On $\left(n+\frac{1}{2}\right)$-Engel groups

E. Jabara
Dipartimento di Filosofia e Beni Culturali
Università Ca'Foscari Venezia
G. Traustason
Department of Mathematical Sciences
University of Bath

Abstract

Let n be a positive integer. We say that a group G is an $\left(n+\frac{1}{2}\right)$-Engel group if it satisfies the law $[x, n y, x]=1$. The variety of $\left(n+\frac{1}{2}\right)$-Engel groups lies between the varieties of n-Engel groups and $(n+1)$-Engel groups. In this paper we study these groups and in particular we prove that all $\left(4+\frac{1}{2}\right)$-Engel $\{2,3\}$-groups are locally nilpotent. We also show that if G is a $\left(4+\frac{1}{2}\right)$-Engel p-group where $p \geq 5$ is a prime, then G^{p} is locally nilpotent.

1 Introduction

Let G be a group and $g, h \in G$. The commutator of g and h is the element $[g, h]=$ $g^{-1} h^{-1} g h \in G$. We define recursively $\left[g,_{n} h\right]$ where n is a positive integer as follows: $[g, 1 h]=[g, h]$ and $\left[g,_{n+1} h\right]=\left[\left[g,_{n} h\right], h\right]$ for $n \geq 1$. A subset $S \subseteq G$ is an Engel set of G if for every $g, h \in S$ there is a positive integer $k=k(g, h)$ such that $\left[g_{, k} h\right]=1$. If k is bounded above by some positive integer n we say that S is an n-Engel subset and if furthermore $G=S$, then G is an n-Engel group. Recall that every 2-Engel group is nilpotent of class at most 3. By a classic result of Heineken [4] every 3-Engel group is locally nilpotent and this result was later generalized to include all 4-Engel groups [3] (see also [10]).

Recall that an element $a \in G$ is said to be left n-Engel if $\left[x{ }_{,_{n}} a\right]=1$ for all $x \in G$ ad right n-Engel if $\left[a,{ }_{n} x\right]=1$ for all $x \in G$. We denote the subset of left n-Engel elements by $L_{n}(G)$ and the right n-Engel elements by $R_{n}(G)$.

Definition. Let G be a group and n a positive integer.
(1) We say that $a \in G$ is a left $\left(n+\frac{1}{2}\right)$-Engel element if $\left[x,{ }_{n} a, x\right]=1$ for all $x \in G$.
(2) We say that $a \in G$ is a right $\left(n+\frac{1}{2}\right)$-Engel element if $\left[a,{ }_{n} x, a\right]=1$ for all $x \in G$.
(3) We say that G is an $\left(n+\frac{1}{2}\right)$-Engel group if it satisfies the law $\left[x,{ }_{n} y, x\right]=1$.

We denote the subset of left $\left(n+\frac{1}{2}\right)$-Engel elements by $L_{n+\frac{1}{2}}(G)$ and the right $\left(n+\frac{1}{2}\right)$-Engel elements by $R_{n+\frac{1}{2}}(G)$. Thus G is an $\left(n+\frac{1}{2}\right)$-Engel group if and only if $L_{n+\frac{1}{2}}(G)=G$ or equivalently $R_{n+\frac{1}{2}}(G)=G$. We denote the variety of m-Engel groups by \mathcal{E}_{m}.

Remark. It is not difficult to prove that $L_{1+\frac{1}{2}}(G)=R_{2}(G)$ and that $R_{1+\frac{1}{2}}(G)=L_{2}(G)$. Thus in particular $\mathcal{E}_{1+\frac{1}{2}}=\mathcal{E}_{2}$.

Lemma 1.1. Let G be a group and n a positive integer. We have $L_{n}(G) \subseteq L_{n+\frac{1}{2}}(G) \subseteq$ $L_{n+1}(G)$. In particular $\mathcal{E}_{n} \subseteq \mathcal{E}_{n+\frac{1}{2}} \subseteq \mathcal{E}_{n+1}$.

Proof That $L_{n}(G) \subseteq L_{n+\frac{1}{2}}(G)$ is obvious. To see that $L_{n+\frac{1}{2}}(G) \subseteq L_{n+1}(G)$, let $a \in L_{n+\frac{1}{2}}(G)$. Then for any $x \in G$ we have

$$
1=\left[a x,_{n} a, a x\right]=\left[x,{ }_{n} a, x\right]\left[x,_{n+1} a\right]^{x}=\left[x,_{n+1} a\right]^{x} .
$$

Thus $\left[x,_{n+1} a\right]=1$ and $a \in L_{n+1}(G)$.
Our main results on ($n+\frac{1}{2}$)-Engel groups are the following.
Theorem B. Let G be a $\left(4+\frac{1}{2}\right)$-Engel $\{2,3\}$-group. Then G is locally nilpotent.
Theorem C. Let G be a $\left(4+\frac{1}{2}\right)$-Engel p-group where p is a prime and $p \geq 5$. Then G^{p} is locally nilpotent.

A major ingredient to the proofs is a result on Engel sets that is also of independent interest. Let $e_{n}=[x, n y]$ be the n-Engel word.

Theorem A. Let $R=\langle a, b\rangle$ be the largest 2-generator group satisfying the relations $e_{3}(a, b)=e_{3}(b, a)=e_{3}\left(a^{-1}, b^{-1}\right)=e_{3}\left(b^{-1}, a^{-1}\right)=1$. Then R is nilpotent of class 4 .

We will see later that these relations imply that $S=\left\{a, b, a^{-1}, b^{-1}\right\}$ is a 3 -Engel subset of R.

2 Proof of Theorem A

Consider the n-Engel word $e_{n}(x, y)=\left[x,_{n} y\right]=1$. As we will focus in particular on the 3 -Engel word we will often use $e(x, y)$ instead of $e_{3}(x, y)$.
Lemma 2.1. Suppose G is a group with elements a, b where $e(a, b)=e\left(a^{-1}, b^{-1}\right)=1$. Then $\left\langle b, b^{a}\right\rangle=\langle b,[a, b]\rangle$ is nilpotent of class at most 2 .

Proof From the equations

$$
\begin{aligned}
& 1=[a, b, b, b]=\left[b^{-a} b, b, b\right]=\left[b^{-a}, b, b\right]^{b} \\
& 1=\left[a^{-1}, b^{-1}, b^{-1}, b^{-1}\right]=\left[b^{a^{-1}}, b^{-1}, b^{-1}\right]^{b^{-1}}
\end{aligned}
$$

we see that $1=\left[b^{-a}, b, b\right]$ and $1=\left[b^{a^{-1}}, b^{-1}, b^{-1}\right]^{a}=\left[b, b^{-a}, b^{-a}\right]$. Thus $\left\langle b, b^{a}\right\rangle$ is nilpotent of class at most 2 .

Lemma 2.2. Let G be a group with elements a, b where $e(a, b)=e\left(a^{-1}, b^{-1}\right)=1$. Then $\left[a^{\epsilon}, b^{\epsilon_{1}}, b^{\epsilon_{2}}, b^{\epsilon_{3}}\right]=1$ for all $\epsilon, \epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in\{1,-1\}$.

Proof By symmetry it suffices to deal with the case when $\epsilon=1$. As $\left[a, b^{\epsilon_{1}}, b^{\epsilon_{2}}, b^{-1}\right]=$ $\left[a, b^{\epsilon_{1}}, b^{\epsilon_{2}}, b\right]^{-b^{-1}}$ we can also assume that $\epsilon_{3}=1$. Then from

$$
\left[a, b^{\epsilon_{1}}, b^{-1}, b\right]=\left[\left[a, b^{\epsilon_{1}}, b\right]^{-1}, b\right]^{b^{-1}}=\left[a, b^{\epsilon_{1}}, b, b\right]^{-\left[a, b^{\epsilon_{1}}, b\right]^{-1} b^{-1}}
$$

we can also without loss of generality assume that $\epsilon_{2}=1$. We are thus only left with showing that $\left[a, b^{-1}, b, b\right]=1$ but this follows from Lemma 2.1 and the fact that $\left[a, b^{-1}, b, b\right]=\left[b^{a} b^{-1}, b, b\right] \in \gamma_{3}\left(\left\langle b, b^{a}\right\rangle\right)$.

Remark. It follows from Lemma 2.2 that if $e(a, b)=e\left(a^{-1}, b^{-1}\right)=e(b, a)=e\left(b^{-1}, a^{-1}\right)=$ 1 , then $S=\left\{a, b, a^{-1}, b^{-1}\right\}$ is a 3 -Engel subset.

Lemma 2.3. Let G be a group with elements a, b satisfying $e(a, b)=e\left(a^{-1}, b^{-1}\right)=1$. Then $\left[[a, b, b]^{-1}, a\right]$ commutes with b^{a}.

Proof From the Hall-Witt identity and Lemma 2.1 we have

$$
\begin{aligned}
1 & =\left[[a, b, b], a^{-1}, b\right]^{a}\left[a, b^{-1},[a, b, b]\right]^{b}\left[b,[a, b, b]^{-1}, a\right]^{[a, b, b]} \\
& =\left[a, b, b, a^{-1}, b\right]^{a}=\left[[a, b, b, a]^{-1}, b^{a}\right] .
\end{aligned}
$$

It follows that $[a, b, b, a]$ commutes with b^{a} and thus, using Lemma 2.1 again, $\left[[a, b, b]^{-1}, a\right]=$ $[a, b, b, a]^{-[a, b, b]^{-1}}$ commutes with b^{a} as well.

Proof of Theorem A. Let $R=\langle a, b\rangle$ be the largest group satisfying the relations $e(a, b)=e(b, a)=e\left(a^{-1}, b^{-1}\right)=e\left(b^{-1}, a^{-1}\right)=1$. By the remark after Lemma 2.2 we know that $S=\left\{a, b, a^{-1}, b^{-1}\right\}$ is a 3 -Engel subset of R.

In order to show that R is nilpotent of class at most 4 we need to show that $a, b \in Z_{4}(R)$. This is equivalent to showing that $[b, a] \in Z_{3}(R)$. As $\langle a,[a, b]\rangle$ and $\langle b,[a, b]\rangle$ are nilpotent of class at most 2, we see that $[a, b, a]=[b, a, a]^{-1}$ and $[b, a, b]=[a, b, b]^{-1}$. In order to show that $[b, a] \in Z_{3}(R)$ we need to show that $[b, a, a]$ and $[b, a, b]=[a, b, b]^{-1}$ are in $Z_{2}(R)$. As $[b, a, a, a]=[a, b, b, b]=1$ it suffices to show that $\left[[b, a, a]^{-1}, b\right],\left[[a, b, b]^{-1}, a\right] \in Z(R)$. In the following calculations we use again the fact that $\langle b,[a, b]\rangle$ and $\langle a,[a, b]\rangle$ are nilpotent of class at most 2. We have

$$
\begin{aligned}
{[b, a, a][b, a, a, b] } & =[b, a, a]^{b} \\
& =\left[[b, a]^{b}, a^{b}\right] \\
& =[[b, a, b][b, a], a[a, b]] \\
& =[[b, a, b][b, a], a]^{[a, b]} \\
& =[b, a, b, a]^{[b, a][a, b]}[b, a, a]^{[a, b]} \\
& =\left[[a, b, b]^{-1}, a\right][b, a, a] .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left[[a, b, b]^{-1}, a\right]=[b, a, a, b]^{[b, a, a]^{-1}}=\left[[b, a, a]^{-1}, b\right]^{-1} \tag{1}
\end{equation*}
$$

From (1) we thus see that it suffices to shows that $\left[[a, b, b]^{-1}, a\right] \in Z(R)$ and in fact it suffices to show that $\left[[a, b, b]^{-1}, a\right]$ commutes with b as then by symmetry, the RHS of (1) commutes with a and thus $\left[[a, b, b]^{-1}, a\right]$ commutes then with a as well.

From Lemma 2.2 we know that $e\left(a^{\alpha}, b^{\beta}\right)=e\left(b^{\beta}, a^{\alpha}\right)=1$ for all $\alpha, \beta \in\{1,-1\}$. In particular the equation (1) holds if we replace a by a^{-1} or b by b^{-1}. Calculating in the group $\left\langle a, a^{b}\right\rangle$
that is nilpotent of class at most 2, we see that $\left[b, a^{-1}, a^{-1}\right]=\left[a^{b}, a^{-1}\right]=\left[a^{-b}, a\right]=[b, a, a]$. From this and (1) it follows that $\left[[a, b, b]^{-1}, a\right]$ is invariant under replacing a by a^{-1}. Notice also that $\left[a^{-1}, b, b\right]=\left[b^{-a^{-1}}, b\right]=\left[b^{-1}, b^{a}\right]^{a^{-1}}=\left[b^{-a}, b\right]^{-a^{-1}}=[a, b, b]^{-a^{-1}}$. Thus $\left[[a, b, b]^{-1}, a\right]=\left[\left[a^{-1}, b, b\right]^{-1}, a^{-1}\right]=\left[[a, b, b], a^{-1}\right]^{a^{-1}}=[a, b, b, a]^{-a^{-2}}=\left[[a, b, b]^{-1}, a\right]^{[a, b, b] a^{-2}}$. But from Lemma 2.3 and (1) we know that $\left[[a, b, b]^{-1}, a\right]=\left[[b, a, a]^{-1}, b\right]^{-1}$ commutes with b^{a} and a^{b}. Replacing a by a^{-1} for the RHS we see that the common element also commutes with $b^{a^{-1}}$. Likewise it commutes with $a^{b^{-1}}$. As

$$
[a, b, b] a^{-2}=[b, a] b^{-1}[a, b] b a^{-2}=a^{-b} a b^{-1} a^{-1} a^{b} a^{-2 b^{-1}} b=a^{-b} b^{-a^{-1}} a^{b} a^{-2 b^{-1}} b,
$$

it follows that $\left[[a, b, b]^{-1}, a\right]$ commutes with b.
As R is nilpotent of class at most 4, it follows that R is metabelian and using the nilpotent quotient algorithm nq of Nickel [8] (which is implemented in GAP, [9]) one can see that the class is exactly 4 . It turns out that R is torsion-free with $R^{\prime} \cong \mathbb{Z}^{4}$.

Remark. An interesting related result of [1] (Proposition 3.1) states that if $S=\{a, b\}$ with $[a, b, b]=[b, a, a, a]=1$, then $\langle S\rangle$ is nilpotent of class at most 3.

The following examples show that the hypotheses of Theorem A cannot be weakened.
Example 1. (Example 4.2 of [1].) Let x and y be elements of S_{12} defined by

$$
\begin{aligned}
& x=(1,2)(3,4)(5,6)(7,9,10,8)(11,12) \\
& y=(1,3)(2,4,5,7)(6,8)(9,11)(10,12) .
\end{aligned}
$$

Then $o(x)=4=o(y),[x, y, y, y]=1=[y, x, x, x]$ and $G=\langle x, y\rangle$ has order $2^{5} \cdot 3^{4}$, so, in particular G is not nilpotent.

Example 2. Let x and y be elements of S_{12} defined by

$$
\begin{aligned}
& x=(1,2,3,4)(5,6,8,10)(7,9,11,12) \\
& y=(1,3)(2,4,5,7)(6,9)(8,11)(10,12) .
\end{aligned}
$$

Then $o(x)=4=o(y),[x, y, y, y]=1=\left[x^{-1}, y, y, y\right],[y, x, x, x, x]=1=\left[y^{-1}, x, x, x, x\right]$ and $G=\langle x, y\rangle$ has order $2^{6} \cdot 3^{4}$, so, in particular G is not nilpotent.

3 Proofs of Theorem B and Theorem C

Lemma 3.1. Let $G=\langle x, y\rangle$ be a group where $y \in L_{n+\frac{1}{2}}(G)$. Then $\left[x,{ }_{n} y\right] \in Z(G)$.
Proof That $\left[x,_{n} y\right]$ commutes with x is a direct consequence of $y \in L_{n+\frac{1}{2}}(G)$. Then $\left[y x,_{n} y, y x\right]=[x, n y, y x]=\left[x,_{n} y, x\right]\left[x_{n+1} y\right]^{x}=\left[x,_{n+1} y\right]^{x}$ shows that $\left[x,_{n} y\right]$ commutes also with y.

Lemma 3.2. Let G be a group and let $a, b \in G$. Suppose that for some $n \geq 2$ we have that $\left\{a, b, a^{-1}, b^{-1}\right\}$ is a n-Engel subset of G. Then $e_{n-1}\left(b^{-a}, b\right)=e_{n-1}\left(b, b^{-a}\right)=$ $e_{n-1}\left(b^{a}, b^{-1}\right)=e_{n-1}\left(b^{-1}, b^{a}\right)=1$.

Proof We have $1=\left[a{ }_{n} b\right]=\left[b^{-a} b{ }_{,_{n-1}} b\right]=\left[b^{-a}{ }_{,{ }_{n-1}} b\right]^{b}$ and therefore $\left[b^{-a}{ }_{,{ }_{n-1}} b\right]=$ 1. Replacing b by b^{-1} we see that $\left[a,{ }_{n} b^{-1}\right]=1$ implies $\left[b^{a}{ }_{, n-1} b^{-1}\right]=1$. Next we use $\left[a^{-1},{ }_{n} b\right]=1$ that implies that $\left[b^{-a^{-1}},{ }_{n-1} b\right]=1$ and thus after conjugation by a that $\left[b^{-1}{ }_{, n-1} b^{a}\right]=1$. Replacing b by b^{-1} we see that $\left[a^{-1}{ }_{, n} b^{-1}\right]=1$ implies $\left[b_{,_{n-1}} b^{-a}\right]=1$.

Proposition 3.3. Let G be a $\left(4+\frac{1}{2}\right)$-Engel 2-group. Then G is locally nilpotent.
Proof Taking the quotient of G by the Hirsch-Plotkin radical, we can assume that $\operatorname{HP}(G)=1$ and we want to show that $G=1$. We argue by contradiction and suppose $G \neq 1$. As groups of exponent 4 are locally finite, there must be an element $g \in G$ of order 8. We get a contradiction by showing that $\left\langle g^{4}\right\rangle^{G}$ is abelian and thus $g^{4} \in \operatorname{HP}(G)=1$.

Let $h \in G$ and consider the subgroup $H=\left\langle g, g_{1}\right\rangle$ where $g_{1}=g^{-h}$. Let $\bar{H}=H / Z(G)=$ $\left\langle\bar{g}, \bar{g}_{1}\right\rangle$ where $\bar{g}=g Z(H)$ and $\bar{g}_{1}=g_{1} Z(H)$. By Lemma 3.2 we know that $e\left(g, g_{1}\right)=$ $e\left(g_{1}, g\right)=e\left(g^{-1}, g_{1}^{-1}\right)=e\left(g_{1}^{-1}, g^{-1}\right)=1$. By Theorem A we then know that \bar{H} and therefore H is finite. Using GAP or MAGMA one can then check that $\left[g^{-4 h}, g^{4}\right]=$ $\left[g_{1}^{4}, g^{4}\right]=1$ and thus we have shown that $\left\langle g^{4}\right\rangle^{G}$ is abelian.
Proposition 3.4. Let G be a $\left(4+\frac{1}{2}\right)$-Engel 3-group. Then G is locally nilpotent.
Proof As before we can assume that $\operatorname{HP}(G)=1$ and the aim is then to show that $G=1$. We argue by contradiction and suppose that $G \neq 1$. As groups of exponent 3 are locally finite, there must be an element $g \in G$ of order 9 . Let $h \in G$ and $g_{1}=g^{-h}$. As in the proof of Proposition 1 one sees that H is finite and then with the help of GAP or MAGMA that $\left[g_{1}^{3}, g^{3}, g^{3}\right]=1$. Thus $\left[h, g^{3}, g^{3}, g^{3}\right]=1$ for all $h \in G$ and thus g^{3} is a left 3-Engel element of G. By the main result of [5] we then know that $g^{3} \in \operatorname{HP}(G)=1$ that contradicts the fact that $o(g)=9$.

Lemma 3.5. Let G be a group and let $a, b \in G$ be two elements of finite order such that $S=\left\{a, b, a^{-1}, b^{-1}\right\}$ is a 4-Engel set. Then every prime divisor of $o([a, b])$ is a divisor of $o(a)$ and $o(b)$. In particular if a and b are of coprime order, then $[a, b]=1$.

Proof By Lemma 3.2 together with Lemma 2.2, we know that $S_{1}=\left\{b^{a}, b, b^{-a}, b^{-1}\right\}$ and $S_{2}=\left\{a^{b}, a, a^{-1}, a^{-b}\right\}$ are 3-Engel subsets of G. By Theorem A we know that $H_{1}=\left\langle a, a^{b}\right\rangle$ and $H_{2}=\left\langle b, b^{a}\right\rangle$ are nilpotent. As these groups are nilpotent we know that every prime divisor of $\left|H_{1}\right|$ divides $o(a)$ and every prime divisor of $\left|H_{2}\right|$ divides $o(b)$. Now $[a, b] \in H_{1} \cap H_{2}$ and thus $o([a, b])$ divides $\left|H_{1}\right|$ and $\left|H_{2}\right|$ and thus $o(a)$ and $o(b)$ from the discussion above.

Proof of Theorem B. Let G be a $\{2,3\}$-group that is $\left(4+\frac{1}{2}\right)$-Engel. Let H_{2} be the set consisting of all elements in G whose order is a power of 2 and H_{3} of those elements whose order is a power of 3 . In view of Propositions 3.3 and 3.4 , it suffices to show that H_{2} and H_{3} are subgroups and that G is a direct product of H_{2} and H_{3}. Now take any two elements $a, b \in G$ of coprime orders and let $T=\langle a, b\rangle$. By Lemma 3.1 we know that $e\left(a^{\alpha}, b^{\beta}\right)=e\left(b^{\beta}, a^{\alpha}\right) \in Z(T)$ for all $\alpha, \beta \in\{1,-1\}$. By Lemma 3.5 it follows that $[a, b] \in Z(T)$. Thus T is nilpotent and as a and b are of coprime order, it follows that $[a, b]=1$. Now let $a \in H_{2}$ and $b \in\left\langle H_{2}\right\rangle$ that has odd order. By the argument above we know that $[a, b]=1$ and as $a \in H_{2}$ was arbitrary we see that $b \in Z\left(\left\langle H_{2}\right\rangle\right)$. Thus $\left\langle H_{2}\right\rangle / Z\left(\left\langle H_{2}\right\rangle\right)$ is a 2-group and by Proposition 3.3 it is locally nilpotent and thus also $\left\langle H_{2}\right\rangle$. As $\left\langle H_{2}\right\rangle$ is generated by 2-elements, it is then a 2-group and thus $\left\langle H_{2}\right\rangle=H_{2}$ and thus H_{2} is a subgroup. The proof that H_{3} is a subgroup is similar using Proposition 3.4. Now let $a \in H_{2}$ and $b \in H_{3}$ then $[a, b] \in H_{2} \cap H_{3}$ and thus trivial. Hence G is a direct product of H_{2} and H_{3} and thus locally nilpotent.

Lemma 3.6. Let $p \geq 5$ be a prime and consider the group $G=\langle x, y\rangle$ where $x^{p^{2}}=y^{p^{2}}=1$ and that $\left\{x, y, x^{-1}, y^{-1}\right\}$ is a 3 -Engel set. Then G has exponent p^{2} and G^{p} is abelian.

Proof By Theorem A we know that G is nilpotent of class at most 4. Then G is regular and it follows easily that $G^{p^{2}}=1$ and then that $\left[G^{p}, G^{p}\right]=1$ (for definition and properties of regular p-groups see $\S 12.4$ of [2], in particular Theorem 12.4.3).

Proof of Theorem C. Let $p \geq 5$ be a prime and let G be a $\left(4+\frac{1}{2}\right)$-Engel p-group. Consider $H=G / \operatorname{HP}(G)$ where $\operatorname{HP}(G)$ is the Hirsch-Plotkin radical of G. The aim is to show that H is of exponent p. Passing from G to H we can thus without loss of generality assume that the Hirsch-Plotkin radical of G is trivial and the aim is to show that G is then of exponent p. We argue by contradiction and suppose that G has an element g of order p^{2}. Let $h \in G$ and consider the subgroup $H=\left\langle g, g_{1}\right\rangle$ where $g_{1}=g^{-h}$. Let $\bar{H}=H / Z(H)=\left\langle\bar{g}, \bar{g}_{1}\right\rangle$ where $\bar{g}=g Z(H)$ and $\overline{g_{1}}=g_{1} Z(H)$. By Lemma 3.2 we know that $e\left(g, g_{1}\right)=e\left(g_{1}, g\right)=e\left(g^{-1}, g_{1}^{-1}\right)=e\left(g_{1}^{-1}, g^{-1}\right)=1$. By Theorem A we then know that \bar{H} is finite and thus also H is finite. By Lemma 3.6 we know that $\left[\bar{g}_{1}{ }^{p}, \bar{g}^{p}\right]=1$, that is $\left[g_{1}^{p}, g^{p}\right] \in Z(H)$ and thus in particular $\left[h, g^{p}, g^{p}, g^{p}\right]=\left[g_{1}^{p}, g^{p}, g^{p}\right]=1$. Thus g^{p} is a left 3-Engel element of odd order in G. By the main result of [5] it follows that $g^{p} \in \operatorname{HP}(G)=1$ that contradicts our assumption that $o(g)=p^{2}$.

Remark. The variety $\mathcal{E}_{n+\frac{1}{2}}$ seems to be the "engelization" of the variety of groups satisfying the law $\left[y, x_{1}, x_{2}, \ldots, x_{n}, y\right]=1$ studied by Macdonald in [6] and [7].

References

[1] A. Abdollahi, R. Brandl and A. Tortora, Groups generated by a finite Engel set, J. Algebra 347 (2011), 53-59.
[2] Hall, Marshall, Jr. The theory of groups. Reprinting of the 1968 edition. Chelsea Publishing Co., New York, (1976).
[3] G. Havas and M. R. Vaughan-Lee, 4-Engel groups are locally nilpotent, Int. J. Alg. Comp. 15 (2005), 649-682.
[4] H. Heineken, Englesche Elemente der Läge drei, Illinois J. Math. 5 (1961), 581-707.
[5] E. Jabara and G. Traustason, Left 3-Engel elements of odd order in groups, Proc. Am. Math. Soc. 147 (2019), 1921-1927.
[6] I. D. Macdonald, On certain varieties of groups, Math. Z. 76 (1961), 270-282.
[7] I. D. Macdonald, On certain varieties of groups II, Math. Z. 78 (1962), 175-178.
[8] W. Nickel, NQ, 1998, A refereed GAP 4 package, see [9].
[9] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12 (2008).
[10] G. Traustason, The local nilpotence theorem for 4-Engel groups revisited, Int. J. Group Theory 43 (2015), 21-75.

