z, y, x, y][z, a, y, x, y]]

= [z, a, x, y, x, [z, a, y, x, y][z, y, x, y]] (working in 〈yz, y, a, x〉)
= [z, a, x, y, x, [z, y, x, y]][z, a, x, y, x, [z, a, y, x, y]][z,y,x,y]

= [z, a, x, y, x, [z, y, x, y]]

= u.

In the 3rd last identity we use the fact that 〈az, x, y〉 is nilpotent of class at most 4.

We prove the following claim: if v commutes with each of a, x, y, [z, x] and [z, y],
then the same is true for [v, [z, a]]. To see this, notice first that as [z, a] commutes
with [z, x],[z, y] and a, the same is true for [v, [z, a]]. It follows that v commutes
with [z, a, x] = [z, x, a] and thus

[v, [z, a]]x = [v, [z, a][z, a, x]] = [v, [z, a, x][z, a]] = [v, [z, a]][v, [z, a, x]][z,a] = [v, [z, a]]

and [v, [z, a]] commutes with x. Likewise [v, [z, a]] commutes with y. Thus [v, [z, a]]
commutes with each of a, x, y, [z, x] and [z, y].

Next, notice that 〈[z, a]u, [z, a]〉 ≤ 〈a, z, zu〉 and thus 〈[z, a]u, [z, a]〉 is nilpotent,
as every sandwich group of rank 3 is nilpotent. Using this fact, let m be the small-
est positive integer such that [u,m [z, a]] = 1. We claim that m = 1. Notice that
[u,m−1 [z, a]] commutes with each of x, y, [z, a], [z, x] and [z, y]. Proposition 3.3 im-
plies that [u,m−1 [z, a]] = 1. Hence m = 1 and u = 1. �

Lemma 3.18 v := [z, x, y, x, [z, a, y, x]] = 1.

Proof By Lemmas 3.17 and 3.16 we know that v commutes with y. It also commutes
with x (as [az, y, x, x] = 1). Observe that [z, x, y, x, a] commutes with [z, x, y, x] in
〈xz, x, a, y〉 and [z, x, y, x, a] = [z, a, x, y, x] commutes with [z, a, y, x] in 〈az, x, y〉.
Hence

va = [[z, x, y, x]a, [z, a, y, x]] = [[z, x, y, x, a][z, x, y, x], [z, a, y, x]] = [z, x, y, x, [z, a, y, x]] = v,

so v commutes with a. It remains to show that v commutes with z. Lemmas 3.14
and 3.15 imply that

v = [z, x, y, x, [z, a, y], x] = [z, a, x, y, x, [z, y], x].
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We read from the presentation for 〈xz, x, a, y〉 that

[z, a, x, y, x] = [z, x, a, y, x]

commutes with [z, x] and by Lemma 3.10 this is also true for [z, y]. Hence

[z, a, x, y, x, [z, y]] = [z, x, y, x, [z, a, y]]

commutes with [z, x]. Clearly [z, x, y, x] and [z, a, y] commute with z. Thus

vz = [z, x, y, x, [z, a, y], x[x, z]] = [z, x, y, x, [z, a, y], [z, x]x] = v[z, x, y, x, [z, a, y], [z, x]]x = v.

Thus v ∈ Z(G) = 1. �

Lemma 3.19 v := [z, x, y, x, [z, a, y]] = 1.

Proof Lemmas 3.15 and 3.18 imply that v commutes with x. It also commutes with
y and z. By the proof of Lemma 3.14, it commutes with a. Thus v ∈ Z(G) = 1. �

Lemma 3.20 v := [z, x, y, x, [z, a]] = 1.

Proof In 〈a, x, xy, z〉 we read that v = b17b14 commutes with a, x and z. From
Lemma 3.19 and 3.14, it commutes also with y. Thus v ∈ Z(G) = 1. �

Proposition 3.21 G is nilpotent.

Proof As 〈x, y, z〉 is nilpotent of class at most 4, it follows from Lemma 3.20 and
Proposition 3.3 that [z, x, y, x] = 1. By symmetry in x and y, we deduce that
[z, y, x, y] = 1. We saw earlier that [z, x, [z, y]] = 1. It follows that 〈x, y, z〉 is
nilpotent of class at most 3. In particular, calculating in 〈a, x, xy, z〉, we see that

1 = [z, x, [y, x], [z, a]] = b17b14.

Hence b17 = b14. From the presentation for a β-group, we see that b14 commutes
with b28. Hence 1 = [b17, b28] = b15. But b15 = b13 so b13 = 1. Also b17 commutes
with a = b26 and z = b18, and x = b27. Recall that b17 = [z, za[x,y]], so it is symmetric
in x and y; thus it commutes with y. Hence b17 ∈ Z(G) = {1}.

We now consider [x, y, z]. Calculating in 〈a, x, xy, z〉, we see that [x, y, z, [z, a]] =
b17 = 1. As 〈x, y, z〉 is nilpotent of class at most 3, Proposition 3.3 implies that
[x, y, z] = 1. But now [x, y] commutes with a, x, y, z and thus [x, y] = 1. Hence G is
a β-group and thus nilpotent. �

As a corollary to Theorem 3.2, we deduce the following.

Theorem 3.22 If G = 〈a, x, y, z〉 is a δ-group, then 〈z, zx, zy, a〉 is nilpotent.

Proof Observe that 〈a1, x1, y1, z1〉 = 〈z, zx, zy, a〉 is also a δ-group. Now

[z1, a1, x1, z1] = [a, z, zx, a] = [azz
x

, a] = [z, x, a, a] = [xz, a, a] = 1.

Similarly we see that [z1, a1, y1, z1] = 1. It follows from Theorem 3.2 that 〈a1, x1, y1, z1〉
is nilpotent. �.
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3.1.4 Sandwich groups whose commutativity graph has 1 edge

Let G be the largest sandwich group generated by 4 involutions where precisely
one pair commutes. We used the Magma implementation of the nilpotent quotient
algorithm to determine that the largest nilpotent quotient of G has order 2235 and
class 11.

3.2 Rank 5 sandwich groups generated by involutions

Let G be a residually nilpotent sandwich group of rank 5 generated by involutions.
It remains an open question whether G is finite. As a step towards its resolution,
we report the following.

Theorem 3.23 A residually nilpotent sandwich group of rank 5 generated by invo-
lutions is finite if there are least three commuting pairs among its generators.

We consider all 10 commutativity graphs for such a group G that have 3 or 4 edges.
In Table 1 we list the graphs and upper bounds for the class and orders of the largest
2-quotient of each group.

We proved these claims computationally by studying each of the 10 groups using
our implementation in Magma of the p-quotient algorithm [20]. Let Q be the group
generated by the involutions a, b, c, d, e which satisfy one of these commutativity
graphs. It required too much CPU time to impose the sandwich condition directly.
Instead, we added up to 2500 random instances of this condition as explicit relations
to the presentation for Q, and constructed its largest finite 2-quotient. The most
expensive of these computations took 7 days of CPU time using Magma 2.27-3 on
a computer with a 2.6 GHz processor. Computational evidence suggests that the
largest 2-quotient of G and Q coincide.

Commutativity graph Class bound log2 |G|
a− b, a− c, a− d, a− e 13 777
a− b− c− d− e 17 2643
a− b− c− d− a 16 2831
a− b− c− a, d− e 16 3145
a− b− c− a− d 16 3324
a− b, a− c, a− d− e 16 2636
a− b− c− d 17 10354
a− b− d− a 16 12598
a− b, a− c, a− d 16 10906
a− b− c, d− e 16 9987

Table 1: Class and order bounds for the 2-quotients

4 Global nilpotence question for 〈a〉G in locally

finite 2-groups

In this section we give an example from [22] of a locally finite 2-group G with a left
3-Engel element a such that 〈a〉G is not nilpotent. The construction is based on a
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Lie algebra given in [25]. This result was generalised in [8] to an infinite family of
examples.

4.1 The Lie algebra

Let F be the field of order 2 and consider the 4-dimensional vector space V =
Fx+ Fu+ Fv + Fw. We equip L with a binary product where

u · v = u, v · w = w, w · u = v, u · x = 0, v · x = 0, w · x = u.

We then extend the product linearly on V . Observe that V is a Lie algebra with a
trivial center and W = Fu+ Fv + Fw is a simple ideal.

Let E = 〈ad(x), ad(u), ad(v), ad(w)〉 ≤ End(V ) be the associative enveloping al-
gebra of V . Now E is 12-dimensional with basis

e1 = ad(w), e2 = ad(w)2, e3 = ad(w)3, e4 = ad(v),
e5 = ad(v)ad(w), e6 = ad(v)ad(w)2, e7 = ad(u), e8 = ad(u)ad(w),
e9 = ad(u)ad(w)2, e10 = ad(x)ad(v), e11 = ad(x)ad(w), e12 = ad(x)ad(w)2.

We construct a certain locally nilpotent Lie algebra over F of countably infinite
dimension. For ease of notation, we introduce the following modified union of subsets
of N:

A tB =

{
A ∪B, if A ∩B = ∅
∅ otherwise.

For each non-empty subset A of N, let WA be a copy of W . That is, WA = {zA :
z ∈ W} with addition zA + tA = (z + t)A. We take the direct sum

W ∗ =
⊕
∅6=A⊆N

WA.

We view W ∗ as a Lie algebra by defining a multiplication

zA · tB = (zt)AtB,

for zA ∈ WA and tB ∈ WB, and then extend this product linearly on W ∗. The
interpretation here is that z∅ = 0. Finally, we extend this to a semidirect product
with Fx

V ∗ = W ∗ ⊕ Fx

induced from the action zA · x = (zx)A.

Notice that V ∗ has basis

{x} ∪ {uA, vA, wA : ∅ 6= A ⊆ N}

and
uA · uB = vA · vB = wA · wB = 0,

uA · x = 0, vA · x = 0, wA · x = uA

and
uA · vB = uAtB, vA · wB = wAtB, wA · uB = vAtB.
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Every finitely generated subalgebra of V ∗ is contained in some

S = 〈x, uA1 , . . . , uAr , vB1 , . . . , vBs , wC1 , . . . , wCt〉.

Since zxx = 0 for all z ∈ V ∗, it follows that S is nilpotent of class at most 2(r+s+t).
Hence V ∗ is locally nilpotent.

We now construct a group G ≤ GL(V ∗) containing a := 1 + ad(x) where a is a
left 3-Engel element of G but 〈a〉G is not nilpotent. Let y be one of x, uA, vA, wA.
Observe that ad(y)2 = 0 so

(1 + ad(y))2 = 1 + 2ad(y) + ad(y)2 = 1.

Thus 1 + ad(y) is an involution in GL(V ∗). The subgroups

U = 〈1 + ad(uA) : A ⊆ N〉, V = 〈1 + ad(vA) : A ⊆ N〉, W = 〈1 + ad(wA) : A ⊆ N〉

are elementary abelian of countably infinite rank. Analysis of G := 〈a,U ,V ,W〉
establishes the following.

Theorem 4.1 The element a is a left 3-Engel element of G. However 〈a〉G is not
nilpotent.

5 Global nilpotence question for 〈x〉G in locally

finite p-groups, for odd p

In Section 4, following [8, 22], we gave an example of a locally finite 2-group G with
a left 3-Engel element a such that 〈a〉G is not nilpotent. We now provide such an
example for locally finite p-groups where p is any odd prime [9]. The odd case is
more involved and the construction quite different from the p = 2 case. We first
describe the pair (G, x) that will provide our example and we show directly that
x is a left 3-Engel element of G. The description of G is not as transparent as in
Section 4. To show that 〈x〉G is not nilpotent requires more work. We construct first
a pair (L, z) where L is a Lie algebra over Fp, the field of p elements, and Id(z) is
not nilpotent. The pair (L, z) can be seen as the Lie algebra analogue of our group
construction. We then build a group H within End(L) containing 1 + ad(z) where
(H, 1+ad(z)) is a homomorphic image of (G, x). Since (1+ad(z))H is not nilpotent,
〈x〉G is not nilpotent.

5.1 The group G and Lie algebra L

Let x, a1, a2, . . . be an infinite list of group variables. Recall that a simple commu-
tator in x, a1, a2, . . . is a group word defined recursively as follows: x, a1, a2, . . . are
simple commutators; if u and v are simple commutators, then [u, v] is a simple com-
mutator. A simple commutator s has multi-weight (m, e1, e2, . . .) in x, a1, a2, . . ., if
x occurs m times and ai occurs ei times in s. The weight of s is m+ e1 + e2 + · · · .
The following definition is critical.

Definition. Let s be a simple commutator of multi-weight (m, e1, e2, . . .) in x, a1, a2, . . ..
The type of s is t(s) = e1 + e2 + . . .− 2m.
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Remark. If u, v are simple commutators in x, a1, a2, . . ., then t([u, v]) = t(u) + t(v).
In particular, t([u, aj]) = t(u) + 1 and t([u, x]) = t(u)− 2.

For a fixed odd prime p, let G = 〈x, a1, a2, . . . 〉 be the largest group satisfying
the following conditions:

(1) 〈ai〉G is abelian for all i ≥ 1;

(2) 〈x〉G is metabelian;

(3) xp = ap1 = ap2 = · · · = 1;

(4) if s 6= x is a simple commutator in x, a1, a2, . . . and |t(s)| ≥ 2, then s = 1.

It is not difficult to see that G is a locally finite p-group. From (4), it is clear that
s = 1 unless it is of the form [x, aj1 , aj2 , aj3 , x, aj4 , aj5 , . . . , x, aj2m , aj2m+1 ].

In [9] it was proved directly that x is a left 3-Engel element of G. To show that 〈x〉G
is not nilpotent, it suffices to show that the special commutators above, which are
not trivial by (4), are non-trivial. The structure of G is not transparent enough for
us to prove this directly. Instead we look at the analogous Lie algebra setting.

We first consider the largest Lie algebra F = 〈z, c1, c2, . . . 〉 over Fp such that:

1. Id(ci) is abelian for i = 1, 2, . . . ;

2. Id(z) is metabelian.

Let B be the following basis for IdF (z):

[[z, cI1 ], [z, cI2 ], . . . , [z, cIm ]]

where m ≥ 1, I1, . . . , Im are pairwise disjoint and [z, cI1 ] > [z, cI2 ] ≤ · · · ≤ [z, cIm ].

We define the type of a Lie commutator by analogy with that of a group commutator.

Definition. Let s be a simple commutator of multi-weight (m, e1, . . . , er) in z, c1, . . . , cr.
The type of s is t(s) = e1 + · · ·+ er − 2m.

Remark. If c and d are simple commutators, then t([c, d]) = t(c) + t(d). In
particular, t([c, x]) = t(c)− 2 and t([c, a1]) = t(c) + 1.

We construct a Lie algebra L that is a quotient of F by a certain multi-homogeneous
ideal J . Since F is multi-graded, L is also multi-graded. Now J is the smallest ideal
containing the following:

3. c ∈ B is in J if c 6= z is a commutator of type having absolute value greater
than 1;

4. c ∈ B is in J if one of I1, I3, . . . , Im has size greater than 2.
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By careful analysis, we determine the structure of J and prove that IdL(z) is not
nilpotent.

From L, we obtain a group H = 〈1 + ad(z), 1 + ad(c1), 1 + ad(c2), . . . 〉. We de-
duce that H is a homomorphic image of G by showing that relations (1)–(4) of G
hold in H where x, a1, a2, . . . are replaced by 1 + ad(z), 1 + ad(c1), 1 + ad(c2), . . ..
Finally, we show that 〈1 + ad(z)〉H is non-nilpotent, so 〈x〉G is non-nilpotent.

Theorem 5.1 The element x is a left 3-Engel element of G. However 〈x〉G is not
nilpotent.
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