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Abstract. We give an infinite family of examples that generalise the con-
struction given in [10] of a locally finite 2-group G containing a left 3-Engel

element x where 〈x〉G, the normal closure of x in G, is not nilpotent. The
construction is based on a family of Lie algebras that are of interest in their
own right and make use of a classical theorem of Lucas, regarding when

(
m
n

)
is even.

1. Introduction

Let G be a group. An element a ∈ G is a left Engel element in G, if for each
x ∈ G there exists a non-negative integer n(x) such that

[[[x, a], a], . . . , a]︸ ︷︷ ︸
n(x)

= 1.

If n(x) is bounded above by n then we say that a is a left n-Engel element in G.
Throughout this paper we will assume that, when dealing with commutators or
Lie products, these are left normed. Recall that the Hirsch-Plotkin radical of a
group G is the subgroup generated by all the normal locally nilpotent subgroups
of G and that this is also locally nilpotent. It is straightforward to see that any
element of the Hirsch-Plotkin radical HP (G) of G is a left Engel element and
the converse is known to be true for some classes of groups, including solvable
groups and finite groups (more generally groups satisfying the maximal condi-
tion on subgroups) [1,3]. The converse is however not true in general and this is
the case even for bounded left Engel elements. In fact whereas one sees readily
that a left 2-Engel element is always in the Hirsch-Plotkin radical this is still an
open question for left 3-Engel elements. Recently there has been a breakthrough
and in [7] it is shown that any left 3-Engel element of odd order is contained in
HP (G). From [12] one also knows that in order to generalise this to left 3-Engel
elements of any finite order it suffices to deal with elements of order 2.

It was observed by William Burnside [2] that every element in a group of expo-
nent 3 is a left 2-Engel element and so the fact that every left 2-Engel element
lies in the Hirsch-Plotkin radical can be seen as the underlying reason why
groups of exponent 3 are locally finite. For groups of 2-power exponent there
is a close link with left Engel elements. If G is a group of exponent 2n then it
is not difficult to see that any element a in G of order 2 is a left (n + 1)-Engel
element of G (see the introduction of [14] for details). For sufficiently large n
we know that the variety of groups of exponent 2n is not locally finite [6, 8].
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As a result one can see (for example in [14]) that it follows that for sufficiently
large n we do not have in general that a left n-Engel element is contained in
the Hirsch-Plotkin radical. Using the fact that groups of exponent 4 are locally
finite [11], one can also see that if all left 4-Engel elements of a group G of
exponent 8 are in HP (G) then G is locally finite.

Swapping the role of a and x in the definition of a left Engel element we get
the notion of a right Engel element. Thus an element a ∈ G is a right Engel
element, if for each x ∈ G there exists a non-negative integer n(x) such that

[[[a, x], x], . . . , x]︸ ︷︷ ︸
n(x)

= 1.

If n(x) is bounded above by n, we say that a is a right n-Engel element. By a
classical result of Heineken [5] one knows that if a is a right n-Engel element in
G then a−1 is a left (n+ 1)-Engel element.

In [9] M. Newell proved that if a is a right 3-Engel element in G then a ∈ HP (G)
and in fact he proved the stronger result that 〈a〉G is nilpotent of class at most 3.
The natural question arises whether the analogous result holds for left 3-Engel
elements. In [10] it is shown that this is not the case by giving an example
of a locally finite 2-group with a left 3-Engel element a such that 〈a〉G is not
nilpotent. Moreover in [4] an example is given, for each odd prime p, of a locally
finite p-group containing a left 3-Engel element x where 〈x〉G is not nilpotent.

In this paper we extend the example above, of a 2-group, to an infinite family
of examples. The construction will be based on a family of Lie algebras that
generalize the Lie algebra given in [13]. These algebras are of interest in their
own right and will make use of a classical theorem of Lucas. Before stating
Lucas’s Theorem we need some notation.

Let p be a prime and consider non-negative integers m and n written in base p

m = m0 +m1p+ · · ·+mk−1p
k−1 +mkp

k

n = n0 + n1p+ · · ·+ nk−1p
p−1 + nkp

k,

where 0 6 m0, . . . ,mk, n0, . . . , nk 6 p − 1. We introduce a partial order 6p,
where n 6p m if and only if ni 6 mi, for 0 6 i 6 k.

Theorem 1.1 (Lucas’ Theorem). The binomial coefficient
(
m
n

)
is divisible by p

if and only if n 
p m.

Remark. Notice that when p = 2 we get that the binomial coefficient
(
m
n

)
is

odd if and only if n 62 m.

2. The Lie Algebra L

In this section we construct a family of Lie algebras that extend the example
given in [13]. The construction makes an interesting use of Lucas’ Theorem.
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Let F be the field of order 2 and let n = 2m − 2, for m > 2. Consider the
(n+ 2)-dimensional vector space L = Fv(0) +Fv(1) + · · ·+Fv(n−1) +Fw+Fx.
We equip L with a binary product where

v(i) · v(j) =

(
j + 1

n− i

)
v(i⊕ j)

v(i) · w = w · v(i) = v(i+ 1), i = 0, 1, . . . , n− 2

v(n− 1) · w = w · v(n− 1) = w

v(i) · x = x · v(i) = 0

w · x = x · w = v(0),

such that i ⊕ j ≡ i + j (mod n − 1) and i ⊕ j ∈ {0, . . . , n − 2}, and where
ww = xx = 0. We then extend the product linearly on L. The next theorem is
our first main result.

Theorem 2.1. L is a Lie algebra over F.

Proof. Let 0 6 i, j, k 6 n− 1 and suppose that

i+ 1 = a0 + 2a1 + · · ·+ 2m−1am−1

j + 1 = b0 + 2b1 + . . .+ 2m−1bm−1

k + 1 = c0 + 2c1 + · · ·+ 2m−1cm−1

n+ 1− (i+ 1) = (1− a0) + 2(1− a1) + · · ·+ 2m−1(1− am−1)
n+ 1− (j + 1) = (1− b0) + 2(1− b1) + · · ·+ 2m−1(1− bm−1)
n+ 1− (k + 1) = (1− c0) + 2(1− c1) + · · ·+ 2m−1(1− cm−1),

where 0 6 ai, bi, ci 6 1 for 0 6 i 6 m− 1. In order to show that the product is
alternating, it only remains to see that v(i) · v(i) = 0 and v(i) · v(j) = v(j) · v(i)
(recall that the characteristic is 2). Firstly

v(i) · v(i) =

(
i+ 1

n+ 1− (i+ 1)

)
v(i⊕ i).

In order for the product to be zero we know by Lucas’ Theorem that we need
n+1−(i+1) 
2 i+1. Assume for contradiction that (n+1)−(i+1) 62 i+1. Then
1− ai 6 ai, for all 0 6 i 6 m− 1 which implies that a0 = a1 = · · · = am−1 = 1.
This gives i+ 1 = 1 + 2 + · · ·+ 2m−1 = n+ 1 that contradicts i 6 n− 1.

Now, for v(j) · v(i) = v(i) · v(j), we need(
i+ 1
n− j

)
=

(
j + 1
n− i

)
.

But,

(
i+ 1

n+ 1− (j + 1)

)
is odd ⇐⇒ 1− bi 6 ai, for all 0 6 i 6 m− 1

⇐⇒ 1− ai 6 bi, for all 0 6 i 6 m− 1

⇐⇒
(

j + 1
n+ 1− (i+ 1)

)
is odd.
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Having established that the product is alternating we turn to the Jacobi iden-
tity . If we have basis elements e, f then, as e · e = 0 and e · f = f · e, we get
(e · e) · f + (e · f) · e + (f · e) · e = 2(e · f) · e = 0. Therefore, we only need to
deal with the cases when the three basis elements are different. We will divide
our anaysis into few cases. Notice first, that any Jacobi relation involving one
occurrence of x and two v(i)’s, for 0 6 i 6 n − 1, is clearly 0. There is one
remaining type of a Jacobi relation that involves x. This is the one for a triple
(x,w, v(i)), where 0 ≤ i ≤ n− 1.

First, let 0 6 i 6 n − 2. We have, v(i)wx + wxv(i) + xv(i)w = v(i + 1)x +

v(0)v(i) =
(
i+1
n

)
v(i) = 0, since i + 1 6 n − 1 < n and thus n 
2 i + 1. If

i = n− 1, then v(n− 1)wx+ wxv(n− 1) + xv(n− 1)w = wx+ v(0)v(n− 1) =
v(0) +

(
n
n

)
v(0) = 0.

Let us next consider triples of the type (w, v(i), v(j)) where 0 6 i, j 6 n− 1.

Case 1: Let i = n− 1 and 0 6 j 6 n− 2. Then,

wv(n− 1)v(j) + v(n− 1)v(j)w + v(j)wv(n− 1)

= wv(j) +

(
j + 1

1

)
v(j)w + v(j + 1)v(n− 1)

= v(j + 1) + (j + 1)v(j + 1) +

(
j + 2

1

)
v(j + 1)

= 2(j + 2)v(j + 1) = 0.

Case 2: Let 0 6 i < j 6 n− 2. Then,

wv(i)v(j) + v(i)v(j)w + v(j)wv(i)

= v(i+ 1)v(j) +

(
j + 1

n− i

)
v(i⊕ j)w + v(j + 1)v(i)

=

(
j + 1

n− i− 1

)
v(i⊕ (j + 1)) +

(
j + 1

n− i

)
v(i⊕ (j + 1)) + v(i)v(j + 1)

=

(
j + 1

n− i− 1

)
v(i⊕ (j + 1)) +

(
j + 1

n− i

)
v(i⊕ (j + 1)) +

(
j + 2

n− i

)
v(i⊕ (j + 1))

= 2

(
j + 2

n− i

)
v(i⊕ (j + 1)) = 0,

where the last equality follows from Pascal’s Rule.

Finally, consider v(i)v(j)v(k) + v(j)v(k)v(i) + v(k)v(i)v(j) = α1v(i ⊕ j ⊕ k) +
α2v(i⊕j⊕k)+α3v(i⊕j⊕k), for 0 6 i, j, k 6 n−1. Clearly, if all coefficients αi
are even then the Jacobi identity holds. So, assume without loss of generality
that α1 is odd. Then, as v(i)v(j) 6= 0 we get 1 6 ai + bi, for i = 0, . . . ,m − 1.
Then, (i + 1) + (j + 1) = (a0 + b0) + 2(a1 + b1) + · · · + 2m−1(am−1 + bm−1) >
1 + 2 + · · ·+ 2m−1 = n+ 1, so i+ j > n− 1.
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Case 1: Consider the case where i+j = n−1. Then, v(i)v(j)v(k) = v(0)v(k) =(
k+1
n

)
v(k⊕0). Notice that

(
k+1
n

)
is odd if and only if k = n−1. Hence k = n−1

and v(i)v(j)v(k) = v(0⊕ (n− 1)) = v(0). Thus,

v(i)v(j)v(k) + v(j)v(k)v(i) + v(k)v(i)v(j)

= v(0) + (j + 1)v(j)v(i) + (i+ 1)v(i)v(j)

= v(0) + (j + 1)v(0) + (i+ 1)v(0)

= (n+ 2)v(0) = 2mv(0) = 0,

as required.

Case 2: Consider the case where i+ j > n. We want to show that if α1 is odd
then exactly one of α2, α3 is odd. We shall consider each term separately. We
have

v(i)v(j)v(k) =

(
j + 1

n+ 1− (i+ 1)

)
v(i⊕ j)v(k)

=

(
j + 1

n+ 1− (i+ 1)

)(
k + 1

n+ 1− (i+ j − n+ 2)

)
v(i⊕ j ⊕ k), since i+ j > n

=

(
j + 1

n+ 1− (i+ 1)

)(
k + 1

2(n+ 1)− 1− (i+ 1 + j + 1)

)
v(i⊕ j ⊕ k).

We assumed that α1 must be odd, hence we need both binomial coefficients to
be odd. We have

( j+1
n+1−(i+1)

)
is odd if and only if 1 6 ai + bi, for all i. Let t

be the smallest index such that at + bt = 1. Therefore, a0 = · · · = at−1 = b0 =
· · · = bt−1 = 1.

In order for
(

k+1
2(n+1)−1−(i+1+j+1)

)
to be odd we must have that 2(n + 1) − 1 −

(i+ 1 + j + 1) 62 k + 1. So,

2(n+ 1)− 1− (i+ 1 + j + 1)

= 2(1 + 2 + 22 + · · ·+ 2m−1)− 1− ((a0 + b0) + 2(a1 + b1) + · · ·+ 2t +

· · ·+ 2m−1(am−1 + bm−1))

= 2t − 1 + 2t+1(2− at+1 − bt+1) + · · ·+ 2m−1(2− am−1 − bm−1)
= 1 + 2 + 22 + · · ·+ 2t−1 + 2t+1(2− at+1 − bt+1) + · · ·

+2m−1(2− am−1 − bm−1)
62 c0 + 2c1 + · · ·+ 2t−1ct−1 + 2tct + 2t+1ct+1 + · · ·+ 2m−1cm−1,

hence, c0 = c1 = · · · = ct−1 = 1 and 2 6 ai+ bi+ ci, for all i > t+1. Notice that
it follows in particular that 1 ≤ ai + ci, bi + ci for all i except possibly i = t.

Notice that the assumption 2(n + 1) − 1 − (i + 1 + j + 1) 62 k + 1 implies
that 2(n+ 1)− 1− (i+ 1 + j + 1) 6 k + 1. That is 2(n− 1) 6 i+ j + k. Then
we must have that j + k > n− 1 and i+ k > n− 1. If there is an equality, for
example j + k = n − 1, then, by symmetry, we have already shown in Case 1
that the Jacobi identity holds. So, we may assume that j+ k, i+ k > n. Hence,
similarly as above, v(j)v(k)v(i) =

(
k+1

n+1−(j+1)

)(
i+1

2(n+1)−1−(k+1+j+1)

)
v(i ⊕ j ⊕ k)

and v(k)v(i)v(j) =
(

i+1
n+1−(k+1)

)( j+1
2(n+1)−1−(k+1+i+1)

)
v(i⊕ j ⊕ k).

We have two cases:
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(a) ct = 0: Assume without loss of generality that at = 0 and bt = 1. Then,

at+ ct = 0 � 1 and bt+ ct = 1, hence
(

k+1
n+1−(j+1)

)
is odd and

(
i+1

n+1−(k+1)

)
is even. Notice that this implies that the smallest index s such that
bs + cs = 1 is s = t. Hence,

(
i+1

2(n+1)−1−(j+1+k+1)

)
is odd, since 2 >

ai + bi + ci, for all i > t + 1 and a0 = · · · = at−1 = 1. This shows that
the Jacobi identity holds.

(b) ct = 1: Assume without loss of generality that at = 0 and bt = 1. Then,

both at+ct, bt+ct > 1, hence both binomials coefficients
(

k+1
n+1−(j+1)

)
and(

i+1
n+1−(k+1)

)
are odd. Now, similarly as in case (a), if s is the smallest

index such that as + cs = 1, then s = t and so
( j+1
2(n+1)−1−(i+1+k+1)

)
is

odd. It only remains to show that
(

i+1
2(n+1)−1−(j+1+k+1)

)
is even. But,

bt+ct = 2, so the smallest index l such that bl+cl = 1 is l > t+1. Then,
in order for

(
i+1

2(n+1)−1−(j+1+k+1)

)
to be odd we require a0 = a1 = · · · =

at = 1, which contradicts our assumption, hence
(

i+1
2(n+1)−1−(j+1+k+1)

)
must be even and the Jacobi identity holds.

�

Lemma 2.2. The Lie algebra L has trivial center.

Proof. Take an element of L say l = λ−1x+ λ0v(0) + · · ·+ λn−1v(n− 1) + µw,
where λ−1, λ0, . . . , λn−1, µ ∈ F, that lies in the center of L. Multiplying by
x gives µv(0) = 0, therefore µ = 0. Then, multiplying by w gives λ−1v(0) +
λ0v(1)+· · ·+λn−2v(n−1)+λn−1w = 0 and therefore λ−1 = · · · = λn−1 = 0. �

Lemma 2.3. W = Fv(0) + · · ·+ Fv(n− 1) + Fw is a simple ideal of L.

Proof. Consider the ideal I generated by y, where y = λ0v(0) + · · ·+λn−1v(n−
1) + µw and λ0, . . . , λn−1, µ ∈ F are not all zero. We first show that w ∈ I. If
λ0 = · · · = λn−1 = 0, this is clear. If not, take the smallest i such that λi 6= 0,
where 0 6 i 6 n− 1. Taking y and mulitiplying n− i times by w gives us λiw
that implies that w ∈ I. Having established that w ∈ I we can multiply it by
x, v(0), ..., v(n− 2) to see that v(0), . . . , v(n− 1) ∈ I. Hence I = W . �

Let E = 〈ad(x), ad(v(0)), ad(v(1)), . . . , ad(v(n − 1)), ad(w)〉 6 End(L). As
Z(L) is trivial, E is the associative enveloping algebra of L.

Lemma 2.4. The associative enveloping algebra E is finite-dimensional.

Proof. This follows from the fact that dim(L) = n + 2, hence dim (End(L)) =
(n+ 2)2, thus E must be of finite dimension. �

We will use L to construct a locally nilpotent Lie algebra over F of countably
infinite dimension. This will then help us to construct a locally finite group G
with a left 3-Engel element y where 〈y〉G is not nilpotent. We now introduce a
notation that was used in [13] of modified unions of subsets of N. We let

A tB =

{
A ∪B, if A ∩B = ∅
∅, otherwise
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For each non-empty subset A of N we let WA be a copy of the vector space
W = Fv(0) + · · · + Fv(n − 1) + Fw, that is WA = {zA : z ∈ W} with addition
zA + tA = (z + t)A. We then take the direct sum of these

W ∗ =
⊕
∅6=A⊆N

WA

that we turn into a Lie algebra with multiplication

zA · tB = (z · t)AtB
when zA ∈ WA and tB ∈ WB and extend linearly on W ∗. The interpretation
here is that z∅ = 0. Finally, we extend this to the semidirect product with Fx

L∗ = W ∗ ⊕ Fx
induced from the action zA · x = (z · x)A. Notice that L∗ has basis

{x} ∪ {v(0)A, . . . , v(n− 1)A, wA : ∅ 6= A ⊆ N}
and that

v(i)A · v(i)B = wA · wB = 0,

v(i)A · x = 0, wA · x = v(0)A,

for all 0 6 i, j 6 n− 1 and

v(i)A · v(j)B =

(
j + 1

n− i

)
v(i⊕ j)AtB, for all 0 6 i, j 6 n− 1,

v(i)A · wB = v(i+ 1)AtB, for all 0 6 i, j 6 n− 2

and v(n− 1)A · wB = wAtB.

Lemma 2.5. L∗ is locally nilpotent.

Proof. Notice that any finitely generated subalgebra of L∗ is contained in some

S = 〈x, v(0)A0
1
, . . . , v(0)A0

r
, . . . , v(n− 1)An−1

1
, . . . , v(n− 1)An−1

t
, wB1 , . . . , wBl

〉.

Thus it suffices to show that S is nilpotent. Observe first that any Lie product
with a repeated entry of v(i)A or wB is trivial and thus a non-trivial Lie product
of the generators of S can include in total at most r+s+· · ·+t+l such elements.
As v(i)A · x = (wB · x) · x = 0 we have (z · x) · x = 0 for all z ∈ L∗. Thus we see
that S is nilpotent of class at most 2(r + · · · + t + l). Therefore, L∗ is locally
nilpotent. �

3. The Group G

For an element y ∈ L∗ we denote by ad(y) the linear operator on L∗ induced
by multiplication by y on the right. In this section we find a group G inside
GL(L∗) containing 1 + ad(x), where 1 + ad(x) is a left 3-Engel element in G,

but where 〈1 + ad(x)〉G is not nilpotent. The next Lemma is a preparation for
this.

Lemma 3.1. The adjoint linear operator ad(x) on L∗ satisfies:
(a) ad(x)2 = 0.
(b) ad(x)ad(y)ad(x) = 0, for all y ∈ L∗.
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Proof. (a) This follows from our earlier observation that (z · x) · x = 0 for all
z ∈ L∗.
(b) Follows from wA · x · v(i)B · x = v(0)A · v(i)B · x = 0, wA · x · wB · x =
v(0)A · wB · x = v(1)AtB · x = 0. �

Now let y be any of the generators x, v(i)A, wA, for 0 6 i 6 n − 1. Since,
ad(y)2 = 0 for all y it follows that

(1 + ad(y))2 = 1 + 2ad(y) + ad(y)2 = 1.

Thus, 1 + ad(y) is an involution in GL(L∗). Notice also that the following are
elementary abelian 2-groups of countably infinite rank.

V0 = 〈1 + ad(v(0)A) : A ⊆ N〉,
V1 = 〈1 + ad(v(1)A) : A ⊆ N〉,

...

Vn−1 = 〈1 + ad(v(n− 1)A) : A ⊆ N〉,
W = 〈1 + ad(wA) : A ⊆ N〉

We will be working with the group G = 〈1 + ad(x),V0,V1, . . . ,Vn−1,W〉.

Lemma 3.2. The following commutator relations hold in G:
(a) [1 + ad(wA), 1 + ad(x)] = 1 + ad(v(0)A).
(b) [1 + ad(v(i)A), 1 + ad(x)] = 1.

(c) [1 + ad(v(i)A), 1 + ad(v(j)B)] = 1 +
(
j+1
n−i
)
ad(v(i⊕ j)AtB).

(d) [1 + ad(v(i)A), 1 + ad(wB)] = 1 + ad(v(i+ 1)AtB), if 0 6 i 6 n− 2.
(e) [1 + ad(v(n− 1)A), 1 + ad(wB)] = 1 + ad(wAtB).

Proof. (a) We have

[1 + ad(wA), 1 + ad(x)]

= (1 + ad(wA)) · (1 + ad(x)) · (1 + ad(wA)) · (1 + ad(x))

= 1 + ad(wA)ad(x) + ad(x)ad(wA) + ad(x)ad(wA)ad(x)

= 1 + ad(wA · x)

= 1 + ad(v(0)A),

where we have used Lemma 3.1. Part (b) is proven similarly. For (c) we have

[1 + ad(v(i)A), 1 + ad(v(j)B)]

= (1 + ad(v(i)A)) · (1 + ad(v(j)B) · (1 + ad(v(i)A)) · (1 + ad(v(j)B))

= 1 + ad(v(i)A)ad(v(j)B) + ad(v(j)B)ad(v(i)A)

= 1 + ad(v(i)A · v(j)B)

= 1 +

(
j + 1

n− i

)
ad(v(i⊕ j)AtB).

Parts (d) and (e) are proved similarly.
�

Remark. Notice that as L∗ is locally nilpotent it follows from Lemma 3.2 that
G is locally nilpotent. Next proposition clarifies the structure of G.
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Proposition 3.3. We have G = 〈1 + ad(x)〉V0 · · · Vn−1W. In particular, for
every element g ∈ G there exists an expression g = (1 + ad(x))ε · r0 · · · rn−1 · s,
with ε ∈ {0, 1}, r0 ∈ V0, . . . , rn−1 ∈ Vn−1 and s ∈ W.

Proof. Suppose that

g = g0(1 + ad(x))g1 · · · (1 + ad(x))gn

where g0, . . . , gn are products of elements of the form 1 + ad(v(0)A), . . . , 1 +
ad(v(n− 1)A), 1 + ad(wA). From Lemma 3.2 we know that (1 + ad(wA))(1 +
ad(x)) = (1 + ad(x))(1 + ad(wA))(1 + ad(v(0)A)) and (1 + ad(x)) commutes
with all products of the form 1 + ad(v(i)A), for 0 6 i 6 n − 1. We can thus
collect the (1 + ad(x))’s to the left starting with the leftmost occurrence. This
may introduce more elements of the form 1 + ad(v(0)A), but no new elements
1 + ad(x). We thus have that

g = (1 + ad(x))ng1 · · · gm
where gi is of the form 1+ad(v(j)A), for 0 6 j 6 n−1 or of the form 1+ad(wA).
Notice also that we can assume that n = ε, where ε ∈ {0, 1}. This reduces our
problem to the case when g ∈ 〈V0, . . . ,Vn−1,W〉. Suppose

g = g1g2 · · · gn,
where the terms gi are (1 + ad(v(0)A1)), . . . , (1 + ad(v(0)Ar)), . . . , (1 + ad(v(n−
1)B1)), . . . , (1 + ad(v(n− 1)Bs)), (1 + ad(wC1)), . . . , (1 + ad(wCt)) in some order.
By Lemma 3.2 we have that (1+ad(v(j)B))(1+ad(v(i)A)) = (1+ad(v(i)A))(1+

ad(v(j)B))(1 +
(
j+1
n−i
)
ad(v(i ⊕ j)AtB)) and (1 + ad(wB))(1 + ad(v(i)A) = (1 +

ad(v(i)A))(1+ad(wB))(1+ad(v(i+1)AtB)), if 0 6 i 6 n−2 or (1+ad(wB))(1+
ad(v(n− 1)A)) = (1 + ad(v(n− 1)A))(1 + ad(wB))(1 + ad(wAtB)), if i = n− 1.
We can thus collect the terms so that

g = (1 + ad(v(0)A1)) · · · (1 + ad(v(0)Ar)) · · · (1 + ad(v(n− 1)B1)) · · ·
(1 + ad(v(n− 1)Bs)) · (1 + ad(wC1)) · · · (1 + ad(wCt)) · h1 · · ·hm,

where hi are of the form 1 + ad(v(i)D), with 0 6 i 6 n − 1, or of the form
1 + ad(wD), where D is a modified union of at least two sets from

S = {A1, . . . , Ar, . . . , B1, . . . , Bs, C1, . . . , Ct}.
Thus,

g = a0a1 · · · an−1ah,
where ai ∈ Vi, for 0 6 i 6 n − 1, a ∈ W and h is a product of elements of the
form 1 + ad(v(i)D), with 0 6 i 6 n− 1, or of the form 1 + ad(wD), where D is
a modified union of at least two sets from S.

Repeating this collection process we get

g = b0b1 · · · bn−1bk,
where bi ∈ Vi, for 0 6 i 6 n − 1, b ∈ W and k is a product of elements of the
form 1 + ad(v(i)E), where 0 6 i 6 n− 1, or of the form 1 + ad(wE), where E is
a modified union of at least three sets from S.

Continuing in this manner we conclude that after k steps

g = c0c1 · · · cn−1cf,
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where ci ∈ Vi, for 0 6 i 6 n − 1, c ∈ W and f is a product of elements of the
form 1 + ad(v(i)H), where 0 6 i 6 n − 1, or of the form 1 + ad(wH), where
H is a modified union of at least k + 1 sets from S. However, any modified
union of at least r + · · · + s + t + 1 sets from S is trivial and thus f = 1 when
k = r + · · ·+ s+ t. This completes the proof. �

Theorem 3.4. The element 1 + ad(x) is a left 3-Engel element in G such that

〈1 + ad(x)〉G is not nilpotent.

Proof. Showing that 1 + ad(x) is a left 3-Engel element in G is equivalent to
showing that [(1 + ad(x))g, 1 + ad(x)] commutes with 1 + ad(x) for all g ∈ G.
Let g = h(1 + ad(wA1)) · · · (1 + ad(wAk

)) be an arbitrary element in G, where
h ∈ 〈(1 + ad(x))〉V0 · · · Vn−1. We want to show that

[(1 + ad(x))g, 1 + ad(x), 1 + ad(x)] = 1.

Let y ∈ L∗. Then

(1+ad(y))1+ad(wA) = (1+ad(wA))(1+ad(y))(1+ad(wA)) = 1+ad(y)+ad(y·wA).

Notice that (1 + ad(x))g = (1 + ad(x))(1+ad(wA1
))···(1+ad(wAn )), since by Lemma

3.2 we know that 1+ad(x) commutes with all elements of the form 1+ad(v(i)B),
for 0 6 i 6 n− 1. Then, by induction we obtain that

(1 + ad(x))g = 1 + ad(y)

where

y = x+
∑

16i6k

v(0)Ai +
∑

16i<j6k

v(1)AitAj + · · ·+
∑

16i(1)<i(2)<...<i(n+1)6k

wAi(1)t...tAi(n+1)
.

Since ad(x)ad(y)ad(x) = 0, the commutator of (1 + ad(x))g with (1 + ad(x)) is

(1 + ad(y))(1 + ad(x))(1 + ad(y))(1 + ad(x)) = 1 + ad(y)ad(x) + ad(x)ad(y)

+ad(y)ad(x)ad(y).

Then,

[(1 + ad(x))g, 1 + ad(x), 1 + ad(x)] = [(1 + ad(x))(1 + ad(y))]4

= (1 + ad(y)ad(x) + ad(x)ad(y) + ad(y)ad(x)ad(y))2

= 1,

using the fact that ad(x)ad(y)ad(x) = ad(y)2 = ad(x)2 = 0.

However, the normal closure of 1+ad(x) in G is not nilpotent, as for Ai = {i}
we have

[1 + ad(wA0), 1 + ad(x), 1 + ad(wA1), 1 + ad(wA2), . . . , 1 + ad(wAn), . . . ,

1 + ad(x), 1 + ad(wAmn+1), 1 + ad(wAmn+2), . . . , 1 + ad(wA(m+1)n
)]

= 1 + ad(wB),

where B = A0 tA1 t . . . tA(m+1)n = {0, 1, 2, . . . , (m+ 1)n}. �
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One might wonder if the nilpotency class of the subgroup generated by r
conjugates is unbounded for the family we have constructed. That turns out
not to be the case. Our next aim is to show that the subgroup generated by any
r conjugates (1 + ad(x))g1 , . . . , (1 + ad(x))gr of 1 + ad(x) in G will be nilpotent
of r-bounded class.

We first work in a more general setting. For each e ∈ E and ∅ 6= A ⊆ N, let
e(A) ∈ End(L∗) where

v(i)B · e(A) = (v(i) · e)BtA
wB · e(A) = (w · e)BtA
x · e(A) = (x · e)A,

for 0 6 i 6 n− 1.

Then let E∗ = 〈ad(x), e(A) : e ∈ E and ∅ 6= A ⊆ N〉. As L∗ is locally nilpotent,
one sees readily that the elements of E∗ are nilpotent and thus 1 + E∗ is a
subgroup of End(L∗).

Despite the fact that the normal closure of 1 + ad(x) in G is not nilpotent, it
turns out that the nilpotency class of the subgroup generated by any r conjugates
grows linearly with respect to r. In order to see this we must first introduce
some more notation. In relation with the r conjugates we let A1, A2, . . . , Ar be
any r subsets of N. For each r-tuple (i1, i2, . . . , ir) of non-negative integers and
each e ∈ E we let

e(i1,...,ir) =
∑

B1 ⊆ A1

|B1| = i1

. . .
∑

Bk ⊆ Ar

|Br| = ir

e(B1 tB2 t · · · tBr).

Notice that

e(i1,...,ir) · f (j1,...,jr) =

(
i1 + j1

i1

)
· · ·
(
ir + jr

ir

)
(ef)(i1+j1,...,ir+jr).

Consider the r conjugates of (1 + ad(x)) in G. Recall that each conjugate is

of the from (1 + ad(x))
(1+ad(wC1

)···(1+ad(wCj
))

. Without loss of generality one
can assume that each Ck is a singleton set. The following argument also works
for the more general case. Let

A1 = {1, . . . , k1}, A2 = {k1 + 1, . . . , k2}, . . . , Ar = {kr−1 + 1, . . . , kr}
and

e1 = ad(v(0)), e2 = ad(v(1)), . . . , en = ad(v(n− 1)), en+1 = ad(w).

Then we have seen (see the proof of Theorem 3.4) that

(1 + ad(x))(1+ad(w1))···(1+ad(wk1
)) = 1 + ad(x) + e

(1,0,...,0)
1 + · · ·+ e

(n+1,0,...,0)
n+1

...

(1 + ad(x))(1+ad(wkr−1+1))···(1+ad(wkr )) = 1 + ad(x) + e
(0,...,0,1)
1 + · · ·+ e

(0,...,0,n+1)
n+1 .

Let
f(i,k) = e

(0,...,0,i,0,...,0)
i ,



12 A. HADJIEVANGELOU AND G. TRAUSTASON

where i is the k-th coordinate and 1 6 i 6 n+ 1. Let

F = 〈f(j,k) = e
(0,...,0,j,0,...,0)
j : 1 6 j 6 n+ 1, 1 6 k 6 r〉.

Our aim is to find an upper bound for the nilpotence class of F . For this we
need to understand better the two aspects of multplying e(i1,...,ir) and f (j1,...,jr).
These are

A. Under which conditions the binomial coefficients are non-trivial ;
B. Under which conditions is the Lie product ei · ej non trivial.

The next two lemmas will help clarify these questions.

Lemma 3.5. If i+ j > n+ 2, then
(
i+j
i

)
= 0,where 0 6 i, j 6 n+ 1.

Proof. Suppose that

i = α0 + 2α1 + . . .+ 2m−1αm−1

j = β0 + 2β1 + . . .+ 2m−1βm−1.

We have that
(
i+j
i

)
is odd if and only if i 62 i+j. The latter happens if and only

if there exists no l such that αl = βl = 1, where 0 6 l 6 m − 1. In particular,
for the binomial coefficient to be non-zero we need i + j 6 1 + 2 + · · · 2m−1 =
2m − 1 = n+ 1. �

Lemma 3.6. If i+ j 6 n− 1 and 1 6 i, j 6 n, then ei · ej = 0.

Proof. As a preparation we first show that v(i) · v(j) = 0 if i + j ≤ n − 2. To
see this let

i+ 1 = a0 + 2a1 + . . .+ 2m−1am−1

j + 1 = b0 + 2b1 + . . .+ 2m−1bm−1

n+ 1− (i+ 1) = (1− a0) + 2(1− a1) + . . .+ 2m−1(1− am−1),

where 0 6 al, bl 6 1 for 0 6 l 6 m− 1. Then(
j + 1

n+ 1− (i+ 1)

)
is odd ⇐⇒ 1 6 al + bl for all 0 ≤ l ≤ m− 1.

In particular for
( j+1
n+1−(i+1)

)
to be odd we need i+1+j+1 > 1+2+· · ·+2m−1 =

2m − 1 = n + 1. That is we need i + j > n − 1. Thus if i + j 6 n − 2 we have
v(i) ·v(j) = 0. Having established this preliminary result we turn to ei ·ej where
1 ≤ i, j ≤ n. Firstly,

weiej = wv(i− 1)v(j − 1) = v(i)v(j − 1)

=

(
j

n+ 1− (i+ 1)

)
v(i⊕ (j − 1))

and so it immediately follows from the result above that weiej = 0, if i+j−1 6
n− 2, that is if i+ j 6 n− 1. Then, for 0 6 k 6 n− 1, we have

v(k)ei · ej = v(k)v(i− 1)v(j − 1).
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From our preliminary result above we know that v(k)v(i − 1) = 0, if k + (i −
1) 6 n − 2. We can therefore assume that k + (i − 1) > n − 1 and hence
k ⊕ (i− 1) = k + (i− 1)− (n− 1). Therefore,

v(k)ei · ej =

(
i

n+ 1− (k + 1)

)
v(k + (i− 1)− (n− 1))v(j − 1)

=

(
i

n+ 1− (k + 1)

)
v(k + i− n)v(j − 1)

which, by our preliminary result again, is trivial when k+ i−n+ j− 1 6 n− 2,
that is if k+ i+ j 6 2n−1. Given that 0 6 k 6 n−1 we have in particular that
the product is trivial when i+ j 6 n− 1. Hence, ei · ej = 0 if i+ j 6 n− 1. �

From these two lemmas we get the following result.

Lemma 3.7. Let 1 ≤ i, j ≤ n. If f(i,k) ·f(j,s) is nonzero, then n 6 i+ j 6 n+ 1.

We are now ready for establishing the linear upper bound for the nilpotence
class of F .

Lemma 3.8. F is nilpotent of a class at most 4r − 1.

Proof. Notice that by Lemma 3.5 we have that f(n+1,k) · f(j,s) = 0 for any
1 ≤ j ≤ n+ 1. We thus only need to consider products of elements f(i,k) where
1 ≤ i ≤ n. Take any such product of even length 2u where u is going to be
determined later. Suppose the product is

(1) (f(i1,k1)f(j1,s1)) · · · (f(iu,ku)f(ju,su)),
where 1 6 i1, . . . , iu, . . . , j1, . . . , ju 6 n and 1 6 k1, . . . , ku, . . . , s1, . . . , su 6 r.
We want to determine u so that this product becomes 0. From Lemma 3.7 we
know that for this product to be non-trivial we need il+jl > n, for all 1 6 l 6 u.
For 1 ≤ l ≤ r, let tl be the sum of all the lth coordinates of the superfixes of
the 2u elements in the product. For this to be non-zero we need

t1 + . . .+ tr = (i1 + j1) + · · ·+ (iu + ju) > nu.

If one of t1, . . . , tr is greater than n+1 then Lemma 3.5 implies that the product
is zero. We need to find how big u has to be so that this happens. Notice that
the largest value of t1, . . . , tr is greater or equal to the mean value and this is at
least nu

r . Therefore, it suffices that

nu

r
> n+ 2.

This holds when u = 2r. Hence, F 2(2r) = F 4r = 0. �

From this it is not difficult to obtain a linear upper bound for nilpotence
class of the group generated by r conjugates of 1 + ad(x). First we extend the
analysis of F to the subalgebra Q = 〈ad(x), F 〉 of E∗. If no element f(n+1,k)

occurs then any product of elements of Q of length 4r+ 1 is trivial. Here we are
using the fact that ad(x)2 = 0, Lemma 3.8 and the fact that ad(x) commutes
with elements of the form f(i,l) when 1 ≤ i ≤ n. Suppose therefore that at least
one element f(n+1,k) is involved in a product of elements of Q. If an element
of the form f(i,l) included, where 1 6 i 6 n, we can pick f(n+1,k) and f(i,l) that
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are of closest distance within the product. This reduces things to the following
situations:

· · · f(n+1,k) ad(x)f(i,l) · · · ,
· · · f(i,l) ad(x)f(n+1,k) · · · ,
· · · f(n+1,k)f(i,l) · · · ,
· · · f(i,l)f(n+1,k) · · · .

These products are trivial, as ad(x) commutes with f(i,l) and the products of
f(n+1,k) and f(i,l) are trivial by Lemma 3.5. We can therefore assume that no
element f(i,l) is involved, where 1 ≤ i ≤ n. Then we only have a product in
ad(x)’s and elements of the form f(n+1,k). By Lemma 3.5 and the fact that

ad(x)2 = 0 the product needs to alternate between ad(x) and elements of the
form f(n+1,k). We will make use of the fact that

ad(x)f(n+1,k) = f(n+1,k) ad(x) + f(1,k).

We have

ad(x)f(n+1,k1) ad(x)f(n+1,k2) = (f(n+1,k1) ad(x) + f(1,k1)) ad(x)f(n+1,k2)

= f(n+1,k1) ad(x)2f(n+1,k2) + f(1,k1) ad(x)f(n+1,k2)

= 0 + ad(x)f(1,k1)f(n+1,k2) = 0,

where the last equality follows from Lemma 3.5. Similarly any product of
the form f(n+1,k1) ad(x)f(n+1,k2) ad(x) is 0. To conclude we have seen that

Q4r+1 = 0. Now let H be a subgroup of G generated by any r conjugates
(1 + ad(x))g1 , . . . , (1 + ad(x))gr of 1 + ad(x) in G. Then

γ4r+1(H) 6 1 +Q4r+1 = 1.

Thus we have the following result.

Proposition 3.9. Let (1 + ad(x))g1 , . . . , (1 + ad(x))gr be any r conjugates of
1 + ad(x) in G. Then H = 〈(1 + ad(x))g1 , . . . , (1 + ad(x))gr〉 is nilpotent of class
at most 4r + 1.

Acknowledgement. The first author is partially supported by ‘The Norton
Scholarship’. We acknowledge the EPSRC (grant number 16523160) for support.
Moreover, we would like to thank Marialaura Noce for drawing our attention to
Lucas’ Theorem.

References

[1] R. Baer, Engelsche Elemente Noetherscher Gruppen, Math. Ann. 133 (1957), 256-270.
[2] W. Burnside, On an unsettled question in the theory of discontinous groups, Quart. J.

Pure Appl. Math. 37 (1901), 230-238.
[3] K. W. Gruenberg, The Engel elements of a soluble group, Illinois J. Math. 3 (1959),

151-169.
[4] Hadjievangelou, A., Noce, M., Traustason, G., Locally finite p-groups with a left 3-Engel

element whose normal closure is not nilpotent, International Journal of Algebra and Com-
putation, to appear.

[5] H. Heineken, Eine Bemerkung über engelshe Elemente, Arch. Math. 11 (1960), 321.
[6] S. V. Ivanov, The free Burnside groups of sufficiently large exponents, Int. J. Algebra and

Comp. 4 (1994), 1-308.



LEFT 3-ENGEL ELEMENTS IN LOCALLY FINITE 2-GROUPS 15

[7] E. Jabara and G. Traustason, Left 3-Engel elements of odd order in groups, Proc. Am.
Soc. 147 (2019), 1921-1927.

[8] I. G. Lysenok, Infinite Burnside groups of even period, Izv. Math. 60 (1996), 453-654.
[9] M. Newell, On right-Engel elements of length three, Proc. Royal Irish Ac. 96A, No.1

(1996), 17-24.
[10] Noce, M., Tracey, G., Traustason, G., A left 3-Engel element whose normal closure is not

nilpotent, Journal of Pure and Applied Algebra 224, (2020), 1092-1101.
[11] I. N. Sanov, Solution of Burnside’s Problem for Exponent Four, Leningrad State Univ.,

Ann. Maths. Ser. 10 (1940), 166-170.
[12] G. Tracey and G. Traustason, Left 3-Engel elements in groups of exponent 60, Int. J.

Algebra and Comp. 28 No. 4 (2018), 673-695.
[13] G. Traustason, Engel Lie-algebras, Quart. J. Math. Oxford. Ser. (2), 44 (1993), 355-384.
[14] G. Traustason, Left 3-Engel elements in groups of exponent 5, J. Algebra, 414 (2014),

41-71.

Department of Mathematical Sciences, University of Bath, Claverton Down,
Bath BA2 7AY, United Kingdom

Email address: ah926@bath.ac.uk

Department of Mathematical Sciences, University of Bath, Claverton Down,
Bath BA2 7AY, United Kingdom

Email address: gt223@bath.ac.uk


	1. Introduction
	2. The Lie Algebra L
	3. The Group G
	References

