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Abstract

Let n be a positive integer. We say that a group G is an (n + %)—Engel group if it
satisfies the law [z,, y,z] = 1. The variety of (n + %)—Engel groups lies between the
varieties of n-Engel groups and (n + 1)-Engel groups. In this paper we study these
groups and in particular we prove that all (4 + %)—Engel {2, 3}-groups are locally
nilpotent. We also show that if G is a (4+ %)—Engel p-group where p > 5 is a prime,
then GP is locally nilpotent.

1 Introduction

Let G be a group and g,h € G. The commutator of g and h is the element [g, h] =
g 'h7lgh € G. We define recursively [g,, h] where n is a positive integer as follows:
lg,1 h] = [g,h] and [g,n4+1 h] = [[g,n k], h] for n > 1. A subset S C G is an Engel set of
G if for every g,h € S there is a positive integer k = k(g,h) such that [g,xh] = 1. If
k is bounded above by some positive integer n we say that S is an n-Engel subset and
if furthermore G = S, then G is an n-Engel group. Recall that every 2-Engel group is
nilpotent of class at most 3. By a classic result of Heineken [4] every 3-Engel group is
locally nilpotent and this result was later generalized to include all 4-Engel groups [3] (see
also [10]).

Recall that an element a € G is said to be left n-Engel if [z,,a] = 1 for all x € G
ad right n-Engel if [a,, x] = 1 for all x € G. We denote the subset of left n-Engel ele-
ments by L,(G) and the right n-Engel elements by R, (G).

Definition. Let G be a group and n a positive integer.
(1) We say that a € G is a left (n + 3)-Engel element if [z,, a,2] =1 for all z € G.
(2) We say that a € G is a right (n + %)—Engel element if [a,, z,a] =1 for all z € G.

(3) We say that G is an (n + %)-Engel group if it satisfies the law [z,, y, z] = 1.



We denote the subset of left (n+1)-Engel elements by L, 11 (G) and the right (n+ 3)-Engel
elements by Rn+%(G). Thus G is an (n + 1)-Engel group if and only if Ln+%(G) =G or
equivalently I, | 1 (G) = G. We denote the variety of m-Engel groups by &,,.

Remark. It is not difficult to prove that L, 1(G) = Ry(G) and that R, 1(G) = La(G).
Thus in particular &1 = &.

Lemma 1.1. Let G be a group and n a positive integer. We have L,(G) C LM%(G) -
L,1(G). In particular &, C 5n+% CEnit-

Proof That L,(G) C Ln+%(G) is obvious. To see that Ln+%(G) C Ly (G), let
a€ Ln+%(G). Then for any = € G we have

1 = [ax,, a,az] = [x,, a, x][T,n41 a]® = [T,041 a]”.

Thus [z,,+1a] =1 and a € L,41(G). O
Our main results on (n + %)—Engel groups are the following.
Theorem B. Let G be a (4 + %)-Engel {2, 3}-group. Then G is locally nilpotent.

Theorem C. Let G be a (4 + %)—Engel p-group where p is a prime and p > 5. Then G?
is locally nilpotent.

A major ingredient to the proofs is a result on Engel sets that is also of independent
interest. Let e, = [z,,y| be the n-Engel word.

Theorem A. Let R = (a,b) be the largest 2-generator group satisfying the relations
esz(a,b) = esz(b,a) = ez(a™t,b71) = e3(b~',a™!) = 1. Then R is nilpotent of class 4.

We will see later that these relations imply that S = {a,b,a™!,b7'} is a 3-Engel sub-
set of R.

2 Proof of Theorem A

Consider the n-Engel word e, (z,y) = [z,,y] = 1. As we will focus in particular on the
3-Engel word we will often use e(z,y) instead of e3(z,y).

Lemma 2.1. Suppose G is a group with elements a,b where e(a,b) = e(a™!,b71) = 1.
Then (b,b*) = (b, [a,b]) is nilpotent of class at most 2.

Proof From the equations

1 = [a,bbb]=[b"",bb =[b"b,b"
1= [a oo p = oo

we see that 1 = [b~% b,b] and 1 = [b* ', b, b7']* = [b,b~%, b%]. Thus (b, b*) is nilpotent
of class at most 2. O

Lemma 2.2. Let G be a group with elements a,b where e(a,b) = e(a™,07) = 1. Then
[a®, b, b2, b8 =1 for all €, €1, €9, €3 € {1, —1}.
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Proof By symmetry it suffices to deal with the case when ¢ = 1. As [a, b, b2, b71] =
la, b, b2, b]_’f1 we can also assume that e3 = 1. Then from

la, b, 07,0 = [[a, 07, b7 B = [0, 00, b, b

we can also without loss of generality assume that e = 1. We are thus only left
with showing that [a,b7',b,b] = 1 but this follows from Lemma 2.1 and the fact that
[a, b1, b,b] = [b%1, b, b] € v3((b,b%)). O

Remark. It follows from Lemma 2.2 that if e(a,b) = e(a™,b7!) = e(b,a) = e(b™t,a™!) =
1, then S = {a,b,a™*,b7'} is a 3-Engel subset.

Lemma 2.3. Let G be a group with elements a,b satisfying e(a,b) = e(a™',b71) =1
Then [[a,b,b]7, a] commutes with b.

Proof From the Hall-Witt identity and Lemma 2.1 we have

1 = [[a,b,b],a",b]%a,b™", [a,b,b]]°[b, [a,b,0] ", a]l*>
= [CL, b, b7 a -1 b] [[CL, b’ b7 a/]_1, ba]'

It follows that [a, b, b, a] commutes with b and thus, using Lemma 2.1 again, [[a, b, b] ™!, a] =
la,b,b, a]_[a’b’b]_1 commutes with b as well. O

Proof of Theorem A. Let R = (a,b) be the largest group satisfying the relations
e(a,b) =e(b,a) =e(a™',b7') =e(b~!,a~!) = 1. By the remark after Lemma 2.2 we know
that S = {a,b,a™,b7'} is a 3-Engel subset of R.

In order to show that R is nilpotent of class at most 4 we need to show that a,b € Z4(R).
This is equivalent to showing that [b,a] € Z3(R). As (a, [a,b]) and (b, [a, b]) are nilpotent
of class at most 2, we see that [a,b,a] = [b,a,a]™! and [b,a,b] = [a,b,b]"!. In order to
show that [b, a] € Z3(R) we need to show that [b, a,a] and [b, a,b] = [a,b,b] ™" are in Zy(R).
As [b,a,a,a] = [a,b,b,b] = 1 it suffices to show that [[b, a,a]” 1,b], [[a,b,b]7 ,a] € Z(R). In
the following calculations we use again the fact that (b, [ b)) and (a, [a,b]) are nilpotent
of class at most 2. We have

[b,a,allb,a,a,b b, a,a)’
= [[b,a]’,a’]
= [[b,a,b][b,a], ala, b]]
= [[b,a,b][b, ], a]*"
= [b,a,b, a] ballatlp, g, q)l@®
[

[a,b,b] 7", a][b, a, al.
Thus .
[a, 6,07, a] = [b,a,a,b]®> = [[b,a,a]™, b . (1)

From (1) we thus see that it suffices to shows that [[a,b,0]7!,a] € Z(R) and in fact it
suffices to show that [[a,b,b] ™!, a] commutes with b as then by symmetry, the RHS of (1)
commutes with a and thus [[a, b,b] ™!, a] commutes then with a as well.

From Lemma 2.2 we know that e(a®, %) = e(b?,a®) = 1 for all a, B € {1, —1}. In particu-
lar the equation (1) holds if we replace a by a~! or b by b=!. Calculating in the group (a, a®)



that is nilpotent of class at most 2, we see that [b,a™!, a7t = [a®,a™!] = [a7? a] = [b, a, a].
From this and (1) it follows that [[a, b, b]™!, a] is invariant under replacing a by a~!. Notice
also that [a=!,b,0] = [b=* ", 0] = [b~1, 0% " = [b=*,b]"* " =[a,b,b]* . Thus

lla,b,0] " a] = [[a=",b,b] ", a™ ] = [[a,b,b],a™ "] =[a,b,b,a]™ = [[a,b,b]~",a]l*>¥

But from Lemma 2.3 and (1) we know that [[a,b,b] ™!, a] = [[b,a,a]™*,b] ™' commutes with
b® and a’. Replacing a by a~! for the RHS we see that the common element also commutes
with % . Likewise it commutes with a’ . As

la,b,b]a™2 = [b,a]b" [a, bba™2 = a"babla aba™® b = a7 T abam D,
it follows that [[a,b,b] !, a] commutes with b.

As R is nilpotent of class at most 4, it follows that R is metabelian and using the nilpotent
quotient algorithm nq of Nickel [8] (which is implemented in GAP, [9]) one can see that
the class is exactly 4. It turns out that R is torsion-free with R’ = Z*. O

Remark. An interesting related result of [1] (Proposition 3.1) states that if S = {a,b}
with [a,b,b] = [b,a,a,a] =1, then (S) is nilpotent of class at most 3.

The following examples show that the hypotheses of Theorem A cannot be weakened.

Example 1. (Example 4.2 of [1].) Let = and y be elements of S;5 defined by

z =(1,2)(3,4)(5,6)(7,9,10,8)(11, 12)
y =(1,3)(2,4,5,7)(6,8)(9,11)(10, 12).

Then o(z) = 4 = o(y), [x,y,y,y] =1 = [y, 2,7, 2] and G = (z,y) has order 2° - 31 so, in
particular GG is not nilpotent.

Example 2. Let x and y be elements of S5 defined by

x =(1,2,3,4)(5,6,8,10)(7,9, 11, 12)
=(1,3)(2,4,5,7)(6,9)(8,11)(10, 12).

o), [v,y,y,9] =1 =27 y,9,9], ly, v, 2,2,0] =1 = [y 2, 2,2, 7]

Then o(z) =4 =
y) has order 2° - 31, so, in particular G is not nilpotent.

and G = (x,

3 Proofs of Theorem B and Theorem C
Lemma 3.1. Let G = (x,y) be a group where y € LM%(G). Then [x,,y] € Z(G).

Proof That [z,,y] commutes with z is a direct consequence of y € L, +%(G). Then

Yz, y, yx| = [0y, yx] = [T0 Yy, 2|[Thay]” = [2me1 y]* shows that [z,, y] commutes also
with y. O

Lemma 3.2. Let G be a group and let a,b € G. Suppose that for some n > 2
have that {a,b,a™, b=} is a n-Engel subset of G. Then e, 1(b=%,b) = e,_1(b, b~
€n,1<ba, b_l) = €n,1<b_1,ba) =1.
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Proof We have 1 = [a,,b] = [b7%,,_1b] = [b=%,,_1b]" and therefore [b=¢,, 1 b] =
1. Replacing b by b=! we see that [a,,b™'] = 1 implies [b%,,_1b7] = 1. Next we use
[a=',,b] = 1 that implies that [b=* ',,_1b] = 1 and thus after conjugation by a that
(0711 b%] = 1. Replacing b by b~! we see that [a™',,b"'] = 1 implies [b,,_1b7%] =1. O

Proposition 3.3. Let G be a (4 + %)—Engel 2-group. Then G 1is locally nilpotent.

Proof Taking the quotient of G by the Hirsch-Plotkin radical, we can assume that
HP(G) = 1 and we want to show that G = 1. We argue by contradiction and suppose
G # 1. As groups of exponent 4 are locally finite, there must be an element g € G of order
8. We get a contradiction by showing that (¢g*)¢ is abelian and thus g* € HP(G) = 1.

Let h € G and consider the subgroup H = (g, g) where g, = g7". Let H = H/Z(G) =
(g,g1) where g = gZ(H) and g3 = ¢1Z(H). By Lemma 3.2 we know that e(g,g1) =
e(g1,9) = e(¢g7,97") = e(g;,g7') = 1. By Theorem A we then know that H and
therefore H is finite. Using GAP or MAGMA one can then check that [g7*", ¢%] =
(g%, g*] = 1 and thus we have shown that (g*)¢ is abelian. O

Proposition 3.4. Let G be a (4 + 3)-Engel 3-group. Then G is locally nilpotent.

Proof As before we can assume that HP(G) = 1 and the aim is then to show that
G = 1. We argue by contradiction and suppose that G # 1. As groups of exponent 3 are
locally finite, there must be an element g € G of order 9. Let h € G and g; = g~ ". As
in the proof of Proposition 1 one sees that H is finite and then with the help of GAP or
MAGMA that [¢3, g3, ¢3] = 1. Thus [h, ¢3¢ ¢°] = 1 for all h € G and thus ¢° is a left
3-Engel element of G. By the main result of [5] we then know that ¢> € HP(G) = 1 that
contradicts the fact that o(g) =9. O

Lemma 3.5. Let G be a group and let a,b € G be two elements of finite order such that
S ={a,b,a”,b7'} is a 4-Engel set. Then every prime divisor of o([a,b]) is a divisor of
o(a) and o(b). In particular if a and b are of coprime order, then |a,b] = 1.

Proof By Lemma 3.2 together with Lemma 2.2, we know that S; = {b% b,07%, b1}
and Sy = {a’ a,a”',a”®} are 3-Engel subsets of G. By Theorem A we know that
H, = {(a,a®) and Hy = (b,b%) are nilpotent. As these groups are nilpotent we know
that every prime divisor of |H;| divides o(a) and every prime divisor of |Hs| divides o(b).
Now [a,b] € Hy N Hy and thus o([a, b]) divides |H;| and |H,| and thus o(a) and o(b) from
the discussion above. O

Proof of Theorem B. Let G be a {2,3}-group that is (4 + 3)-Engel. Let H be the
set consisting of all elements in G whose order is a power of 2 and Hj of those elements
whose order is a power of 3. In view of Propositions 3.3 and 3.4, it suffices to show that
H, and Hj are subgroups and that G is a direct product of Hy and Hz. Now take any
two elements a,b € G of coprime orders and let T = (a,b). By Lemma 3.1 we know
that e(a®,b%) = e(b?,a®) € Z(T) for all a, 8 € {1,—1}. By Lemma 3.5 it follows that
la,b] € Z(T). Thus T is nilpotent and as a and b are of coprime order, it follows that
la,b] = 1. Now let a € Hy and b € (H,) that has odd order. By the argument above
we know that [a,b] = 1 and as a € H, was arbitrary we see that b € Z((Hs)). Thus
(H2)/Z({H2)) is a 2-group and by Proposition 3.3 it is locally nilpotent and thus also
(Hy). As (Hy) is generated by 2-elements, it is then a 2-group and thus (Hy) = Hy and
thus Hs is a subgroup. The proof that Hj is a subgroup is similar using Proposition 3.4.
Now let a € Hy and b € Hj then [a,b] € Hy N Hy and thus trivial. Hence G is a direct
product of Hy and Hj and thus locally nilpotent. O
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Lemma 3.6. Let p > 5 be a prime and consider the group G = (x,y) where P = yp2 =1
and that {x,y,z™ 1, y~'} is a 3-Engel set. Then G has exponent p? and GP is abelian.

Proof By Theorem A we know that G is nilpotent of class at most 4. Then G is
regular and it follows easily that G?* = 1 and then that [G?,G?] = 1 (for definition and
properties of regular p-groups see §12.4 of [2], in particular Theorem 12.4.3). O

Proof of Theorem C. Let p > 5 be a prime and let G be a (4 + 1)-Engel p-group.
Consider H = G/HP(G) where HP(G) is the Hirsch-Plotkin radical of G. The aim is to
show that H is of exponent p. Passing from G to H we can thus without loss of generality
assume that the Hirsch-Plotkin radical of GG is trivial and the aim is to show that G is
then of exponent p. We argue by contradiction and suppose that G has an element g
of order p®. Let h € G and consider the subgroup H = (g,g;) where g; = g~". Let
H = H/Z(H) = (g,¢1) where g = gZ(H) and ¢, = ¢:Z(H). By Lemma 3.2 we know
that e(g,91) = e(g1,9) = e(974,97") = e(9;*,97') = 1. By Theorem A we then know
that H is finite and thus also H is finite. By Lemma 3.6 we know that [P, g"] = 1,
that is [¢7,¢?] € Z(H) and thus in particular [h, ¢, ¢*, ¢*] = [¢7, 9", ¢"] = 1. Thus ¢?
is a left 3-Engel element of odd order in G. By the main result of [5] it follows that
g € HP(G) = 1 that contradicts our assumption that o(g) = p*. O

Remark. The variety &, 1 seems to be the "engelization” of the variety of groups
satisfying the law [y, z1, zo, ..., 2,,y] = 1 studied by Macdonald in [6] and [7].
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