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Abstract

Let n be a positive integer. We say that a group G is an (n + 1
2)-Engel group if it

satisfies the law [x,n y, x] = 1. The variety of (n+ 1
2)-Engel groups lies between the

varieties of n-Engel groups and (n + 1)-Engel groups. In this paper we study these
groups and in particular we prove that all (4 + 1

2)-Engel {2, 3}-groups are locally
nilpotent. We also show that if G is a (4+ 1

2)-Engel p-group where p ≥ 5 is a prime,
then Gp is locally nilpotent.

1 Introduction

Let G be a group and g, h ∈ G. The commutator of g and h is the element [g, h] =
g−1h−1gh ∈ G. We define recursively [g,n h] where n is a positive integer as follows:
[g,1 h] = [g, h] and [g,n+1 h] = [[g,n h], h] for n ≥ 1. A subset S ⊆ G is an Engel set of
G if for every g, h ∈ S there is a positive integer k = k(g, h) such that [g,k h] = 1. If
k is bounded above by some positive integer n we say that S is an n-Engel subset and
if furthermore G = S, then G is an n-Engel group. Recall that every 2-Engel group is
nilpotent of class at most 3. By a classic result of Heineken [4] every 3-Engel group is
locally nilpotent and this result was later generalized to include all 4-Engel groups [3] (see
also [10]).

Recall that an element a ∈ G is said to be left n-Engel if [x,n a] = 1 for all x ∈ G
ad right n-Engel if [a,n x] = 1 for all x ∈ G. We denote the subset of left n-Engel ele-
ments by Ln(G) and the right n-Engel elements by Rn(G).

Definition. Let G be a group and n a positive integer.

(1) We say that a ∈ G is a left (n+ 1
2
)-Engel element if [x,n a, x] = 1 for all x ∈ G.

(2) We say that a ∈ G is a right (n+ 1
2
)-Engel element if [a,n x, a] = 1 for all x ∈ G.

(3) We say that G is an (n+ 1
2
)-Engel group if it satisfies the law [x,n y, x] = 1.
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We denote the subset of left (n+ 1
2
)-Engel elements by Ln+ 1

2
(G) and the right (n+ 1

2
)-Engel

elements by Rn+ 1
2
(G). Thus G is an (n + 1

2
)-Engel group if and only if Ln+ 1

2
(G) = G or

equivalently Rn+ 1
2
(G) = G. We denote the variety of m-Engel groups by Em.

Remark. It is not difficult to prove that L1+ 1
2
(G) = R2(G) and that R1+ 1

2
(G) = L2(G).

Thus in particular E1+ 1
2

= E2.

Lemma 1.1. Let G be a group and n a positive integer. We have Ln(G) ⊆ Ln+ 1
2
(G) ⊆

Ln+1(G). In particular En ⊆ En+ 1
2
⊆ En+1.

Proof That Ln(G) ⊆ Ln+ 1
2
(G) is obvious. To see that Ln+ 1

2
(G) ⊆ Ln+1(G), let

a ∈ Ln+ 1
2
(G). Then for any x ∈ G we have

1 = [ax,n a, ax] = [x,n a, x][x,n+1 a]x = [x,n+1 a]x.

Thus [x,n+1 a] = 1 and a ∈ Ln+1(G). 2

Our main results on (n+ 1
2
)-Engel groups are the following.

Theorem B. Let G be a (4 + 1
2
)-Engel {2, 3}-group. Then G is locally nilpotent.

Theorem C. Let G be a (4 + 1
2
)-Engel p-group where p is a prime and p ≥ 5. Then Gp

is locally nilpotent.

A major ingredient to the proofs is a result on Engel sets that is also of independent
interest. Let en = [x,n y] be the n-Engel word.

Theorem A. Let R = 〈a, b〉 be the largest 2-generator group satisfying the relations
e3(a, b) = e3(b, a) = e3(a

−1, b−1) = e3(b
−1, a−1) = 1. Then R is nilpotent of class 4.

We will see later that these relations imply that S = {a, b, a−1, b−1} is a 3-Engel sub-
set of R.

2 Proof of Theorem A

Consider the n-Engel word en(x, y) = [x,n y] = 1. As we will focus in particular on the
3-Engel word we will often use e(x, y) instead of e3(x, y).

Lemma 2.1. Suppose G is a group with elements a, b where e(a, b) = e(a−1, b−1) = 1.
Then 〈b, ba〉 = 〈b, [a, b]〉 is nilpotent of class at most 2.

Proof From the equations

1 = [a, b, b, b] = [b−ab, b, b] = [b−a, b, b]b

1 = [a−1, b−1, b−1, b−1] = [ba
−1

, b−1, b−1]b
−1

,

we see that 1 = [b−a, b, b] and 1 = [ba
−1
, b−1, b−1]a = [b, b−a, b−a]. Thus 〈b, ba〉 is nilpotent

of class at most 2. 2

Lemma 2.2. Let G be a group with elements a, b where e(a, b) = e(a−1, b−1) = 1. Then
[aε, bε1 , bε2 , bε3 ] = 1 for all ε, ε1, ε2, ε3 ∈ {1,−1}.
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Proof By symmetry it suffices to deal with the case when ε = 1. As [a, bε1 , bε2 , b−1] =
[a, bε1 , bε2 , b]−b

−1
we can also assume that ε3 = 1. Then from

[a, bε1 , b−1, b] = [[a, bε1 , b]−1, b]b
−1

= [a, bε1 , b, b]−[a,b
ε1 ,b]−1b−1

,

we can also without loss of generality assume that ε2 = 1. We are thus only left
with showing that [a, b−1, b, b] = 1 but this follows from Lemma 2.1 and the fact that
[a, b−1, b, b] = [bab−1, b, b] ∈ γ3(〈b, ba〉). 2

Remark. It follows from Lemma 2.2 that if e(a, b) = e(a−1, b−1) = e(b, a) = e(b−1, a−1) =
1, then S = {a, b, a−1, b−1} is a 3-Engel subset.

Lemma 2.3. Let G be a group with elements a, b satisfying e(a, b) = e(a−1, b−1) = 1.
Then [[a, b, b]−1, a] commutes with ba.

Proof From the Hall-Witt identity and Lemma 2.1 we have

1 = [[a, b, b], a−1, b]a[a, b−1, [a, b, b]]b[b, [a, b, b]−1, a][a,b,b]

= [a, b, b, a−1, b]a = [[a, b, b, a]−1, ba].

It follows that [a, b, b, a] commutes with ba and thus, using Lemma 2.1 again, [[a, b, b]−1, a] =
[a, b, b, a]−[a,b,b]

−1
commutes with ba as well. 2

Proof of Theorem A. Let R = 〈a, b〉 be the largest group satisfying the relations
e(a, b) = e(b, a) = e(a−1, b−1) = e(b−1, a−1) = 1. By the remark after Lemma 2.2 we know
that S = {a, b, a−1, b−1} is a 3-Engel subset of R.

In order to show that R is nilpotent of class at most 4 we need to show that a, b ∈ Z4(R).
This is equivalent to showing that [b, a] ∈ Z3(R). As 〈a, [a, b]〉 and 〈b, [a, b]〉 are nilpotent
of class at most 2, we see that [a, b, a] = [b, a, a]−1 and [b, a, b] = [a, b, b]−1. In order to
show that [b, a] ∈ Z3(R) we need to show that [b, a, a] and [b, a, b] = [a, b, b]−1 are in Z2(R).
As [b, a, a, a] = [a, b, b, b] = 1 it suffices to show that [[b, a, a]−1, b], [[a, b, b]−1, a] ∈ Z(R). In
the following calculations we use again the fact that 〈b, [a, b]〉 and 〈a, [a, b]〉 are nilpotent
of class at most 2. We have

[b, a, a][b, a, a, b] = [b, a, a]b

= [[b, a]b, ab]

= [[b, a, b][b, a], a[a, b]]

= [[b, a, b][b, a], a][a,b]

= [b, a, b, a][b,a][a,b][b, a, a][a,b]

= [[a, b, b]−1, a][b, a, a].

Thus
[[a, b, b]−1, a] = [b, a, a, b][b,a,a]

−1

= [[b, a, a]−1, b]−1. (1)

From (1) we thus see that it suffices to shows that [[a, b, b]−1, a] ∈ Z(R) and in fact it
suffices to show that [[a, b, b]−1, a] commutes with b as then by symmetry, the RHS of (1)
commutes with a and thus [[a, b, b]−1, a] commutes then with a as well.

From Lemma 2.2 we know that e(aα, bβ) = e(bβ, aα) = 1 for all α, β ∈ {1,−1}. In particu-
lar the equation (1) holds if we replace a by a−1 or b by b−1. Calculating in the group 〈a, ab〉
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that is nilpotent of class at most 2, we see that [b, a−1, a−1] = [ab, a−1] = [a−b, a] = [b, a, a].
From this and (1) it follows that [[a, b, b]−1, a] is invariant under replacing a by a−1. Notice
also that [a−1, b, b] = [b−a

−1
, b] = [b−1, ba]a

−1
= [b−a, b]−a

−1
= [a, b, b]−a

−1
. Thus

[[a, b, b]−1, a] = [[a−1, b, b]−1, a−1] = [[a, b, b], a−1]a
−1

= [a, b, b, a]−a
−2

= [[a, b, b]−1, a][a,b,b]a
−2

.

But from Lemma 2.3 and (1) we know that [[a, b, b]−1, a] = [[b, a, a]−1, b]−1 commutes with
ba and ab. Replacing a by a−1 for the RHS we see that the common element also commutes
with ba

−1
. Likewise it commutes with ab

−1
. As

[a, b, b]a−2 = [b, a]b−1[a, b]ba−2 = a−bab−1a−1aba−2b
−1

b = a−bb−a
−1

aba−2b
−1

b,

it follows that [[a, b, b]−1, a] commutes with b.

As R is nilpotent of class at most 4, it follows that R is metabelian and using the nilpotent
quotient algorithm nq of Nickel [8] (which is implemented in GAP, [9]) one can see that
the class is exactly 4. It turns out that R is torsion-free with R′ ∼= Z4. 2

Remark. An interesting related result of [1] (Proposition 3.1) states that if S = {a, b}
with [a, b, b] = [b, a, a, a] = 1, then 〈S〉 is nilpotent of class at most 3.

The following examples show that the hypotheses of Theorem A cannot be weakened.

Example 1. (Example 4.2 of [1].) Let x and y be elements of S12 defined by

x =(1, 2)(3, 4)(5, 6)(7, 9, 10, 8)(11, 12)

y =(1, 3)(2, 4, 5, 7)(6, 8)(9, 11)(10, 12).

Then o(x) = 4 = o(y), [x, y, y, y] = 1 = [y, x, x, x] and G = 〈x, y〉 has order 25 · 34, so, in
particular G is not nilpotent.

Example 2. Let x and y be elements of S12 defined by

x =(1, 2, 3, 4)(5, 6, 8, 10)(7, 9, 11, 12)

y =(1, 3)(2, 4, 5, 7)(6, 9)(8, 11)(10, 12).

Then o(x) = 4 = o(y), [x, y, y, y] = 1 = [x−1, y, y, y], [y, x, x, x, x] = 1 = [y−1, x, x, x, x]
and G = 〈x, y〉 has order 26 · 34, so, in particular G is not nilpotent.

3 Proofs of Theorem B and Theorem C

Lemma 3.1. Let G = 〈x, y〉 be a group where y ∈ Ln+ 1
2
(G). Then [x,n y] ∈ Z(G).

Proof That [x,n y] commutes with x is a direct consequence of y ∈ Ln+ 1
2
(G). Then

[yx,n y, yx] = [x,n y, yx] = [x,n y, x][xn+1y]x = [x,n+1 y]x shows that [x,n y] commutes also
with y. 2

Lemma 3.2. Let G be a group and let a, b ∈ G. Suppose that for some n ≥ 2 we
have that {a, b, a−1, b−1} is a n-Engel subset of G. Then en−1(b

−a, b) = en−1(b, b
−a) =

en−1(b
a, b−1) = en−1(b

−1, ba) = 1.
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Proof We have 1 = [a,n b] = [b−ab,n−1 b] = [b−a,n−1 b]
b and therefore [b−a,n−1 b] =

1. Replacing b by b−1 we see that [a,n b
−1] = 1 implies [ba,n−1 b

−1] = 1. Next we use
[a−1,n b] = 1 that implies that [b−a

−1
,n−1 b] = 1 and thus after conjugation by a that

[b−1,n−1 b
a] = 1. Replacing b by b−1 we see that [a−1,n b

−1] = 1 implies [b,n−1 b
−a] = 1. 2

Proposition 3.3. Let G be a (4 + 1
2
)-Engel 2-group. Then G is locally nilpotent.

Proof Taking the quotient of G by the Hirsch-Plotkin radical, we can assume that
HP(G) = 1 and we want to show that G = 1. We argue by contradiction and suppose
G 6= 1. As groups of exponent 4 are locally finite, there must be an element g ∈ G of order
8. We get a contradiction by showing that 〈g4〉G is abelian and thus g4 ∈ HP(G) = 1.

Let h ∈ G and consider the subgroup H = 〈g, g1〉 where g1 = g−h. Let H = H/Z(G) =
〈ḡ, ḡ1〉 where ḡ = gZ(H) and ḡ1 = g1Z(H). By Lemma 3.2 we know that e(g, g1) =
e(g1, g) = e(g−1, g−11 ) = e(g−11 , g−1) = 1. By Theorem A we then know that H̄ and
therefore H is finite. Using GAP or MAGMA one can then check that [g−4h, g4] =
[g41, g

4] = 1 and thus we have shown that 〈g4〉G is abelian. 2

Proposition 3.4. Let G be a (4 + 1
2
)-Engel 3-group. Then G is locally nilpotent.

Proof As before we can assume that HP(G) = 1 and the aim is then to show that
G = 1. We argue by contradiction and suppose that G 6= 1. As groups of exponent 3 are
locally finite, there must be an element g ∈ G of order 9. Let h ∈ G and g1 = g−h. As
in the proof of Proposition 1 one sees that H is finite and then with the help of GAP or
MAGMA that [g31, g

3, g3] = 1. Thus [h, g3, g3, g3] = 1 for all h ∈ G and thus g3 is a left
3-Engel element of G. By the main result of [5] we then know that g3 ∈ HP(G) = 1 that
contradicts the fact that o(g) = 9. 2

Lemma 3.5. Let G be a group and let a, b ∈ G be two elements of finite order such that
S = {a, b, a−1, b−1} is a 4-Engel set. Then every prime divisor of o([a, b]) is a divisor of
o(a) and o(b). In particular if a and b are of coprime order, then [a, b] = 1.

Proof By Lemma 3.2 together with Lemma 2.2, we know that S1 = {ba, b, b−a, b−1}
and S2 = {ab, a, a−1, a−b} are 3-Engel subsets of G. By Theorem A we know that
H1 = 〈a, ab〉 and H2 = 〈b, ba〉 are nilpotent. As these groups are nilpotent we know
that every prime divisor of |H1| divides o(a) and every prime divisor of |H2| divides o(b).
Now [a, b] ∈ H1 ∩H2 and thus o([a, b]) divides |H1| and |H2| and thus o(a) and o(b) from
the discussion above. 2

Proof of Theorem B. Let G be a {2, 3}-group that is (4 + 1
2
)-Engel. Let H2 be the

set consisting of all elements in G whose order is a power of 2 and H3 of those elements
whose order is a power of 3. In view of Propositions 3.3 and 3.4, it suffices to show that
H2 and H3 are subgroups and that G is a direct product of H2 and H3. Now take any
two elements a, b ∈ G of coprime orders and let T = 〈a, b〉. By Lemma 3.1 we know
that e(aα, bβ) = e(bβ, aα) ∈ Z(T ) for all α, β ∈ {1,−1}. By Lemma 3.5 it follows that
[a, b] ∈ Z(T ). Thus T is nilpotent and as a and b are of coprime order, it follows that
[a, b] = 1. Now let a ∈ H2 and b ∈ 〈H2〉 that has odd order. By the argument above
we know that [a, b] = 1 and as a ∈ H2 was arbitrary we see that b ∈ Z(〈H2〉). Thus
〈H2〉/Z(〈H2〉) is a 2-group and by Proposition 3.3 it is locally nilpotent and thus also
〈H2〉. As 〈H2〉 is generated by 2-elements, it is then a 2-group and thus 〈H2〉 = H2 and
thus H2 is a subgroup. The proof that H3 is a subgroup is similar using Proposition 3.4.
Now let a ∈ H2 and b ∈ H3 then [a, b] ∈ H2 ∩ H3 and thus trivial. Hence G is a direct
product of H2 and H3 and thus locally nilpotent. 2
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Lemma 3.6. Let p ≥ 5 be a prime and consider the group G = 〈x, y〉 where xp
2

= yp
2

= 1
and that {x, y, x−1, y−1} is a 3-Engel set. Then G has exponent p2 and Gp is abelian.

Proof By Theorem A we know that G is nilpotent of class at most 4. Then G is
regular and it follows easily that Gp2 = 1 and then that [Gp, Gp] = 1 (for definition and
properties of regular p-groups see §12.4 of [2], in particular Theorem 12.4.3). 2

Proof of Theorem C. Let p ≥ 5 be a prime and let G be a (4 + 1
2
)-Engel p-group.

Consider H = G/HP(G) where HP(G) is the Hirsch-Plotkin radical of G. The aim is to
show that H is of exponent p. Passing from G to H we can thus without loss of generality
assume that the Hirsch-Plotkin radical of G is trivial and the aim is to show that G is
then of exponent p. We argue by contradiction and suppose that G has an element g
of order p2. Let h ∈ G and consider the subgroup H = 〈g, g1〉 where g1 = g−h. Let
H = H/Z(H) = 〈ḡ, ḡ1〉 where ḡ = gZ(H) and ḡ1 = g1Z(H). By Lemma 3.2 we know
that e(g, g1) = e(g1, g) = e(g−1, g−11 ) = e(g−11 , g−1) = 1. By Theorem A we then know
that H is finite and thus also H is finite. By Lemma 3.6 we know that [ḡ1

p, ḡp] = 1,
that is [gp1, g

p] ∈ Z(H) and thus in particular [h, gp, gp, gp] = [gp1, g
p, gp] = 1. Thus gp

is a left 3-Engel element of odd order in G. By the main result of [5] it follows that
gp ∈ HP(G) = 1 that contradicts our assumption that o(g) = p2. 2

Remark. The variety En+ 1
2

seems to be the ”engelization” of the variety of groups

satisfying the law [y, x1, x2, . . . , xn, y] = 1 studied by Macdonald in [6] and [7].
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