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Abstract. By a result of Cocke and Venkataraman we know that
if G is a group with at most m elements of maximal order, then
|G| is m-bounded. In this paper we consider the following related
setting. Suppose G is a group with at most m commutators whose
order is maximal among all commutators. What can we say about
the structure of the group G?

1. Introduction

Our notation in this paper is fairly standard. In particular we will
denote by |G| the cardinality of the group G. Also if n1, . . . , ns are
some non-negative integer parameters, then we say that a quantity
is (n1, . . . , ns)-bounded to abbreviate “is finite and bounded above in
terms of n1, . . . , ns only”.

This paper is motivated by the following result. We include a short
proof for the convenience of the reader.

Theorem (Cocke and Venkataraman [1]). Let G be a group with m
elements of maximal order, where m is a positive integer. Then |G| is
m-bounded.

Proof. Let a be an element of maximal order, say n. Obviously
n is a positive integer. Let H = 〈a〉 and suppose {Hxi : i ∈ I} are the
cosets of H in CG(a). Then

CG(a) =
⋃
i∈I

Hxi.
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As a is of maximal order 〈xi, a〉 = 〈xian(i)〉× 〈a〉 for some non-negative
integer n(i). Replacing xi by xia

n(i), we can assume that 〈xi, a〉 = 〈xi〉×
〈a〉 for all i ∈ I. Then each coset has at least φ(n) elements of order n,
where φ is the Euler function. Namely the elements akxi, (k, n) = 1.
Thus |I|φ(n) ≤ m and it follows that |CG(a)| is m-bounded. As [G :
CG(a)] = |{ag : g ∈ G}| ≤ m, it follows that |G| = [G : CG(a)] · |CG(a)|
is m-bounded. �

Consider now the following setting. Suppose we have exactly m
commutators whose order is maximal among all commutators, say n
this order. What can we say about the structure of G?
Recall that an element g ∈ G is a commutator if g = [x, y] = x−1y−1xy
for some x, y ∈ G. In Section 2, we will see that if a group contains
commutators of infinite order, then there are infinitely many such com-
mutators. We will also show that if G is residually finite with finitely
many commutators of maximal order, then G is abelian-by-finite (if
additionally G is finitely generated, then [G,G] is finite). In the sub-
sequent sections we focus on the following question.

Question. Suppose G is a group with only m commutators whose
order, say n, is maximal among all commutators. Does it follow that
G has a subgroup N of m-bounded index such that [N,N ] is of m-
bounded order?

We will see that one can often show that this is the case when some
further constraints are added. We will also see that if this is the case
and G is finitely generated by at most r elements, then one furthermore
has that [G,G] is of (m, r)-bounded order. In some cases one can even
prove the stronger property that [G,G] is of m-bounded order.

The structure of the paper is otherwise as follows. In Section 3,
we will show that the answer to the question is positive when G is
metabelian. In Section 4, we will see that this is also the case in
general when n is a prime power or when it is a product of two odd
prime powers. From these results we are then able in Section 5 to show
that the answer to the question is positive when the group is nilpotent.
Finally in Section 6 we deal with the so-called A-groups, that is, finite
groups all of whose Sylow subgroups are abelian.

2. Some preliminary results

In this section we state and prove some preliminary results. Many
arguments rely on some standard properties and results on FC-groups
and for these we refer the reader to [7].
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Let G be a group with finitely many commutators of maximal order.
Let D be the set of all the commutators of maximal order. Suppose
m = |D| and that the maximal order of a commutator is n. We say
that an element a ∈ G is D-related if there exists b ∈ G such that
[a, b] ∈ D. We first show that n must finite.

Lemma 2.1. If a group G contains commutators of infinite order,
then there are infinitely many such commutators.

Proof. We argue by contradiction and suppose that G has only
m commutators of infinite order where m is a positive integer. Pick
a and b in G such that [a, b] ∈ D. We will get a contradiction by
showing that [a, b] must be of finite order. Notice that D = 〈D〉 is
contained in the FC-centre and is thus is an FC-group. As D is finitely
generated D/Z(D) is finite and thus [D,D] is finite by Schur’s Theorem
[8, 10.1.4]. As [a, b] is of finite order if and only if [a, b][D,D] is of
finite order in D/[D,D], we can assume without loss of generality that
[D,D] = 1. We can now suppose that D is a finitely generated abelian
group. As the torsion part of D is finite, we can also assume that D
is a torsion-free group. Let g ∈ G. Notice that [D, g] ≤ D. We claim
that [D, g] = 1. To see this let d ∈ D. Notice that, for every positive

integer k, we have [dk, g] = [d, g]d
k−1

[dk−1, g] = [d, g][dk−1, g], thus, by
induction on k it is easy to see that [dk, g] = [d, g]k. Consider the
commutators

[d, g], [d2, g] = [d, g]2, . . . , [dk, g] = [d, g]k, . . .

If [d, g] 6= 1 then the set of these commutators would be infinite con-
tradicting the assumption that are only finitely many. Thus [d, g] = 1.
We have thus shown that D ≤ Z(G).

Now notice that for each x ∈ G, we have [a, bx] = [a, x][a, b]. There
are only finitely many possible values for [a, x] such that [a, x] ∈ D.
If [a, x] 6∈ D, i.e. of finite order, then [a, bx] ∈ D and again there are
only finitely many possible values for [a, x] = [a, bx][b, a]. We have thus
shown that [G : CG(a)] is finite and a is in the FC-centre. By symmetry
the same is true for b. Thus both a, b are in the FC-centre Z of G and
thus [a, b] ∈ [Z,Z] is of finite order. This contradiction finishes the
proof. �

We will now establish a quantitative version of the above lemma.

Proposition 2.2. Let G be a group with m commutators of max-
imal order, say n, among all commutators. Then the number n is
m-bounded.
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Proof. We know from Lemma 2.1 that n is finite. Choose a, b ∈
G such that [a, b] ∈ D. Without loss of generality we can assume
that G = 〈a, b〉. In this case [G,G] = 〈[a, b]G〉. Since the conjugacy
class [a, b]G consists of at most m elements, it follows that the index
[G : CG([G,G])] is m-bounded. Set C = CG([G,G]) and observe that
C is nilpotent of class at most 2. Thus, G is a finitely generated
group having a nilpotent subgroup of finite index. We deduce that
G is residually finite. The commutator subgroup [G,G] is generated
by finitely many FC-elements of finite order from the class [a, b]G. It
follows that [G,G] is finite and therefore G has a finite-index normal
subgroup N such that N ∩ [G,G] = 1. Now we can pass to the quotient
G/N and without loss of generality assume that G is finite.

Finite groups have a nice property that if x is a commutator, then
each generator of the cyclic subgroup 〈x〉 is a commutator, too (see
[5, page 45], or [2]). Therefore whenever r is coprime to n, the power
[a, b]r is also a commutator and so [a, b]r ∈ D. It follows that φ(n) ≤ m
and thus n is m-bounded, as required. �

In view of Proposition 2.2 it will be assumed throughout the rest
of the paper that all commutators in G have finite m-bounded order.
Apart from the work of Cocke and Venkataraman the following obser-
vation is another motivation for our work.

Proposition 2.3. A residually finite group G with only finitely
many commutators of maximal order has an abelian subgroup of finite
index. If G is finitely generated, then [G,G] is finite (and hence G is
central-by-finite).

Proof. Notice first that by Dietzmann’s Lemma (see for example
[7, page 45]), we know that D = 〈D〉 is finite. As G is residually finite
there exists a normal subgroup N of finite index such that N ∩D = 1.
Notice that N ≤ CG(D). If x ∈ N and [a, b] ∈ D then

[a, bx] = [a, x][a, b]

with [a, x] ∈ N . Thus the order of [a, bx]N in G/N is the same as
the order of [a, b]N in G/N which we know is the same as the order of
[a, b] as N ∩D = 1. It follows that [a, bx] is of maximal order. Hence
[a, x] = [a, bx][b, a] ∈ N ∩ D = 1. This shows that every D-related
element commutes with all the elements of N . It also shows that if b
is D-related then bx is D-related for all x ∈ N . Now let y, x ∈ N . As
y commutes with bx and b, it commutes with x = b−1 · bx. Hence N is
abelian.

Now assume that G is finitely generated. Being a subgroup of
finite index, N is finitely generated, too. It follows that the torsion
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elements contained in N form a finite subgroup T . We pass to the
quotient Ḡ = G/T . Recall that all commutators in G have finite order.
We conclude that N̄ = N/T contains no nontrivial commutators and
therefore N̄ ≤ Z(Ḡ). It follows from Schur’s theorem that [Ḡ, Ḡ] is
finite and this of course implies finiteness of [G,G]. �

As we said in the introduction we will often be able to show that
there exists a subgroup N of m-bounded index such that [N,N ] is of
m-bounded order. If G is furthermore finitely generated, say by at
most r elements, more can be said.

Proposition 2.4. Let G be an r-generator group with m commu-
tators of maximal order. Assume that G contains a normal subgroup
N of finite index such that [N,N ] is finite. Then [G,G] has finite
(m, r, [G : N ], |[N,N ]|)-bounded order.

Proof. Notice first that N is finitely generated and the minimal
number of generators for N is bounded in terms of r and the index
[G : N ]. We can pass to the quotient G/[N,N ] and assume that N
is abelian. Since all commutators in G have finite m-bounded order,
we deduce that the subgroup T generated by all such commutators
contained in N is finite with order bounded in terms of m, r, and
[G : N ]. Again we can pass to the quotient G/T and without loss of
generality assume that T = 1. Then N ≤ Z(G). Hence [G : Z(G)]
is finite and thus in view of Schur’s theorem we get that [G,G] is
finite. �

3. Metabelian groups

We will see that we are sometimes able to get the type of result we
want if we either put some constraint on n or on the structure of G. In
this section we will deal with the case when the group is metabelian.
We start by proving a general lemma about abelian groups that will
play a crucial role.

Lemma 3.1. Let G be a finite abelian group and let x ∈ G. There
exist y1, . . . , yt ∈ G of distinct prime power orders, where the primes
divide the order of x, and F ≤ G such that G = F × 〈y1〉 × · · · × 〈yt〉
and x ∈ 〈y1〉 × · · · × 〈yt〉.

Proof. Suppose G = G1 × · · · × Gr, where G1, . . . , Gr are the
Sylow subgroups with respect to the primes p1, . . . , pr. Now suppose

x = w1 · · ·wr
with ws ∈ Gs. Focusing on w1, . . . , wr, we can without loss of general-
ity assume that G is a p-group. Suppose the exponent of G is pl.
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Now suppose

x = a1 · · · aebβ11 · · · b
βf
f

where a1, . . . , b
βf
f are non-trivial,

G = 〈a1〉 × · · · × 〈ae〉 × 〈b1〉 × · · · × 〈bf〉 ×K

for some K ≤ G and where p divides β1, . . . , βf . We can assume that

o(a1) ≤ · · · ≤ o(ae) and o(bβ11 ) ≤ · · · ≤ o(b
βf
f ).

We prove by reverse induction on 1 ≤ k ≤ l, where pk = min{o(a1), o(bβ11 )},
that there exist y1, . . . , yt ∈ G of distinct prime power orders at least
pk and F ≤ G such that

G = F × 〈y1〉 × · · · × 〈yt〉

and x ∈ 〈y1〉 × · · · × 〈yt〉.

For the induction basis suppose k = l. Then x is of maximal order
and there exists F ≤ G such that G = F × 〈x〉.

For the induction step suppose 1 ≤ k ≤ l − 1 and that the result
holds for larger values of k. If e = 0 and βi = pγi we have x = zp where

z = bγ11 · · · b
γf
f .

By the induction hypothesis there exist y1, . . . , yt ∈ G of distinct prime
power orders at least pk+1 and F ≤ G such that

G = F × 〈y1〉 × · · · × 〈yt〉

and where z (and thus x = zp) is in 〈y1〉 × · · · × 〈yt〉.

We can thus assume that e ≥ 1. Suppose that a1 is of order pj and
that furthermore a2, . . . , ag are of order pj and bβ11 , . . . , b

βh
h are of order

at most pj. Let

x1 = a1 · · · agbβ11 · · · b
βh
h

x2 = ag+1 · · · aebβh+1

h+1 · · · b
βf
f .

One sees that there exists H ≤ G such that G = H × 〈x1〉 with
ag+1, . . . , ae, bh+1, . . . , bf ∈ H and among the generators for the de-
composition of H into a direct product of cyclic groups (notice that
the orders of these elements are greater than o(x1) = pj ≥ pk). By the
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induction hypothesis there exist y2, . . . , yt ∈ H of distinct prime power
orders greater than pj such that

H = F × 〈y2〉 × · · · × 〈yt〉
and x2 ∈ 〈y2〉 · · · 〈yt〉. Now

G = F × 〈x1〉 × 〈y2〉 × · · · × 〈yt〉
and x = x1x2 ∈ 〈x1〉 × 〈y2〉 × · · · 〈yt〉 where o(x1), o(y2), . . . , o(yt) are
of distinct prime power orders at least pk. This finishes the inductive
proof. �

We now proceed to examine metabelian groups containing bound-
edly many commutators of maximal order. We first handle the finite
metabelian groups and then we will later lift our main result concerning
these to any metabelian group.

Let G be a finite metabelian group. Recall that D is the collection
of all commutators of maximal order n and that there are m of these.
Notice that the exponent of [G,G] divides n! and is therefore also m-
bounded. Let M = CG(D). As D is invariant under conjugation we
have M � G. Any conjugation permutes the elements of D implying
that [G : M ] ≤ m!.

Let a, b ∈ G be such that [a, b] ∈ D. Consider the subgroup

E = 〈[a, b], [a, x] : x ∈M〉.
By Lemma 3.1 there exist y1, . . . , yt ∈ E of distinct prime power orders,
where the primes divide the order of [a, b], and F ≤ E such that E =
F × 〈y1〉 × · · · × 〈yt〉 and [a, b] ∈ H = 〈y1〉 × · · · × 〈yt〉. For each h ∈ H
let

Eh = {[a, x] : x ∈M and [a, x] = wxh for some wx ∈ F}.
Notice that if [a, x], [a, y] ∈ Eh then

[a, bxy−1] = [a, xy−1][a, b]

= [a, y−1][a, x]y
−1

[a, b]

= ([a, y]−1[a, x][a, b])y
−1

= (wyh)−1wxh[a, b])y
−1

= (w−1y wx[a, b])
y−1

.

Now as w−1y wx ∈ F and [a, b] has order n, we see therefore that

[a, bxy−1] has order at least n. As this is a commutator, the order
is then exactly n and thus this element is in D. Notice that these
calculations show that

[a, y]−1[a, x] = [a, bxy−1]y[a, b]−1,
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where the right hand side is a difference of two elements in D. Let [a, y]
be some fixed element in Eh. We have seen that

Eh ⊆ [a, y]{ef−1 : e, f ∈ D}
and has thus at most m2 elements.

Lemma 3.2. If a is D-related, then [G : CG(a)] is m-bounded.

Proof. We have

{[a, x] : x ∈M} =
⋃
h∈H

Eh.

As there are m-boundedly many prime divisors of o([a, b]) and as the
exponent of [G,G] is m-bounded we see that |H| is m-bounded. As
|Eh| ≤ m2 we see thus that |{[a, x] : x ∈M}| is m-bounded. Therefore

|aG| = |aM | · [G : M ]

is m-bounded. (Notice that as we have seen before [G : M ] ≤ m!). �

Proposition 3.3. Let G be a finite metabelian group with at most
m commutators of maximal order. Then there exists a normal subgroup
N of m-bounded index where [N,N ] is of m-bounded order.

Indeed there exist two functions f and g such that, if a is a D-related
element and T = CG(a), then [G : T ] ≤ f(m) and |[T, T ]| ≤ g(m).

Proof. Let [a, b] ∈ D. As a is D-related we know from Lemma
3.2 that [G : CG(a)] is m-bounded, say at most f(m). Let t ∈ CG(a).
Then

[a, bt] = [a, b]t ∈ D
and thus both bt and b are D-related. As CG(t) ⊇ CG(bt) ∩ CG(b), we
see that

[G : CG(t)] ≤ [G : CG(bt)] · [G : CG(b)]

is m-bounded. It follows that T = CG(a) is a BFC-group where the
conjugacy classes have m-bounded size. Hence by a well known result
of B. H. Neumann [6] we see that [T, T ] is of m-bounded order, say
at most g(m). Finally replacing T by its core N in G we see that
[G : N ] ≤ f(m)! and thus N is of m-bounded index with [N,N ] of
m-bounded order. �

We next extend this result to all metabelian groups that are finitely
generated.

Proposition 3.4. Let G be a finitely generated metabelian group
with at most m commutators of maximal order. Then there exists a nor-
mal subgroup N of m-bounded index such that [N,N ] is of m-bounded
order.



GROUPS WITH FEW COMMUTATORS OF MAXIMAL ORDER 9

Indeed there exist two functions f and g such that, if a is a D-related
element and T = CG(a), then [G : T ] ≤ f(m) and |[T, T ]| ≤ g(m).

Proof. By a well-known theorem of P. Hall [3] G is residually
finite. For each commutator v of maximal order in G there exists a
normal subgroup Rv of G that is of finite index and such that the
intersection of Rv with 〈v〉 is trivial. As there are finitely many com-
mutators of maximal order we can then find a normal subgroup R of
G of finite index such that the intersection with any subgroup gen-
erated by a commutator of maximal order is trivial. It follows from
this that if v is a commutator of maximal order in G then vS is of
(same) maximal order in G/S for any normal subgroup of S of G of
finite index contained in R. Thus if D is the set of all commutators
in G of maximal order, then the set of commutators of maximal order
in G/S is DS = {vS : v ∈ D}. Let a ∈ G be D-related. We claim
that [G : CG(a)] ≤ f(m) where f(m) is as in Proposition 3.3. To see
this, let S be a normal subgroup of finite index in G that is contained
in R. Then aS is DS-related and by Proposition 3.3 we know that
[G : CG(a)S] ≤ f(m). As this is true for all such S, it follows that
[G : CG(a)] ≤ f(m).

Let T = CG(a). We next show that [T, T ] has order at most g(m)
where g(m) is as in Proposition 3.3. By the proof of that proposition,
we know that [T, T ]S/S is of order at most g(m) for all S as above
and hence it follows that |[T, T ]| ≤ g(m). Finally as in the proof of
Proposition 3.3 we can replace T by its core N in G and observe that
[G : N ] ≤ f(m)! and |[N,N ]| ≤ g(m). �

Theorem 3.5. Let G be any metabelian group with at most m com-
mutators of maximal order. Then there exists a normal subgroup N of
m-bounded index such that [N,N ] is of m-bounded order.

Proof. As before let D be the set of all commutators of maximal
order. Let a be a D-related element. We claim that [G : CG(a)] ≤ f(m)
where f(m) is as in Propositons 3.3.and 3.4. We argue by contradiction
and suppose there are f(m) + 1 distinct conjugates ag1 , . . . , agf(m)+1 .
Suppose the commutators of maximal order are [a1, b1], . . . , [am, bm]
(where a1 = a). Consider the finitely generated subgroup

F = 〈a1, b1, . . . , am, bm, g1, . . . , gf(m)+1〉.
But then we have f(m)+1 distinct conjugates of a in F that contradicts
the fact that f(m) should be an upperbound for the finitely generated
case.

Let T = CG(a). We claim that the order of [T, T ] is at most g(m)
where g(m) is as in the proof of Propositions 3.3 and 3.4. Let F be
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a finitely generated subgroup of T . Suppose that the commutators
of maximal order are [a1, b1], . . . , [ar, br] where a1 = a. Consider the
subgroup H = 〈F, a1, b1, . . . , ar, br〉. Then H is also finitely generated
with at most m commutators of maximal order. By Propostion 3.4 we
know that [H ∩ T,H ∩ T ] is of order at most g(m) and thus the same
is true [F, F ]. As this is true for every finitely generated subgroup F
of T it follows then that [T, T ] has order at most g(m). Finally as in
the proof of Proposition 3.3 we can replace T by its core N in G and
get [G : N ] ≤ f(m)! and |[N,N ]| ≤ g(m). �

For the case when G is finite, n is the maximal order of a commu-
tator and n is a prime power, one gets a stronger result.

Theorem 3.6. Let G be a finite metabelian group with at most m
elements of maximal order n where n = pr,paprime. Then [G,G] is of
m-bounded order.

Proof. As a first step we prove that all D-related elements are of
order at most 2m. To see this let a be a D-related element and b ∈ G
such that [a, b] ∈ D. Now take any g ∈ G. Then

[a, bg]g
−1

= [a, g]g
−1

[a, b].

If [a, g]g
−1 6∈ D then [a, bg]g

−1 ∈ D. Thus

{[a, g]g
−1

: g ∈ G} = {[a, g]g
−1

: [a, g] ∈ D}∪ {[a, g]g
−1

: [a, bg]g
−1 ∈ D}.

As [a, g]g
−1

= [b, a][a, bg]g
−1

, we see that both sets have at most m
elements. Thus

2m ≥ |{[a, g]g
−1

: g ∈ G}| = |{[a, g−1]−1 : g ∈ G}| =

|{[a, g−1] : g ∈ G}| = [G : CG(a)].

In order to show that [G,G] ism-bounded it suffices (by B. H. Neumann
[6]) to show that if d ∈ G is not D-related we still have that [G : CG(d)]
is m-bounded. But in this case

[a, bd] = [a, d][a, b]d.

As [a, d] 6∈ D, we see that [a, bd] ∈ D. Thus bd and b are D-related.
From CG(d) ≥ CG(bd) ∩ CG(b) we then get as before

[G : CG(d)] ≤ [G : CG(b)][G : CG(bd)] ≤ (2m)2.

This finishes the proof. �
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4. Adding constraints on n

In this section we will see that we are able to get the result we
want provided the maximal order n is a power of p without any other
constraints on the structure of the group. We will show that the same
result holds if n is a product of two distinct prime powers where both
primes are odd.

4.1. The case when n = pα.

Theorem 4.1. Suppose G has at most m commutators of maximal
order which is a prime power. Then G has a normal subgroup M of
m-bounded index such that [M,M ] is of m-bounded order.

Proof. As before let D be the set of all the commutators of maxi-
mal order and let M = CG(D). We know that M is a normal subgroup
of G and that [G : M ] ≤ m!. We finish the proof by showing that M
is a BFC-group where the size of any conjugacy class is m-bounded.
It then follows from the classic result of B. H. Neumann [6] that the
order of [M,M ] is m-bounded.

We first prove the following claim.

Claim: If a is D-related, then [G : CG(a)] ≤ 2m ·m!.

To prove the claim let b ∈ G such that [a, b] ∈ D. For all x ∈ M ,
we have

(1) [a, bx] = [a, x][a, b].

Notice that, as M � G, [a, x] commutes with [a, b]. As the order of
commutators in D is a prime power, if [a, x] is not in D it must follow
that [a, bx] ∈ D. Thus

{[a, x] : x ∈M} =

{[a, x] : x ∈M and [a, x] ∈ D} ∪ {[a, x] : x ∈M and [a, bx] ∈ D}.
As [a, x] = [a, bx][b, a], both the subsets on the right hand side have
order at most m and thus |{[a, x] : x ∈ M}| ≤ 2m. Hence |aM | ≤ 2m
and thus [G : CG(a)] = |aG| ≤ |aM | · [G : M ] ≤ 2m ·m!.

This finishes the proof of the claim. We finish the proof of the
proposition by using this to show that [G : CG(x)] ≤ (2m ·m!)2 for all
x ∈M . If x is D-related this follows immediately from the claim. Now
suppose x is not D-related. By (1) and the fact that the maximal order
of a commutator is a prime power, it follows that b, bx areD-related and
thus [G : CG(b)], [G : CG(bx)] ≤ 2m ·m!. As CG(x) ≥ CG(b)∩CG(bx) it
follows that [G : CG(x)] ≤ [G : CG(b)] · [G : CG(bx)] ≤ (2m ·m!)2. �
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4.2. The case when n = pαqβ and n odd. Suppose G has at
most m commutators of maximal order n = pαqβ where p and q are
different odd primes. As before we let D be the collection of all the
commutators of maximal order and M = CG(D).

Lemma 4.2. Let a ∈ G be D-related. Then {[a, x] : x ∈ M} ⊆
D ∪ D2. Also if [a, b] ∈ D and x ∈ M , then one of x, bx, bx−1 is
D-related.

Proof. As a is D-related, there exists b ∈ G such that [a, b] ∈ D.
If [a, x] ∈ D the claim is obvious. Thus suppose this is not the case.
Then one of pα, qβ does not divide o([a, x]). Without loss of generality
we can assume that pα does not divide o([a, x]). Then from

[a, bx] = [a, x][a, b]

[a, bx−1]x = [a, x]−1[a, b],

we see that pα divides o([a, bx]) and o([a, bx−1]). If qβ also divides
o([a, bx]) or o([a, bx−1]), then in the former case [a, bx] ∈ D and [a, x] =
[a, bx][a, b]−1 ∈ D2, whereas in the latter case [a, bx−1] ∈ D and [a, x] =
[a, b][a, bx−1]−x ∈ D2. We are thus left with the case where qβ divides
neither o([a, bx]) nor o([a, bx−1]). We will see that this cannot happen.
If this was the case, then there would exist integers h, k coprime to q
where [a, bx]q

β−1h = [a, bx−1]q
β−1k = 1. But then we would get

[a, b]2q
β−1kh = [a, bx]q

β−1hk([a, bx−1]x)q
β−1hk = 1.

This would then imply that qβ must divide qβ−1hk that would give
the contradiction that q divides hk. As we have seen that one of
[a, x], [a, bx] and [a, bx−1] is in D, the second part of the lemma fol-
lows. �

Theorem 4.3. Let G be a group that has at most m commutators of
maximal order n = pαqβ where p and q are different odd primes. Then
G has a normal subgroup M of m-bounded index such that [M,M ] is
of m-bounded order.

Proof. Notice first that by Lemma 4.2 we have that if a is D-
related, then |aM | ≤ m2 + m. By the second part of the Lemma we
also know that if x ∈ M then x is a product of a most two D-related
elements. It follows that |xM | ≤ (m2 + m)2. Hence M is a BFC-
group where every element has m-boundedly many conjugates and it
follows as before that [M,M ] is of m-bounded order. As we have seen
previously, we furthermore have [G : M ] ≤ m!. �
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5. Nilpotent groups

In this section we deal with nilpotent groups. We start with finite
groups.

Proposition 5.1. Let G be a finite nilpotent group with at most m
commutators of maximal order. Then there exists a normal subgroup
M of m-bounded index such that the order of [M,M ] is m-bounded.

Indeed |[M,M ]| ≤ h(m), for some function h, where M = CG(D)
and D is the set of all commutators of maximal order.

Proof. Let P1, . . . , Pr be the non-abelian Sylow subgroups with
respect to the distinct primes p1, . . . , pr. Suppose [a, b] is a commu-
tator of maximal order n = pn1

1 · · · pnrr . Notice that as before n is
m-bounded and then also r is m-bounded. Suppose a = a1a2 · · · ar and
b = b1b2 · · · br where ai, bi ∈ Pi, then

[a, b] = [a1, b1] · · · [ar, br].
where [ai, bi] has order pnii . Conversely suppose [ai, bi] is a commutator
in Pi of maximal order (and thus pkii where ki ≥ ni), then for a =
a1a2 · · · ar and b = b1b2 · · · br we have that

[a, b] = [a1, b1] · · · [ar, br]

has order pk11 · · · pkrr ≥ n and thus [a, b] is of maximal order that implies
that the order of [ai, bi] is pnii . Notice also that [ai, bi] is a power of [a, b].
Let Di be the set of the commutators of maximal order in Pi. We have
shown above that D = D1 · · · Dr. By Theorem 4.1 we know that for
Mi = CPi(Di) we have that Mi is of m-bounded index and [Mi,Mi]
of m-bounded order. Now recall that r is m-bounded (notice that the
argument above shows that ni ≥ 1 for all 1 ≤ i ≤ r) and if we take
M = CG(D) = M1 · · ·Mr then [G : M ] ≤ m! and [M,M ] of m-bounded
order, say h(m). �

We next extend this result to all nilpotent groups that are finitely
generated.

Proposition 5.2. Let G be a finitely generated nilpotent group
with at most m commutators of maximal order n. Then there exists
a normal subgroup M of m-bounded index such that [M,M ] is of m-
bounded order.

Indeed |[M,M ]| ≤ h(m), for some function h, where M = CG(D)
and D is the set of all commutators of maximal order.

Proof. Let D be the set of all commutators of maximal order
and let M = CG(D). As before we know that M is of m-bounded
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index. We show that [M,M ] is of order at most h(m) where h is as in
Proposition 5.1. It is well known that G is residually finite. For each
commutator of maximal order [a, b] there exists a normal subgroup
N[a,b] of G, contained in M , that is of finite index and such that the
intersection of N[a,b] with 〈[a, b]〉 is trivial. As there are finitely many
commutators of maximal order we can then find a normal subgroup N
of G of finite index, contained in M , such that the intersection with
any subgroup generated by a commutator of maximal order is trivial.
It follows from this that if [a, b] is a commutator of maximal order in
G then [a, b]N is of (same) maximal order in G/N . By Proposition 5.1
we then know that [M/N,M/N ] is of order at most h(m). This holds
for any normal subgroup S in G that is of finite index and contained
in N . Hence the order of [M,M ] is at most h(m). �

Theorem 5.3. Let G be any nilpotent group with at most m com-
mutators of maximal order n. Then there exists a normal subgroup M
of m-bounded index such that [M,M ] is of m-bounded order.

Proof. As before let D be the set of all commutators of maximal
order and let M = CG(D). We know that M is a normal subgroup
of G of m-bounded index. We show that every finitely generated sub-
group of M has commutator subgroup of order at most h(m), where h
is the function from Propositions 5.1 and 5.2. Let F be a finitely gener-
ated subgroup of M . Suppose the commutators of maximal order are
[a1, b1], . . . , [ar, br]. Consider the subgroup H = 〈F, a1, b1, . . . , ar, br〉.
Then H is also finitely generated with at most m commutators of max-
imal order. Also every element in M ∩H centralizes every commutator
of maximal order. By Proposition 5.2 we then know that [H∩M,H∩M ]
is of order at most h(m) and then of course the same is true for [F, F ].
As this is true for every finitely generated subgroup F of M it follows
then that [M,M ] has order at most h(m). �

6. A-groups

Recall that finite groups all of whose Sylow subgroups are abelian
are called A-groups. Notice that if G is an A-group, then Z(G) ∩
[G,G] = {1}, by an application of transfer theory (see for example [4,
Chapter VI]). We will also use the following remark.

Proposition 6.1. Let a, b, x ∈ G, with [a, b] of maximal order n
and x, xa ∈ CG([a, b]). If 〈[a, x]〉 ∩ 〈[a, b]〉 = {1}, then [a, bx] has order
n and [a, x] has order that divides n.

Proof. We have [a, bx] = [a, x][a, b]. Let t be the order of [a, bx],
then 1 = [a, x]t[a, b]t, hence [a, x]t = 1 = [a, b]t and the orders of [a, x]
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and [a, b] divide t. Therefore the maximality of n implies n = t, and
we have the result. �

Theorem 6.2. Let G be an A-group with at most m commutators
of maximal order. Then G has a normal subgroup N of m-bounded
index such that [N,N ] is of m-bounded order.

Proof. As before let D be the set all commutators of maximal
order and let M = CG(D). We know that M is a normal subgroup
of G of m-bounded index. Let x ∈ [M,M ], [a, b] ∈ D. Then [x, a] ∈
[M,M ], thus 〈[x, a]〉 ∩ 〈[a, b]〉 ⊆ [M,M ] ∩ Z(M) = {1}. Then [a, bx] =
[a, x][a, b], and by Proposition 6.1 [a, bx] has maximal order. Hence
[a, x] ∈ Z(M) ∩ [M,M ] = {1}. Therefore [M,M ] ⊆ CG(a), for each
D-related element a. Now write D the subgroup generated by all D-
related elements. Obviously D is a normal subgroup of G. Hence
M ∩D is a normal subgroup of G. Moreover we have [M ∩D,M ∩D] ⊆
[M,M ] ⊆ CG(D), hence [M ∩D,M ∩D] ⊆ Z(M ∩D). Thus M ∩D is
nilpotent and then abelian since all Sylow subgroups of G are abelian.
Therefore the set {[a, x] | a ∈ D, x ∈ M} ⊆ D ∩ M is abelian.
Arguing as in Section 3, we can now prove that [G : CG(a)] is m-
bounded for every D-related element a of G. It follows that G has a
normal subgroup N of G of m-bounded index such that the order of
[N,N ] is m-bounded, as required. �
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(SA), taly

Email address: mmaj@unisa.it

Department of Mathematics, University of Brasilia, DF 70910-900,
Brazil

Email address: pavel@unb.br

Department of Mathematical Sciences, University of Bath, UK
Email address: gt223@bath.ac.uk


