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Abstract

In this paper we continue the study of powerfully nilpotent groups started in [6].
These are powerful p-groups possessing a central series of a special kind. To each
such group one can attach a powerful class that leads naturally to the notion of a
powerful coclass and classification in terms of an ancestry tree. The focus here is
on powerfully nilpotent groups of maximal powerful class but these can be seen as
the analogs of groups of maximal class in the class of all finite p-groups. We show
that for any given positive integer r and prime p > r, there exists a powerfully
nilpotent group of maximal powerful class and we analyse the structure of these
groups. The construction uses the Lazard correspondence and thus we construct
first a powerfully nilpotent Lie ring of maximal powerful class and then lift this to
a corresponding group of maximal powerful class. We also develop the theory of
powerfully nilpotent Lie rings that is analogous to the theory of powerfully nilpotent
groups.

AMS classification: 20D15, 20F40, Keywords: Powerful, p-group, nilpotent,
p-group, coclass, maximal class.

1 Introduction

In this paper we continue the study of powerfully nilpotent p-groups started in [6] and
continued in [7]. Powerful p-groups were introduced by Lubotzky and Mann in [5]. The
class of powerfully nilpotent groups is a special subclass of these, containing groups that
possess a central series of a special kind. We start by recalling the basic terms. Let G be
a finite p-group where p is a prime.

Definition. Let H ≤ K ≤ G. An ascending chain of subgroups

H = H0 ≤ H1 ≤ · · · ≤ Hn = K

is powerfully central in G if [Hi, G] ≤ Hp
i−1 for i = 1, . . . , n. Here n is called the length of

the chain.

Definition. A powerful p-group G is powerfully nilpotent if it has an ascending chain
of subgroups of the form

{1} = H0 ≤ H1 ≤ · · · ≤ Hn = G
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that is powerfully central in G.

Definition. If G is powerfully nilpotent then the powerful nilpotence class of G is the
shortest length that a powerfully central chain of G can have.

Definition. We say that a finite p-group G is strongly powerful if [G,G] ≤ Gp2 .

In [6] we showed that a strongly powerful p-group is powerfully nilpotent of powerful
class at most e− 1 where pe is the exponent of the group.

The upper powerfully central series. This is defined recursively as follows: Ẑ0(G) =
{1} and for n ≥ 1,

Ẑn(G) = {a ∈ G : [a, x] ∈ Ẑn−1(G)p for all x ∈ G}.

Notice in particular that Ẑ1(G) = Z(G).

Definition. Let G be a powerfully nilpotent p-group of powerful class c and order pn.
We define the powerful coclass of G to be the number n− c.

A natural approach is to develop something that corresponds to a coclass theory for
finite p-groups where coclass is replaced by powerful coclass and in [6] we proved that
there are indeed, for any fixed prime p, finitely many powerfully nilpotent p-groups of any
given powerful coclass. More precisely, if G is a powerfully nilpotent p-group of rank r
and exponent pe then we showed that r ≤ n− c+ 1 and e ≤ n− c+ 1. This together with
n ≤ re gives the result.

The ancestry tree. Let p be a fixed prime. The vertices of the ancestry tree are
all the powerfully nilpotent p-groups (one for each isomorphism class). Two vertices G
and H are joined by a directed edge from H to G if and only if H ∼= G/Z(G)p and G is
not abelian. Notice that this implies that Z(G)p 6= {1} and thus the powerful class of G
is one more than that of H. We then also say that G is a direct ancestor of H or that H
is a direct descendant of G, and we write H → G.

Let c(H), c(G) be the powerfully nilpotent classes of H and G and let d(H), d(G) be
the powerful coclasses, that is d(H) = n(H) − c(H) and d(G) = n(G) − c(G) where the
orders of H and G are pn(H) and pn(G). Notice that c(H) = c(G)+1 and that d(H) ≥ d(G)
with equality if and only if |Z(G)p| = p.

We will now recall some more terms from [6].

Definition. Let G be a powerfully nilpotent p-group and let k be the largest non-negative
integer such that

p = |Z(G)p| = |Ẑ2(G)p

Ẑ1(G)p
| = · · · = | Ẑk(G)p

Ẑk−1(G)p
|.

we refer to Ẑk(G)p as the tail of G and k as the length of the tail.

Remark. If G has a tail of length k then G,G/Ẑ1(G)p, G/Ẑ2(G)p, . . . , G/Ẑk(G)p all
have the same powerful coclass.
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Definition. Let G be a powerfully nilpotent p-group. We say that G has maximal
tail if the tail of G is Gp.

The following summarises some of the properties of groups with a maximal tail.

Theorem(T,W [6]). Let G be a powerfully nilpotent group of rank r ≥ 2 that has a
maximal tail. Suppose G has order pn, powerful class c and exponent pe. Let t be the
length of the tail.

(a) We have c− 1 ≤ t ≤ c. It follows also that n− c ≤ r ≤ n− c+ 1.

(b) We have t ≤ 1 + r(r−1)
2

.

(c) We have rank(G) > rank(Gp) > · · · > rank(Gpe−2
).

We conjectured in [6] that the bound given in (b) is attained and we will show in this
paper that this is the case when p > r. A powerfully nilpotent group, for which this
bound is attained, will be called a group of maximal powerful class.

The paper is organised as follows. In Section 2 we will develop the theory of power-
fully nilpotent Lie rings that is analogous to the theory of powerfully nilpotent groups
with similar results. In Section 3 we show the existence of a powerfully nilpotent Lie ring
of maximal powerful class for any prime p and any rank r and we show that the structure
of Lie rings of maximal powerful class is constrained. In the final section we then use the
Lazard correspondence to obtain the analogous results for powerfully nilpotent p-groups
of maximal powerful class when p > r. The main structure result, Theorem 4.2, shows
some parallels with the structure of groups with maximal class (see for example [1] or
chapter 3.14 in [2]) in the class of all finite p-groups. We refer to [4] for an account of
coclass theory for finite p-groups.

2 Powerfully nilpotent Lie rings

Definition. Let L be a finite Lie ring of p-power order and let M,N be subrings where
M ≤ N ≤ L. We say that an ascending chain of subrings

M = J0 ≤ J1 ≤ · · · ≤ Jn = N

is powerfully central in L if [Ji, L] ≤ pJi−1 for i = 1, . . . , n. Here n is called the length of
the chain.

Definition. Let L be a finite Lie ring of p-power order. We say that L is powerfully
nilpotent if it has an ascending chain of ideals of the form

0 = J0 ≤ J1 ≤ · · · ≤ Jn = L

that is powerfully central in L.

Definition. If L is powerfully nilpotent then the powerful nilpotence class of L is the
shortest length that a powerfully central chain of L can have.
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Definition. Let L be a finite Lie ring of p-power order. We say that L is powerful
if [L,L] ≤ pL and strongly powerful if [L,L] ≤ p2L.

Remark. Clearly a powerfully nilpotent Lie ring is powerful. The next lemma shows
that a strongly powerful Lie ring is powerfully nilpotent.

Lemma 2.1 Let L be a strongly powerful Lie ring of characteristic pe. Then L is power-
fully nilpotent. Furthermore the powerful class is at most e− 1 if e ≥ 2 and the powerful
class is equal to e if e ≤ 1.

Proof The result for e ≤ 1 is clear so we only need to consider the situation when e ≥ 2.
In order to deal with this case, it suffices to show that

L > pL > p2L > · · · > pe−2L > {0}

is powerfully central. This follows from [pe−2L,L] ≤ pe−2(p2L) = {0} and [pkL,L] ≤
pk(p2L) = p(pk+1L) when 0 ≤ k < e− 2. 2

The upper powerfully central series. This is defined recursively as follows: Ẑ0(L) =
{0} and for n ≥ 1,

Ẑn(L) = {a ∈ L : [a, x] ∈ pẐn−1(L) for all x ∈ L}.

Remark. The upper powerfully central series is clearly the fastest ascending series that is
powerfully central. It is easy to see that L is powerfully nilpotent if and only if L = Ẑn(L)
for some n and the smallest such n is then the powerful class.

The next result is analogous to a corresponding result from [6].

Proposition 2.2 Let L be a finite Lie ring of characteristic pe where e ≥ 2. If L/p2L is
powerfully nilpotent, then L is powerfully nilpotent. Furthermore if L/p2L has powerful
class m, then the powerful class of L is at most (e− 1)m.

Proof Suppose

L/p2L = J0/p
2L > J1/p

2L > · · · > Jm−1/p
2L > {0}

is the upper powerfully central series for L/p2L. As L/p2L is powerful, we have [L,L] ≤
pL + p2L = pL and L is powerful. Thus in particular [pL, L] = p[L,L] ≤ p2L and
pL ≤ Jm−1. Hence

L = J0 > J1 > · · · > Jm−1 > Jm = pL

is powerfully central in L. Consider the descending chain

L = J0 ≥ J1 ≥ · · · ≥ Jm = pL
pL = pJ0 ≥ pJ1 ≥ · · · ≥ pJm = p2L

...
pe−2L = pe−2J0 ≥ pe−2J1 ≥ · · · ≥ pe−2Jm = pe−1L.

We know already that the first line gives us a powerfully central chain in L. Thus
[pkJi, L] = pk[Ji, L] ≤ pk+1Ji+1 for 0 ≤ i ≤ m − 1 and 0 ≤ k ≤ e − 2. It follows that we
have a powerfully central chain in L. Notice also that [pe−2Jm−1, L] = pe−2(p2L) = {0}
and thus pe−2Jm−1 ≤ Z(L). It follows that L is powerful with powerful class (e− 1)m. 2
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Like for powerfully nilpotent groups there is a natural classification of powerfully nilpo-
tent Lie rings in terms of a powerful coclass and an ancestry tree.

Definition. Let L be a powerfully nilpotent Lie ring of powerful class c and order pn.
We define the powerful coclass of L to be the number n− c.

The ancestry tree. Let p be a fixed prime. The vertices of the ancestry tree are
all the powerfully nilpotent Lie rings of prime power order (one for each isomorphism
class). Two vertices L and M are joined by a directed edge from M to L if and only
if M ∼= L/pZ(L) and L is not abelian. Notice that this implies that pZ(L) 6= {0} and
thus the powerful class of L is one more than that of M . We then say that L is a direct
ancestor of M or that M is a direct descendant of L and write M → L.

Remark. Suppose M is a powerfully nilpotent Lie ring of order pn(M) and powerful
class c(M) and suppose that L is a direct ancestor of M . Then L has powerful class
c(M) + 1 and order pn(L) = |L/pZ(L)| · |pZ(L)| = pn(H)+k where |pZ(L)| = pk. Thus the
powerful coclass of L is d(L) = n(M) + k − (c(M) + 1) = (n(M)− c(M)) + (k − 1) and
thus d(L) ≥ d(M) where d(M) is the powerful class of M . Notice that we have equality
if and only if |pZ(L)| = p.

Lemma 2.3 Let L be a powerfully nilpotent Lie ring of powerful class c ≥ 2, then

[L,L] = [Ẑc(L), L] > [Ẑc−1(L), L] > · · · > [Ẑ1(L), L] = {0}

and
pL = pẐc(L) ≥ pẐc−1(L) > · · · > pẐ1(L) > pẐ0(L) = {0}.

In particular |pL| ≥ |[L,L]| ≥ pc−1.

Proof Suppose 2 ≤ j ≤ c. If [Ẑj(L), L] = [Ẑj−1(L), L], then [Ẑj(L), L] ≤ pẐj−2(L) and

thus we get the contradiction that Ẑj(L) ≤ Ẑj−1(L). The proof of the latter strict inequal-

ities is similar. Let 1 ≤ j ≤ c − 1. If pẐj(L) = pẐj−1(L) then [Ẑj+1(L), L] ≤ pẐj−1(L)

and thus Ẑj+1(L) = Ẑj(L) that gives the contradiction that the powerful class is at most
j ≤ c− 1. 2

We are going to see that, as for powerfully nilpotent groups, there are for a fixed prime
p only finitely many powerfully nilpotent Lie rings of p-power order of any given coclass.
This will follow from specific bounds for the rank and exponent in terms of the coclass.
We start with the rank.

Proposition 2.4 Let L be a powerfully nilpotent Lie ring of rank r, order pn and powerful
class c. Then r ≤ n− c+ 1.

Proof It follows from Lemma 2.3 that pc−1 ≤ |pL| = pn−r. The result follows. 2

In order to get the bound for the exponent in terms of the coclass we need first some
more structure results for powerfully nilpotent Lie rings.

Let L be any powerfully nilpotent Lie ring of characteristic pe, order pn and rank r.
Suppose

L = J0 > J1 > · · · > Jm−1 > Jm = pL
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is the powerfully central chain as given in the proof of Proposition 2.2. We can always
refine such a powerfully central chain to get a chain of length r such that the factors are of
order p. Without loss of generality we can thus assume that we have a powerfully central
chain

L = J0 > J1 > · · · > Jr = pL (1)

such that |Ji/pL| = pr−i for i = 0, . . . , r. We thus have generators a1, . . . , ar for L such
that

Ji = Zai+1 + · · ·+ Zar + pL = Zpa1 + · · ·+ Zpai + Zai+1 · · ·+ Zar.
We would like to choose a1, . . . , ar so that the choice best reflects the structure of the Lie
ring L. As we saw in the proof of Proposition 2.2, we then get a powerfully central series

L = J0 ≥ J1 ≥ · · · ≥ Jr = pL
pL = pJ0 ≥ pJ1 ≥ · · · ≥ pJr = p2L

...
pe−2L = pe−2J0 ≥ pe−2J1 ≥ · · · ≥ pe−2Jr = pe−1L.

For 0 ≤ i ≤ r− 1 we have Ji = Ji+1 + Zai+1. Notice that if pJi = pJi+1, then pai+1 = pbi
for some bi ∈ Ji+1 and replacing ai+1 by ai+1− bi, we can assume that pai+1 = 0 whenever
pJi = pJi+1. Having done this we can move all the generators that are of order p in front
of the others (keeping the previous order unchanged otherwise) and still have that (1)
gives us a powerfully central chain. We can thus assume that for some 0 ≤ s ≤ r we have
pa1 = . . . = pas = 0 and that pL = pJs > pJs+1 > . . . > pJr = p2L. Notice that the
rank of pL is the number of generators of order at least p2. We have pL = 0 if s = r
and otherwise 0 ≤ s < r and {0} < pL = pJs. Suppose we are in the latter situation.
In this case we have for s ≤ j ≤ r − 1 that p2Ji = p2Ji+1 if and only if there exists
x ∈ Ji \Ji+1 such that p2x = 0. We can thus choose our generators such that furthermore
p2Ji = p2Ji+1 if and only if ai+1 has order p2. Notice again that the rank of p2L is then
the number of generators of order at least p3. Continuing in this manner, considering next
p3J0 ≥ p3J1 ≥ . . . ≥ p3Jr = p4L and then the p4th powers and so on, we eventually arrive
at a set of generators a1, . . . , ar with some specific properties. If for 0 ≤ i ≤ r we let s(i)
be the number of generators of order pi then |pi−1L/piL| = ps(i)+s(i+1)+···+s(e). Then

|L| = |L/pL| · |pL/p2L| · · · |pe−1L/peL|
= ps(1)+···+s(e)ps(2)+···+s(e) · · · ps(e)

= ps(1)p2s(2) · · · pes(e)

= o(a1) · · · o(ar).

As G = Za1 + · · ·+Zar, it follows that this sum is a direct sum of cyclic groups. We have
thus shown:

Proposition 2.5 Let L be a powerfully nilpotent Lie ring of rank r, characteristic pe and
order pn. Then we can choose generators for L as a Lie ring such that we get a direct
sum of cyclic groups

L = Za1 ⊕ · · · ⊕ Zar
and where for Ji = Zpa1 + · · ·+Zpai +Zai+1 + · · ·+Zar we get a powerfully central chain

L = J0 ≥ J1 ≥ · · · ≥ Jr = pL
pL = pJ0 ≥ pJ1 ≥ · · · ≥ pJr = p2L

...
pe−2L = pe−2J0 ≥ pe−2J1 ≥ · · · ≥ pe−2Jr = pe−1L.
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Furthermore we can assume that for some 0 ≤ s ≤ r, o(a1) = . . . = o(as) = p and
o(as+1), . . . , o(ar) > p.

Remark. If we omit repetitions in the chain above, then all the factors have order p.

Lemma 2.6 Let L be a powerful Lie ring of p-power order. If pkL is a cyclic group, then
pkL ≤ Z(L).

Proof Suppose pkL = Zpkc. Then [pkL,L] = [pkc, L] = [c, pkL] = Z[c, pkc] = {0}.2

Lemma 2.7 Let L be a powerful Lie ring of p-power order and suppose that pkL has rank
s ≥ 2. Let a1, . . . , ar be as in Propsition 2.5 and that pkL = Zpkai1 + · · · + Zpkais with
i1 < i2 < . . . < is. Then the chain

pkL = pkZai1 + · · ·+ pkZais > pkZai3 + · · ·+ pkZais

is powerfully central in L.

Proof We know from Proposition 2.5 that

pkZai2 + · · ·+ pkZais > pkZai3 + · · ·+ pkZais

is powerfully central in L. Then, using the fact that [ai1 , ai1 ] = 0,

[pkL,L] = [pkZai1 + · · ·+ pkZais , L]

= [Zai1 + · · ·+ Zais , pkL]

= pk[Zai1 + · · ·+ Zais ,Zai1 + · · ·+ Zais ]
= pk[Zai2 + · · ·+ Zais ,Zai1 + · · ·+ Zais ]
= [Zai2 + · · ·+ Zais , pkZai1 + · · ·+ pkZais ]
= [Zai2 + · · ·+ Zais , pkL]

= [pkZai2 + · · ·+ pkZais , L]

≤ p(pkZai3 + · · ·+ pkZais).

This finishes the proof. 2

Remark. This lemma tells us that if we omit repetitions in the powerfully central chain
from Proposition 2.5 then the second term in each line (where the rank of pkL is s ≥ 2)

pkL = pkZai1 + · · ·+ pkZais > pkZai2 + · · ·+ pkZais > · · · > pkZais > pk+1L

can also be omitted and we still have a powerfully central chain.

Theorem 2.8 Let L be a powerfully nilpotent Lie ring of order pn, powerful class c and
characteristic pe. Then e ≤ n− c+ 1.

Proof This is easy to see when L is of rank 1 so we can assume that the rank of L is
at least 2. Let k be the largest non-negative integer such that the rank of pkL is greater
than or equal to 2. Let ri be the rank of piL for i = 0, 1, . . . , k and let pn0 = |pk+1L|.
Notice then that

e = k + 1 + n0

n = r0 + r1 + · · ·+ rk + n0.
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By Lemma 2.7 there extis for each 0 ≤ j ≤ k a descending chain

pjL = I0 > I1 > · · · > Irj−1 = pj+1L

that is powerfully central in L. Adding up for j = 0, 1, . . . , k and using the fact from
Lemma 2.6 that pk+1L ≤ Z(L), we get a central chain for L that is of length (r0 − 1) +
(r1 − 1) + · · · + (rk − 1) + 1. Hence c ≤ (r0 − 1) + (r1 − 1) + · · · + (rk − 1) + 1 and we
conclude that

n− c ≥ n− [(r0 − 1) + · · ·+ (rk − 1) + 1]

= (r0 + · · ·+ rk + n0)− [(r0 − 1) + · · ·+ (rk − 1) + 1]

= k + n0

= e− 1.

Hence e ≤ n− c+ 1. 2

As a corollary we get a theorem that is analogous to one of the main results from [6]

Theorem 2.9 For each prime p and non-negative integer d, there are only finitely many
powerfully nilpotent Lie rings of p-power order that have powerful coclass d.

Proof Let L be a powerfully nilpotent Lie ring of order pn, rank r and exponent pe.
Then n ≤ re ≤ (d+ 1)(d+ 1) and thus the order of L is bounded by the coclass. 2

3 Powerfully nilpotent Lie rings of maximal powerful

class

Definition. Let L be a powerfully nilpotent Lie ring of p-power order and let k be the
largest non-negative integer such that

p = |pZ(L)| = |pẐ2(L)

pẐ1(L)
| = · · · = | pẐk(L)

pẐk−1(L)
|.

We refer to pẐk(L) as the tail of L and k as the length of the tail.

Remark. If L has a tail of length k, then L,L/pẐ1(L), L/pẐ2(L), . . . , L/pẐk(L) all
have the same powerful coclass.

Lemma 3.1 Rewrite the chain from Propsition 2.5 in ascending order without repetitions.
Then suppose the chain up to and including pL is

{0} = M0 < M1 < · · · < Mt = pL.

We have that Mj ≤ pẐj(L) for j = 0, . . . , t. Also if the tail of L is pẐk(L), then Mi =

pẐi(L) for i = 0, . . . , k.

Proof We prove the first part by induction on 0 ≤ j ≤ t. This is obvious when j = 0.
Now suppose that j ≥ 1 and that the result holds for smaller values of j. Let q be the
largest and then, for that q, i be the largest such that Mj = pqJi. Then 0 ≤ i ≤ r − 1
and pqJi+1 = Mj−1. Thus

[pq−1Ji, L] ≤ p(pq−1Ji+1) = Mj−1 ≤ pẐj−1
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by the induction hypothesis. Hence pq−1Ji ≤ Ẑj(L) and thus Mj = pqJi ≤ pẐj(L). This
finishes the inductive proof. The 2nd part follows from the 1st part and the fact that
|pẐi(L)| = pi for i = 0, . . . , k. 2

Definition. We say that a powerfully nilpotent Lie ring L has maximal tail if the tail of
L is pL.

Remark. If L is abelian then L has maximal tail if and only if |pL| = p that hap-
pens if and only if

L = Za1 + · · ·+ Zar + Zb
where r ≥ 0, o(a1) = · · · = o(ar) = p and o(b) = p2. In particular L = Zb, with o(b) = p2,
is the only abelian Lie ring of p-power order that has rank 1 and maximal tail.

Theorem 3.2 Let L be a powerfully nilpotent Lie ring of rank r ≥ 2 that has maximal
tail. Suppose that L has order pn, powerful class c and characteristic pe. Let t be the
length of the tail.

(a) We have rank(L) > rank(pL) > · · · > rank(pe−2L).
(b) We have that c− 1 ≤ t ≤ c.

(c) We have t ≤ 1 + r(r−1)
2

.

Proof (a) For e ≤ 2 there is nothing to prove and we can thus assume that e ≥ 3. Notice
first that the rank of pe−3L must be at least 2. Otherwise, by Lemma 2.6, we would
have that pe−3L ≤ Z(L) and thus pe−2L ≤ pZ(L). As |pZ(L)| = p we would then get
the contradiction that pe−1L = {0}. Thus L, pL, . . . , pe−3L all have rank at least 2. Let
0 ≤ k ≤ e− 3 and consider the chain from Proposition 2.5. The subchain

pkL = pkJ0 ≥ pkJ1 ≥ · · · ≥ pkJr = pk+1L

is powerfully central in L. Suppose that the rank of pkL is s ≥ 2. Omitting repetitions
we get a chain

pkL = Zpkai1 + · · ·+ Zpkais + pk+1L > Zpkai2 + · · ·+ Zpkais + pk+1L
> · · · > Zpkais + pk+1L > pk+1L

with 1 ≤ i1 < i2 < · · · < is ≤ r. We know from Lemma 2.7 that we can omit the 2nd term
and still have a powerfully central chain. Let E = pkL and F = Zpkai3 + · · · + Zpkais +
pk+1L. We know from Lemma 3.1 that pF = pẐl(L) for some 0 ≤ l ≤ t. As [E,L] ≤ pF ,
it follows that E ≤ Ẑl+1(L) and thus pE ≤ pẐl+1(L). We show that [pE : pF ] ≤ p. This
is of course clear if pE = pF . Otherwise pẐl+1(L) ≥ pE > pF = pẐl(L) and thus we
know from Lemma 3.1 that [pE : pF ] = [pẐl+1(L) : pẐl(L)] = p. Thus [pE : pF ] is either
1 or p and thus the rank of pk+1L is at most s− 1.

(b) By Lemma 2.3 we know that pẐc−2(L) < pẐc−1(L) ≤ pẐc(L) = pL. Thus c−1 ≤ t ≤ c.

(c) By part (a) the largest potential tail occurs when rank(L) = r, rank(pL) = r −
1, . . . , rank(pr−1L) = 1. By Lemma 2.6 we then have pr−1L ≤ Z(G) and thus prL ≤
pZ(G). For there to be a tail of length greater than 0 we need |pZ(L)| = p and then
|prL| ≤ p. The tail can’t thus be larger than

|pL| = |pL/p2L| · |p2L/p3L| · · · |pr−2L/pr−1L| · |pr−1L| = p(r−1)+···+2+2.
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This finishes the proof. 2

Remark. We know from Theorem 3.2 that if L has rank r and maximal tail, then the
length of the tail is at most t = 1+r(r−1)/2. We have also seen that in order for this up-
perbound to be attained we would need rank(L) = r, rank(pL) = r−1, . . . , rank(pr−2L) =
2 and that pr−1L is of rank 1 and order p2. In particular, we must have e = r+ 1. Clearly
t = n − r and as, by Theorem 3.2, c − 1 ≤ t ≤ c, it follows that n − c ≤ r ≤ n − c + 1.
As e = r + 1 and e ≤ n− c+ 1 we then must have

r = n− c and e = n− c+ 1.

Notice then that c = n− r = t = 1 + r(r− 1)/2. If on the other hand t ≤ r(r− 1)/2 then,
by Theorem 3.2 (b), we have c ≤ 1 + r(r − 1)/2. Thus 1 + r(r − 1)/2 is an upperbound
for the powerful class of a powerfully nilpotent Lie ring of rank r that has maximal tail.

Lemma 3.3 Suppose L is a powerfully nilpotent Lie ring of p-power order that has max-
imal tail, is of rank r and has powerful class c = 1 + r(r− 1)/2. Then L has tail of length
t = c.

Proof We argue by contradiction and suppose t 6= c. By Theorem 3.2 (b), we then
have t = c − 1 = r(r − 1)/2. Then e ≤ n − c + 1 = t + r − (c − 1) = r. By
Theorem 3.2 (a), the only way of getting tail of length t = 1 + 2 + · · · + (r − 1) is if
rank(L) = r, rank(pL) = r − 1, . . . , rank(pr−1L) = 1.

By Theorem 2.5 and Lemma 2.7 we get a powerfully central chain

L = J(0,1) ≥ · · · ≥ J(0,r) = pL
pL = J(1,1) ≥ · · · ≥ J(1,r−1) = p2L

...
pr−2L = J(r−2,1) ≥ J(r−2,2) = pr−1L.

Notice that [pr−2L,L] = p(pr−1L) = prL = {0}. We can thus replace pr−1L by {0} and
still have a powerfully central chain. That shows that the powerful class of L is a most
the length of chain namely (r − 1) + (r − 2) + · · · + 1 = r(r − 1)/2 contradicting the
assumption that the powerful class is 1 + r(r − 1)/2. 2

Definition. Let L be a powerfully nilpotent Lie ring with maximal tail. We say that L
has maximal powerful class if the powerful class is c = 1 + r(r − 1)/2.

Remark. We know from Lemma 3.3 that if L is a powerfully nilpotent Lie ring of
rank r which has maximal powerful class, then t = c = 1 + r(r − 1)/2 and from the
analysis above (see the proof of Theorem 3.2(c)) we know that as an abelian group we
can write

L = Za0 ⊕ · · · ⊕ Zar−1
where the {o(a0), . . . , o(ar−1)} = {p, p2, . . . , pr−1, pr+1}. For the time being suppose we
have chosen a0, a1, . . . , ar−1 such that these give us a powerfully central chain like in
Proposition 2.5. That is we have

J0 = L = Za0 + · · ·+ Zar−1, J1 = Za1 + · · ·+ Zar−1 + pL, . . . Jr−1 = Zar−1 + pL, Jr = pL

10



where
L = J0 ≥ J1 ≥ · · · ≥ Jr = pL
pL = pJ0 ≥ pJ1 ≥ · · · ≥ pJr = p2L

...
pr−2L = pr−2J0 ≥ pr−2J1 ≥ · · · ≥ pr−2Jr = pr−1L

with pr−1L is of rank 1 and thus contained in Z(L). We also know from Lemma 2.7 that if
we omit repetitions then the rows give us subchains of lengths r, r− 1, . . . , 2 and that we
still get a powerfully central chain if we omit the 2nd term in each line. That would give
us a powerfully central chain of length (r− 1) + (r− 2) + · · ·+ 1 + 1 = 1 + r(r− 1)/2 = c
(adding pr−1L > {0}). As this is the powerful class there can’t be any strict subchain
that is powerfully central. In particular

[J0, L] = [J1, L] ≤ pJ2, [J2, L] ≤ pJ3, . . . [Jr−2, L] ≤ pJr−1. (2)

[J0, L] 6≤ pJ3, [J2, L] 6≤ pJ4, . . . [Jr−2, L] 6≤ pJr.

Notice that it follows from this that none of a2, . . . , ar−1 can have order p, as if o(aj) = p
then [Jj−1, L] ≤ pJj = pJj+1 giving us a strict subchain that is powerfully central. It also
follows that none of a2, . . . , ar−1 can have order pr+1. To see this we observe that if aj is
of order pr+1 for some j ≥ 2 then by (2) there are some 0 ≤ k < l ≤ r − 1 such that

[ak, al] = pαaj + pu

for some u ∈ Jj+1 and where p 6 |α. But then the right hand side has order pr whereas the
left hand side has order at most pr−1 (as one of ak, al has order at most pr−1). By this
contradiction we see that none of a2, . . . , ar−1 can have order pr+1. Thus {o(a0), o(a1)} =
{p, pr+1} and {o(a2), . . . , o(ar−1)} = {p2, . . . , pr−1}.

Now notice that Zpa2 + pJ3 = [J1, L] + pJ3 = Z[a0, a1] + pJ3. In particular [a0, a1] =
pαa2 + pu with u ∈ J3 and where α is not divisible by p. As p[a0, a1] = 0 we then can’t
have that pa2 has order greater than p and thus a2 must have order exactly p2. Next we
use

Zpa3 + pJ4 = [J2, L] + pJ4 = Z[a2, a0] + Z[a2, a1] + pJ4.

As p2[a0, a2] = p2[a1, a2] = 0 we can’t have that the order of pa3 is greater than p2 and
thus o(a3) = p3. Continuing inductively in this manner we see that we must have

o(a2) = p2, o(a3) = p3, . . . , o(ar−1) = pr−1.

As [a1, a0] = −[a0, a1] we can without loss of generality assume that o(a1) = p and o(a0) =
pr+1 and that we then still have that modulo p2L that J0 > J1 > J2 > . . . > Jr > {0} is
powerfully central. We thus get:

Lemma 3.4 Let L be a powerfully nilpotent Lie ring of rank r and maximal powerful
class. We can pick our generators a0, a1, . . . , ar−1 such that o(a1) = p, . . . , o(ar−1) = pr−1

and o(a0) = pr+1.

Remark. In fact our proof also shows that we must have o(aj) = pj for 2 ≤ j ≤ r − 1.
For the following we will denote a0 by x.

Lemma 3.5 We have [ai, x] ∈ pJi+1\pJi+2 for i = 1, . . . , r−2 and [ar−1, x] ∈ p2J0\p2J1.
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Proof Let 1 ≤ i ≤ r − 2. We have seen above that

Z[ai, a1] + · · ·+ Z[ai, ar−1] + Z[ai, x] + pJi+2 = Zpai+1 + pJi+2.

As the orders of [ai, a1], . . . , [ai, ai−1] divide pi−1 whereas the order of pai+1 is pi it is easy
to see that we must have that [ai, a1], . . . , [ai, ai−1] ∈ pJi+2. Also [ai, aj] ∈ pJj+1 ≤ pJi+2

for j = i+ 1, . . . , r − 1. Hence

Z[ai, x] + pJi+2 = Zpai+1 + pJi+2

from which it follows that [ai, x] ∈ pJi+1 \ pJi+2. Similarly

Z[ar−1, a1] + · · ·+ Z[ar−1, ar−2] + Z[ar−1, x] + p2J1 = Zp2x+ p2J1.

As p2x has order pr whereas [ar−1, a1], . . . , [ar−1, ar−2] have orders dividing pr−1 we must
have that [ar−1, a1], . . . , [ar−1, ar−2] ∈ p2J1 and that

Z[ar−1, x] + p2J1 = Zp2x+ p2J1

from which it follows that [ar−1, x] ∈ p2J0 \ p2J1. 2

The arguments above also show that modulo p(Zpa2 + · · ·+ Zpar−1 + Zp2x), we have

[a1, x] = pa2, . . . , [ar−2, x] = par−1, [ar−1, x] = p2x.

It follows that the linear map

Za1 + · · ·+ Zar−1 → Zpa2 + · · ·+ Zpar−1 + Zp2x, u 7→ [u, x]

is surjective and thus bijective as the two submodules are of the same order, namely
p1+2+···+r−1. There thus exist unique br−1, br−2, . . . , b1 ∈ Za1 + · · ·+ Zar−1 such that

[br−1, x] = p2x, [br−2, x] = pbr−1, · · · , [b1, x] = pb2. (3)

As the right Lie multiplication gives us a bijective map, b1, . . . , br−1 must be a basis
for Za1 + · · · + Zar−1. In particular {o(b1), . . . , o(br−1)} = {p, p2, . . . , pr−1}. Now we
see from (3) that o(b1)|p, o(b2)|p2, · · · , o(br−1)|pr−1 and we conclude that we must have
o(b1) = p, . . . , o(br−1) = pr−1. This proves the part (a) of our main structure theorem for
Lie rings with maximal powerful class.

Theorem 3.6 Let L be a powerfully nilpotent Lie ring of p-power order and rank r that
has maximal powerful class 1+r(r−1)/2. There exist generators a1, . . . , ar−1, x such that
we get a direct sum of Z-modules

Zx+ Za1 + · · ·+ Zar−1

where o(ai) = pi and o(x) = pr+1 and where for J0 = L = Zx + Za1 + · · · + Zar−1,
J1 = Zpx + Za1 + · · · + Zar−1, J2 = Zpx + Zpa1 + Za2 + · · · + Zar−1, · · ·, Jr = Zpx +
Zpa1 + · · ·+ Zpar−1 the chain

L = J0 > J2 > · · · > Jr = pL
pL = pJ0 > pJ3 > · · · > pJr = p2L

...
pr−2L = pr−2J0 > pr−2Jr > {0}
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is powerfully central of length 1 + r(r − 1)/2. Furthermore we can choose our generators
such that

(a) [a1, x] = pa2, [a2, x] = pa3, . . . , [ar−2, x] = par−1, [ar−1, x] = p2x.
(b) H = Ωr(L) = Zpx+ Za1 + · · ·+ Zar−1 is powerfully embedded in L and strongly

powerful.
(c) pr−1L ≤ Z(L).

Proof It only remains to prove (b) and (c). Part (c) follows from pr−1L = pr−1Zx being
of rank 1 and Lemma 2.6. To see why (b) holds notice first that for 1 ≤ i < j ≤ r− 1 we
have

[ai, aj] = p2αx+ p2α1a1 + · · ·+ p2αjaj + pαj+1aj+1 + · · ·+ pαr−1ar−1.

As pr−2[ai, aj] = 0 we then must have that p divides α and as pj−1[ai, aj] = 0 we must
have that p divides αj+1, . . . , ar−1. Thus [ai, aj] ≤ p2H. Furthermore [ai, px] = p2ai+1

when 1 ≤ i ≤ r − 2 whereas [ar−1, px] = p3x. Hence [H,H] ≤ p2H and H is strongly
powerful. Also [ai, x] = pai+1 for 1 ≤ i ≤ r − 2 and [ar−1, x] = p2x and thus [H,L] ≤ pH
that shows that H is powerfully embedded in L. 2

Remark. The linear map induced by the Lie multiplication by x from the right induces
a surjective map

Ẑi(L)/Ẑi−1(L)→ pẐi−1(L)/pẐi−2(L)

for 2 ≤ i ≤ c. One could think of this property as corresponding to the property of being
a uniform element in the theory of p-groups of maximal class. Notice also that Lemma
2.1 tells us that the class of H is at most r that is small compared to the class of L.

Having analysed the structure of powerfully nilpotent Lie rings of maximal powerful class,
we show that for each r there exists such a Lie ring.

Let r be a positive integer and let p be a prime. Consider a Z-module

L = Zx⊕ Za1 ⊕ · · · ⊕ Zar−1

where o(ai) = pi and o(x) = pr+1. Define a right multiplication on A = Za1⊕ · · · ⊕Zar−1
by x where this is the linear map induced by

[a1, x] = pa2, [a2, x] = pa3, . . . , [ar−2, x] = par−1, [ar−1, x] = p2x.

With a slight abuse of notation we will also denote this linear map by x. Notice that
the image of x is pA+ Zp2x that has the same order as A, namely pp2 · · · pr−1, and thus
x : A→ L is injective.

Now consider an alternating product on A such that [A,A] ⊆ B where B = Za1 +
· · ·+ Zar−2. Our aim is to find such an alternating product that together with the right
multiplication of x will give us a Lie ring.

Proposition 3.7 There exists a unique alternating product on A with the following prop-
erties

(1) [A,A] ⊆ B; (2) [[a, b], x] = [[a, x], b] + [a, [b, x]] for all a, b ∈ A.
Furthermore this alternating product of A together with the right muliplication by x gives
L the structure of a Lie ring. Also [A,A] ⊆ p2B.
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Proof Notice that the linear map x induces a bijection from B to pA. Thus for any
u ∈ pA there exists a unique v ∈ B such that [v, x] = u. We will be making use of this
property. We will first establish (1) and (2) as well as [A,A] ⊆ p2B. Let 1 ≤ i < j ≤ r−1.
We define [ai, aj] by reverse induction on 3 ≤ i + j ≤ 2r − 3. We will show that there is
a unique u ∈ B such that piu = 0 and

[u, x] = [[ai, x], aj] + [ai, [aj, x]]

and we define [ai, aj] = u. We will also see that in fact u ∈ p2B.

For the induction basis consider i = r − 2 and j = r − 1. Then

[[ai, x], aj] + [ai, [aj, x]] = p[ar−1, ar−1] + [ar−2, p
2x] = p3ar−1.

Using the fact that x : B → pA is injective we know that u = p2ar−2 is the unique
element in B such that [u, x] = p3ar−1. Notice that u ∈ p2B and that pr−2u = 0. We
define [ar−2, ar−1] = p2ar−2.

For the induction step suppose 3 ≤ s = i + j < 2r − 3 and that our inductive claim
and definition holds whenever s < i+ j ≤ 2r − 3. If j = r − 1 then let

v = [pai+1, ar−1] + [ai, p
2x] = p[ai+1, ar−1] + p3ai+1.

By the induction hypothesis we know that [ai+1, ar−1] ∈ p2B and thus v ∈ p3A. As be-
fore we know that there is a unique u ∈ p2B such that [u, x] = v. We let [ai, aj] = u.
Notice also that by the induction hypothesis we know that pi+1[ai+1, ar−1] = 0. Thus it
follows that piv = 0. By the property of the function x we know that we also have piu = 0.

Now consider the case when j < r − 1. Let

v = [pai+1, aj] + [ai, paj+1] = p[ai+1, aj] + p[ai, aj+1].

By the induction hypothesis we know that v ∈ p3B and we know there is a unique u ∈ p2B
such that [u, x] = v. We let [ai, aj] = u. Again we know by the induction hypothesis that
pi+1[ai+1, aj] = pi+1[ai, aj+1] = 0 and thus piv = 0. Thus also piu = 0 by the properties of
the linear map x. This finishes the inductive proof.

Having established that there is this unique alternating product on A such that (1) and
(2) hold and that furthermore [A,A] ⊆ p2B we extend this into an alternating product
on L using the right multiplication on A by x. Notice that by (2) we know that x acts as
derivation on A. In order to show that the Jacobi identity J(x, y, z) = 0 holds where

J(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y]

it then clearly suffices to show that J(ai, aj, ak) = 0 whenever 1 ≤ i < j < k ≤ r − 1.
We prove this by reverse induction on 6 ≤ i + j + k ≤ 3(r − 2). By the first part of the
proof we know that J(ai, aj, ak) ∈ p2B. As x : B → pA is injective it suffices to show
that [J(ai, aj, ak), x] = 0. For the induction basis notice that

[J(ar−3, ar−2, ar−1), x] = pJ(ar−2, ar−2, ar−1) + pJ(ar−3, ar−1, ar−1) + p2(ar−3, ar−2, x)

= p2J(ar−3, ar−2, x)

= 0
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where the last equality follows from (2).

For the induction step, suppose 6 ≤ i + j + k = s < 3(r − 2) and that the Jacobi
identity holds whenever s < i+ j + k ≤ 3(r − 2). If k = r − 1 then

[J(ai, aj, ak), x] = pJ(ai+1, aj, ak) + pJ(ai, aj+1, ak) + p2J(ai, aj, x)

= p2J(ai, aj, x)

= 0

where again the last equality follows from (2). Thus suppose that k < r − 1. Then

[J(ai, aj, ak), x] = pJ(ai+1, aj, ak) + pJ(ai, aj+1, ak) + pJ(ai, aj, ak+1) = 0.

This finishes the inductive proof of the Jacobi identity and thus the lemma. 2

We have thus shown the existence of a Lie ring L = Za1 + · · ·+ Zar−1 + Zx where

[a1, x] = pa2, . . . , [ar−2, x] = par−1, and [ar−1, x] = p2x

and where furthermore [A,A] ≤ p2B. Notice that [L,L] ≤ pL and thus one sees induc-
tively that Lr ≤ pr−1L = Zpr−1x ≤ Z(L). This implies that the nilpotency class of L is
at most r. In fact [a1,r−1 x] = p[a2,r−2 x] = . . . = pr−2[ar−1, x] = prx 6= 0 and the class is
thus exactly r.

Theorem 3.8 The Lie ring L is a powerfully nilpotent Lie ring with maximal tail.

Proof Let L0 = L, L1 = Zpx+Za1 +Za2 + · · ·+Zar−1, L2 = Zpx+Zpa1 +Za2 +Za3 +
· · ·+ Zar−1, · · ·, Lr = pL and consider the descending chain of subrings

L = L0 > L1 > · · · > Lr = pL
pL = pL0 ≥ pL1 ≥ · · · ≥ pLr = p2L

...
prL = prL0 ≥ prL1 ≥ · · · ≥ prLr = pr+1L = {0}.

As [A,A] ≤ p2B and [Li, x] ≤ pLi+1, it follows that this chain is powerfully central and
thus L is powerfully nilpotent. In order to determine the upper powerfully central series
we make again use of [A,A] ≤ p2B as well as the fact that x : A → pA + Zp2x is
injective. From this one sees readily that the following ascending sequences are (Ẑi(L))
and (pẐi(L))):

〈pr−1x〉
〈prx〉

< 〈pr−2x, pr−2ar−1〉
< 〈pr−1x〉

< 〈pr−2x, pr−3ar−1〉 < 〈pr−3x, pr−3ar−2, p
r−3ar−1〉

< 〈pr−1x, pr−2ar−1〉 < 〈pr−2x, pr−2ar−1〉

...

< 〈px, . . . , par−2, ar−1〉 < 〈px, . . . , par−3, ar−2, ar−1〉 < · · · < 〈px, pa1, a2, . . . , ar−1〉 < L
< 〈p2x, . . . , p2ar−2, par−1〉 < 〈p2x, . . . , p2ar−3, par−2, par−1〉 < · · · < 〈p2x, pa2, . . . , par−1 < pL

All the factors of the chain (pẐi(L)) are of order p and thus L has maximal tail of length
1 + (1 + 2 + · · ·+ r − 1) = 1 + r(r − 1)/2. 2
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4 Powerfully nilpotent groups with maximal power-

ful class

In this section we want to prove results on powerfully nilpotent groups with maximal
powerful class that are analogous to those we have obtained for the powerfully nilpotent
Lie rings.

Let p be a prime. We will make use of the Lazard 1-1 correspondence between all fi-
nite p-groups of nilpotency class at most p − 1 and all finite Lie rings of class at most
p− 1 whose order is a power of p.

For a full account of the Lazard correspondence see for example [3]. Let us recall briefly
the setting. Let L be a Lie ring of order pn and nilpotency class m < p. The correspond-
ing group G = {ea : a ∈ L} is then a finite group of the same order and nilpotency class
consisting of formal expressions

ea = 1 + a+
a

2!
+ · · ·+ am

m!
.

(To be more precise, one can view this as an expression within 1 + E where E is the
associative envelping algebra of L.) The structure of G is derived from the structure of
L, via the Baker-Hausdorff formula. Thus

ea · eb = el(a,b)

where l(x, y) is a word in the free Lie algebra over Q of class m provided by the Lazard
correpondence and l(a, b) is the value of l(x, y) in L. In the following we will use the
bracket notion both for group commutators and for the Lie product as there will be no
ambiguity regarding this. Under the Lazard correspondence, one has in particular

[ea, eb] = eB(a,b)

e[a,b] = C(ea, eb)

where B(a, b) ∈ 〈a, b〉′ and C(ea, eb) ∈ 〈ea, eb〉′.

Under the Lazard correspondence, sub Lie rings of L correspond to subgroups of G and
ideals of L correspond to normal subgroups of G. Notice also that if M is a subring of
L and H = eM is the corresponding subgroup of G, then the subgroup corresponding to
the subring pM is epM = {hp : h ∈ H} = Hp.

Let M,N be subrings of L. Notice that

[M,L] ≤ pN iff [eM , G] ≤ (eN)p.

In particular it follows that L is powerfully nilpotent with a powerfully central series

{0} = L0 ≤ L1 ≤ · · · ≤ Ln = L

if and only if G is powerfully nilpotent with a powerfully central series

{1} = eL0 ≤ eL1 ≤ · · · ≤ eLn = G.
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The former is a fastest ascending series if and only if the latter is. Thus we have

Ẑi(G) = eẐi(L), for i ∈ N.

Notice also that it follows that L has maximal tail if and only if G has maximal tail and
that the two tails have then the same length.

In the previous section we constructed a powerfully nilpotent Lie ring of p-power or-
der and rank r that is of maximal powerful class and saw that the real class of L was r. In
the case when p > r, we can thus use the Lazard Correspondence to get a corresponding
example G = eL that is a powerfully nilpotent group of maximal powerful class.

Theorem 4.1 Let r be a positive integer and p > r a prime. There exists a powerfully
nilpotent p-group of rank r that is of maximal powerful class.

We next move to the analogue of the main structure theorem for the powerfully nilpotent
Lie rings of maximal powerful class. Let again p > r and suppose that

L = Zx⊕ Za1 ⊕ · · · ⊕ Zar−1,

with o(x) = pr+1, o(a1) = p, . . . , o(ar−1) = pr−1, is a powerfully nilpotent Lie ring of
p-power order that is of rank r and maximal powerful class. We let G = eL be the
corresponding powerfully nilpotent p-group that is of maximal powerful class. Recall that
x has the property that Lie multiplication by x on the right induces surjective maps

Ẑi(L)/Ẑi−1(L)→ pẐi−1(L)/pẐi−2(L).

It follows that the commutator operation with ex from the right induces surjective group
homorphisms

Ẑi(G)/Ẑi−1(G)→ (Ẑi−1(G))p/(Ẑi−2(G))p.

From this one sees that the commutator operation with ex from the right gives us a
surjective map from G = eL to Ẑc−1(G)p = 〈ep2x, epa1 , . . . , epar−1〉. Let y = ex, we then
get b1, . . . , br−1 ∈ G such that

[br−1, y] = yp
2

, [br−2, y] = bpr−1, [br−3, y] = bpr−2, · · · , [b1, y] = bp2.

Similar analysis as in the Lie ring situation shows that o(b1) = p, . . . , o(br−1) = pr−1 and
that

G = 〈y〉〈b1〉 · · · 〈br−1〉
where y, b1, . . . , br−1 play an analogous role to x, a1, . . . , ar−1 in the Lie ring situation.
More precisely we get the following result.

Theorem 4.2 Let G be a powerfully nilpotent p-group of rank r where p > r that has
maximal powerful class 1 + r(r − 1)/2. There exist generators b1, . . . , br−1, y such that G
is a product of the corresponding cyclic groups

G = 〈y〉 · 〈b1〉 · · · 〈br−1〉,

with |G| = o(y)o(b1) · · · o(br−1), where o(bi) = pi and o(y) = pr+1 and where for H0 = G =
〈y〉 · 〈b1〉 · · · 〈br−1〉, H1 = 〈yp〉〈b1〉 · · · 〈br−1〉, H2 = 〈yp〉 · 〈bp1〉 · 〈b2〉 · · · 〈br−1〉, · · ·, Hr = Gp,
the chain

G = H0 > H2 > · · · > Hr = Gp

Gp = Hp
0 > Hp

3 > · · · > Hp
r = Gp2

...

Gpr−2
= Hpr−2

0 > Hpr−2

r > {1}
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is powerfully central of length 1 + r(r − 1)/2. Furthermore we can choose our generators
such that

(a) [b1, y] = bp2, [b2, y] = bp3, . . . [br−2, y] = bpr−1, [br−1, y] = yp
2
.

(b) H = Ωr(G) = 〈yp〉 · 〈b1〉 · · · 〈br−1〉 is powerfully embedded in G and strongly powerful.
(c) Gpr−1 ≤ Z(G).

Remark. The fact that H is strongly powerful of exponent pr implies that its powerful
class is at most r and thus small compared to the powerful class of G. The situation is
thus analogous to the structure of p-groups of maximal class as we have a subgroup of
index p with relatively small powerful class and a ‘uniform’ element y.

Open problem. Do Theorems 4.1 and 4.2 still hold when p ≤ r?
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