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Abstract. Let G = NH be a finite group where N is normal in G and H

is a complement of N in G. For a given generating sequence (h1, . . . , hd) of
H we say that (N, (h1, . . . , hd)) satisfies the strong complement property, if

〈hx1
1 , . . . , h

xd
d 〉 is a complement of N in G for all x1, . . . , xd ∈ N . When d is the

minimal number of elements needed to generate H, and (N, (h1, . . . , hd〉)) sat-
isfies the strong complement property for every generating sequence (h1, . . . , hd)

with length d, then we say that (N,H) satisfies the strong complement prop-

erty. In the case when |N | and |H| are coprime, we show that (N,H) can
only satisfy the strong complement property if H is cyclic or if H acts trivially

on N . We give on the other hand a number of examples that show this does
not need to be the case when considering the strong complement property

of (N, (h1, . . . , hd)) for a given fixed generating sequence. In the case when

N and H are not of coprime order, we give examples where (N,H) satisfies
the strong complement property and where H is not cyclic and does not act

trivially on N .

1. Introduction

Let G = NH be a finite group where N is normal in G and H is a comple-
ment of N in G. Consider a given generating sequence (h1, . . . , hd) of H, that is
〈h1, . . . , hd〉 = H. We say that (N, (h1, . . . , hd)) satisfies the strong complement
property if 〈hx1

1 , . . . , hxdd 〉 is a complement of N in G for all x1, . . . , xd ∈ N .
It is easy to see that if d > d(H) and (N, (h1, . . . , hd)) satisfies the strong com-

plement property for any generating sequence (h1, . . . , hd) of H with length d, then
H acts trivially on N (see Remark 5).

When d is precisely the minimal number of elements d(H) needed to generate H,
and (N, (h1, . . . , hd)) satisfies the strong complement property for any generating
sequence (h1, . . . , hd) with length d, then we say that (N,H) satisfies the strong
complement property.

Note that (N,H) satisfies the strong complement property when H acts trivially
on N or H is a cyclic group. So, in the following we will only deal with the case
where H is a non-cyclic group.

The natural question that arises is whether there are any examples apart from
those two trivial ones. We will show that this is not the case when |N | and |H| are
coprime.
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Theorem 1. Let G = H n N be a semidirect product of finite groups N and H
where H is not cyclic and where H and N have coprime orders. If (N,H) satisfies
the strong complement property, then H acts trivially on N .

As usual in this setting, the main case is when N is a minimal normal subgroup of
G. The bulk of the work is dealing with the case when N is abelian, in which case it
can be viewed as a faithful and irreducible H-module. Consider that setting in full
generality, that is without assuming that |N | and |H| are coprime. By a result of
Aschbacher and Guralnick [1], if H is not cyclic and H = 〈h1, . . . , hd〉, then there
exist v1, . . . , vd ∈ N such that G = 〈h1v1, . . . , hdvd〉. Note that (N, (h1, . . . , hd))
satisfies the strong complement property if and only if G 6= 〈hx1

1 , . . . , hxdd 〉 for every
choice of x1, . . . , xd ∈ N . Since hxii = hi[hi, xi], this holds precisely when the
vectors v1, . . . , vd ∈ N such that G = 〈h1v1, . . . , hdvd〉 can never be chosen with the
further restriction that vi ∈ [hi, N ] for every 1 ≤ i ≤ d. This leads to a condition
on the size of the centralizers of the elements hi in N (see Theorem 2). Combining
this result with a theorem of Scott [13, Theorem 1], we prove in Theorem 7 that
(N,H) only satisfies the strong complement property when H is either cyclic or
acts trivially on N .

The above mentioned theorem of Scott generalizes a theorem of Ree about per-
mutations [12, Theorem 1]. Ree’s formula allows us to generalize the arguments
used in the abelian case to the case where N is a minimal nonabelian group. The
almost simple case requires the classification of finite simple groups.

The structure of the paper is as follows. In section 2, we do some preliminary
work regarding the case when N is a faithful and irreducible H-module. We also
present examples that show that (N, (h1, . . . , hd)) can satisfy the strong complement
property for a given fixed sequence although |N | and |H| are coprime and d ≥ 2.
In section 3, we will continue our investigation into the case when N is a faithful
irreducible H-module and prove our main result in this direction, that is Theorem 7.
In Section 4, we handle the case when N is non-abelian and in Section 5 we consider
the coprime case and we prove Theorem 1. In the 6th and final section we present
some more examples.

2. Some preliminaries.

This section is devoted to analyze the case where N is an abelian minimal normal
subgroup of G = NH and H is a not cyclic group acting non-trivially on N . So we
set N = V and we view V as a faithful and irreducible H-module.

The study of the first cohomology group H1(G,V ) is intimately connected with
questions about the generation of the semidirect product G = V o H. In [1], As-
chbacher and Guralnick proved that |H1(G,V )| < |V | and deduce from this that if
d ≥ 2 and H can be generated by d elements, then G too can be generated by d
elements. More precisely if H = 〈h1, . . . , hd〉, then there exist v1, . . . , vd ∈ V such
that G = 〈h1v1, . . . , hdvd〉.

Note that (V, (h1, . . . , hd)) satisfies the strong complement property, that is
〈hw1

1 , . . . , hwdd 〉 is a complement of V in G for every choice of w1, . . . , wd ∈ V , pre-
cisely when there is no w1, . . . , wd ∈ V such that G = 〈hw1

1 , . . . , hwdd 〉. Since hwii =
hi[hi, wi], this holds when the vectors v1, . . . , vd ∈ V such that G = 〈h1v1, . . . , hdvd〉
can not be chosen with the further restriction that vi ∈ [hi, V ] for every 1 ≤ i ≤ d.
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Before proving a criterion to decide whether (V, (h1, . . . , hd)) satisfies the strong
complement property for a generating sequence (h1, . . . , hd) of H, we need to in-
troduce some definitions and notations. Let F = EndH V and let n = dimF V.
We will denote by Der(H,V ) the set of the derivations from H to V (i.e. the
maps δ : H → V with the property that δ(h1h2) = δ(h1)h2 + δ(h2) for every
h1, h2 ∈ H). If v ∈ V then the map δv : H → V defined by δv(h) = [h, v]
is a derivation. The set InnDer(H,V ) = {δv | v ∈ V } of the inner deriva-
tions from H to V is a subgroup of Der(V,H) and the factor group H1(H,V ) =
Der(H,V )/ InnDer(H,V ) is the first cohomology group of H with coefficients in V.
It is clear that V, Der(H,V ), InnDer(H,V ) and H1(H,V ) are vector spaces of F.
Let

n = dimF V and r = dimF H1(H,V ).

It follows from [1, Theorem A] and [6, Theorem 1] that

r ≤ bn/2c ≤ n− 1. (2.1)

For our purpose it is also important to consider the F -subspace

∆V (h1, . . . , hd)

of Der(H,V ) consisting of the derivations δ with the property that, for every i ∈
{1, . . . , n}, there exists vi ∈ V such that δ(hi) = δvi(hi). Clearly InnDer(H,V ) ≤
∆V (h1, . . . , hd) and so

n = dimF InnDer(H,V ) ≤ dimF ∆V (h1, . . . , hd) ≤ dimF Der(H,V ) = n+ r.

In particular there exists an integer sV (h1, . . . , hd), with 0 ≤ sV (h1, . . . , hd) ≤ r,
such that

dimF ∆V (h1, . . . , hd) = n+ sV (h1, . . . , hd).

Theorem 2. Let H = 〈h1, . . . , hd〉 be a finite non-cyclic group and V a faithful
and irreducible H-module. Then (V, (h1, . . . , hd)) satisfies the strong complement
property if and only if∑

1≤i≤d

dimF CV (hi) = n(d− 1)− sV (h1, . . . , hd).

Proof. It is well known that if δ ∈ Der(H,V ), then

Hδ = {hδ(h) | h ∈ H} = 〈h1δ(h1), . . . , hdδ(hd)〉

is a complement of V in G and the maps δ 7→ Hδ is a bijection from Der(H,V ) to
the set of the complements of V in G. Notice that there exists v1, . . . , vd ∈ V such
that Hδ = 〈hv11 , . . . , h

vd
d 〉 if and only if δ ∈ ∆V (h1, . . . , hd). Moreover, since H =

〈h1, . . . , hd〉 and V is a faithful module, the map α : Der(H,V ) → V d defined via
δ 7→ (δ(h1), . . . , δ(hd)) is F -linear and injective. Now consider the F -endomorphism
β : V d → V d defined by setting β(v1, . . . , vd) = ([h1, v1], . . . , [hd, vv]). If v1, . . . , vd ∈
V , then 〈hv11 , . . . , h

vd
d 〉 either coincides with G or is a complement of V in G.

The second case occurs if and only if there exists δ ∈ ∆V (h1, . . . , hd) such that
〈hv11 , . . . , h

vd
d 〉 = Hδ and in such a case β(v1, . . . , vd) = α(δ). But then (V, (h1, . . . , hd))

satisfies the strong complement property if and only if β(V d) = α(∆V (h1, . . . , hd)).
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Since α(∆V (h1, . . . , hd)) ≤ β(V d) we have that β(V d) = α(∆V (h1, . . . , hd)) if and
only if

n+ sV (h1, . . . , hd) = dimF (∆V (h1, . . . , hd)) = dimF (α(∆V (h1, . . . , hd)))

= dimF (β(V d)) = d · n−
∑

1≤i≤d

dimF (CV (hi)),

i.e. if and only if
∑

1≤i≤d dimF (CV (hi)) = n(d− 1)− sV (h1, . . . , hd). �

Corollary 3. Suppose that H1(H,V ) = 0. Then (V, (h1, . . . , hd)) satisfies the strong
complement property if and only if∑

1≤i≤d

dimF CV (hi) = n(d− 1).

Recall that the assumption H1(G,V ) = 0 in the case of soluble groups is assured
by the following unpublished result by Gaschütz (see [14, Lemma 1]).

Lemma 4. Let G 6= 1 be a finite soluble group and let V be a faithful and irreducible
G-module. Then H1(G,V ) = 0.

We want to present now some examples in which (V, (h1, . . . , hd)) satisfies the
strong complement property for at least one generating sequence (h1, . . . , hd) of H.

Example. Let p be a fixed prime. By the Dirichlet’s theorem on arithmetic
progression, there exists a prime q with the property that p divides q − 1. Let F
be the field with q elements and let C = 〈λ〉 be the subgroup of order p of the
multiplicative group of F. For every positive integer t, we fix a Sylow p-subgroup
Pt of Sym(pt) and consider the wreath product Ht = C o Pt. Notice that Ht is
isomorphic to the iterated wreath product Cp o · · · oCp, where Cp is the cyclic group
of order p and the number of factors is t + 1. In particular Ht can be generated
by t + 1 elements. Let n = pt and let Vt = Fn be an n-dimensional vector space
over F . The group Ht has an irreducible action on Vt defined as follows: if v =
(f1, . . . , fn) ∈ Vt and h = (c1, . . . , cn)σ ∈ Ht, where ci ∈ C and σ ∈ Pt, then
vh = (f1σ−1c1σ−1 , . . . , fnσ−1cnσ−1).

We claim that for every positive integer t, there exist t+1 generators (h1, . . . , ht+1)
of Ht such that (Vt, (h1, . . . , ht+1)) satisfies the strong complement property. By
Corollary 3 and Lemma 4, this is equivalent to find a generating sequence (h1, . . . , ht+1)
of Ht with the property that∑

1≤i≤t+1

dimF CVt(hi) = pt · t. (2.2)

First consider the case t = 1. Consider the elements h1 = (λ, 1, . . . , 1) and h2 =
(1, 2, . . . , p) ∈ P1, and note that H1 = 〈h1, h2〉. Since

CV1(h1) = {(0, f2, . . . , fp) | f2, . . . , fp ∈ F}, CV1(h2) = {(f, . . . , f) | f ∈ F},

we have that dimF CV1
(h1) + dimF CV2

(h2) = p− 1 + 1 = p, and (2.2) holds. Now
suppose that (h1, . . . , ht+1) is a generating sequence forHt and that (Vt, (h1, . . . , ht+1))
satisfies the strong complement property. We may identify Ht+1 with the wreath
product Ht oP1 and Vt+1 with V pt . With this identification, if v = (v1, . . . , vp) ∈ Vt+1

and h = (x1, . . . , xp)σ ∈ Ht o P1, then vh = (v
x1σ−1

1σ−1 , . . . , v
xpσ−1

pσ−1 ). For 1 ≤ i ≤ t+ 1,
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let ki = (hi, 1, . . . , 1) ∈ Hp
t , moreover let kt+2 = (1, 2, . . . , p) ∈ P1. We have that

Ht+1 = 〈k1, . . . , kt+1, kt+2〉. Moreover if 1 ≤ i ≤ t+ 1, then

CVt+1
(ki) = {(v1, . . . , vp) | v1 ∈ CVt(hi), v2, . . . , vp ∈ Vt}

so

dimF CVt+1
(ki) = dimF CVt(hi) + (p− 1)pt.

On the other hand CVt+1
(kt+2) = {(v, . . . , v) | v ∈ Vt} so

dimF CVt+1
(kt+2) = dimF Vt = pt.

Since (Vt, (h1, . . . , ht+1)) satisfies the strong complement property, by (2.2) we have∑
1≤i≤t+1

dimF CVt(hi) = pt · t.

But then∑
1≤i≤t+2

dimF CVt+1
(ki) =

∑
1≤i≤t+1

dimF CVt(hi) + (t+ 1)(p− 1)pt + pt

= pt · t+ (t+ 1)(p− 1)pt + pt = (t+ 1)pt+1.

Hence (2.2) holds and (Vt+1, (k1, . . . , kt+2)) satisfies the strong complement prop-
erty.

Example. Another example of generators satisfying the strong complement prop-
erty can be obtained considering the action of Sym(n) on the full delete module V
over the field F with p element, where p is a prime which does not divide n. We
have that V = {(f1, . . . , fn) ∈ Fn | f1 + · · · + fn = 0} and Sym(n) acts on V by
permuting the n entries. Let α = (1, 2) and β = (2, . . . , n). We have

CV (α) = {(x, x, y3, . . . , yn) | x+ x+ y3 + · · ·+ yn = 0}
CV (β) = {(x, y, . . . , y) | x+ (p− 1)y = 0}

so dimF CV (α)+dimF CV (β) = n−2+1 = n−1 = dimF V. Since H1(Sym(n), V ) =
0 (see for example [9, (5.8)]), it follows from Corollary 3 that (V, (α, β)) satisfies
the strong complement property.

3. The case where N is a faithful and irreducible H-module

Now we investigate the following question: is it possible that (N, (h1, . . . , hd))
satisfies the strong complement property for all the generating sequences (h1, . . . , hd)
of length d?

Remark 5. Note that if (N, (h1, . . . , hd)) satisfies the strong complement property
and hd ∈ 〈h1, . . . , hd−1〉, then hd centralizes N . Indeed, given an element x ∈ N ,
we have that K = 〈hx1 , . . . , hxd−1, hd〉 is a complement of N in G. Therefore, as
Hx ≤ K and hd ∈ K, we conclude that [hd, x] ≤ K ∩N = 1.

It easily follows that if d > d(H) and (N, (h1, . . . , hd)) satisfies the strong com-
plement property for any generating sequence (h1, . . . , hd) of H with length d, then
H acts trivially on N .

In this section we analyze the case where N = V is minimal and abelian, so in
the following V will denote a faithful and irreducible H-module. Moreover we set
F = EndH V and n = dimF V.
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Lemma 6. Let H be a finite non-cyclic group and V a faithful and irreducible
H-module. If (V,H) satisfies the strong complement property, then

dimF H1(H,V ) ≥ d(H)− 1

d(H) + 1
· n.

Proof. Let d = d(H) and r = dimF H1(H,V ). By Theorem 2 and the hypothesis,
for every generating sequence (y1, . . . , yd) of H we have that∑

1≤i≤d

dimF CV (yi) ≥ n(d− 1)− r. (3.1)

Choose a generating sequence (h1, . . . , hd) of H and consider the elements

x1 = h1h2 · · ·hd−1hd, x2 = h2h3 · · ·hdh1, . . . , xd = hdh1 · · ·hd−2hd−1.

Since x1, . . . , xd are conjugate in H, we have dimF CV (x1) = · · · = dimF CV (xd).
Set

γ0 = dimF CV (x1), γ1 = dimF CV (h1), . . . , γd = dimF CV (hd)

and, for i ∈ {0, . . . , d},
κi =

∑
0≤j≤d,j 6=i

γj .

Notice that ∑
0≤i≤d

κi = d(γ0 + γ1 + · · ·+ γd).

By applying (3.1) to the generating sequence (h1, . . . , hd) we get κ0 ≥ n(d − 1) −
r; similarly considering the generating sequence (h1, . . . , hi−1, xi, hi+1, . . . , hd) we
obtain κi ≥ n(d− 1)− r for every i 6= 0. This implies

d(γ0 + γ1 + · · ·+ γd) =
∑

0≤i≤d

κi ≥ (d+ 1)(n(d− 1)− r). (3.2)

On the other hand, by a theorem of Scott [13, Theorem 1],

γ0 + γ1 + · · ·+ γd ≤ n(d− 1). (3.3)

Comparing (3.2) and (3.3) we deduce

(d+ 1)(n(d− 1)− r) ≤ n(d− 1)d

and thus r ≥ (d− 1)n/(d+ 1), as desired. �

Theorem 7. Assume that V is a faithful irreducible H module. If (V,H) satisfies
the strong complement property when H is either cyclic or acts trivially on V .

Proof. Assume that H is a finite non-cyclic group and V a faithful and irreducible
H-module and suppose, by contradiction, that (V,H) satisfies the strong comple-
ment property. Let F = EndH V , n = dimF V and r = dimF H1(H,V ). From (2.1)
and Lemma 6 we have that

d(H)− 1

d(H) + 1
· n ≤ r ≤ n

2
. (3.4)

Therefore
d(H)− 1

d(H) + 1
≤ 1

2

and consequently d(H) ≤ 3. Suppose d(H) = 3. Then by (3.4) we deduce that
r = n/2. From [6, Theorem 1] it follows that either F ∗(H) = L2(2n), n > 1, or
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F ∗(H) = Alt(6), but this would imply d(H) = 2, a contradiction. This proves that
d(H) = 2.

For a generating set x1, . . . , xd of H let us define

H̃ 1(x1, . . . , xd) =
∆(x1, . . . , xd)

InnDer(H,V )
≤ H1(H,V ).

According to the definition given in Section 2

dimF H̃1(x1, . . . , xd) = sV (x1, . . . , xd).

Assume H = 〈h1, h2〉, let h0 = h1h2, γi = dimF CV (hi) for 0 ≤ i ≤ 2 and set
h(V ) = n− γ1 − γ2 − γ3. By Theorem 2

2h(V ) = sV (h0, h1) + sV (h0, h2) + sV (h1, h2)− n

while by [13, Proposition 1.a]

h(V ) ≥ sV (h0, h1, h2)

so we have

sV (h0, h1) + sV (h0, h2) + sV (h1, h2) ≥ 2sV (h0, h1, h2)− n. (3.5)

From the definition, we have

H̃ 1(h0, h1, h2) = H̃ 1(h0, h1) ∩ H̃ 1(h0, h2)

= H̃ 1(h0, h1) ∩ H̃ 1(h1, h2)

= H̃ 1(h0, h2) ∩ H̃ 1(h1, h2).

So in particular

sV (h0, h1) + sV (h0, h2)− sV (h0, h1, h2) = dimF (H̃ 1(h0, h1) + H̃ 1(h0, h2))

≤ dimF H1(H,V ) = r.
(3.6)

From (3.5) and (3.6) we deduce

r + sV (h1, h2)− sV (h0, h1, h2) ≥ n.

Since r ≤ n/2, it follows

sV (h1, h2)− sV (h0, h1, h2) ≥ n

2
.

This is only possible if sV (h0, h1, h2) = 0, sV (h1, h2) = n/2 = r and consequently

H̃ 1(h1, h2) = H1(H,V ). With the same argument we can also deduce H̃ 1(h0, h1) =

H̃ 1(h0, h2) = H1(H,V ). This implies H̃ 1(h0, h1, h2) = H1(H,V ), contradicting
r = n/2 > sV (h0, h1, h2) = 0. �

When d(H) = 2, the proof of Theorem 7 shows that, for every generating set
(h1, h2) of H either (h1, h2), or (h1, h1h2), or (h2, h1h2) does not satisfy the strong
complement property.
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4. The case where N is non-abelian

The case where N is a complemented non-abelian minimal normal subgroup of
G = NH is quite more complicate. In this section we will work under the following
assumptions:

• G = NH is a finite group with a unique minimal normal subgroup, say N,
which is complemented by the subgroup H.
• N ∼= Sn, where n ∈ N and S is a finite non abelian simple group.
• κ is the number of complements of N in G.

Let H = 〈h1, . . . , hd〉 and assume that (N, (h1, . . . , hd)) satisfies the strong comple-
ment property, i.e. 〈hn1

1 , . . . , hndd 〉 is a complement of N in G for every choice of
n1, . . . , nd ∈ N. Let

Ω = {〈hn1
1 , . . . , hndd 〉 | (n1, . . . , nd) ∈ Nd}.

As κ is the number of all complements of N in G, we must have κ ≥ |Ω|. Note that

|Ω| =
∏

1≤i≤d

|N |
|CN (hi)|

.

We may identify G with a subgroup of the wreath product AutS o Sym(n). In
particular any h ∈ H can be written in the form (α1, . . . , αn)σh, with α1, . . . , αn ∈
AutS and σh ∈ Sym(n). Define v(h) = n− r(h) where r(h) is the number of orbits
of 〈σh〉 on {1, . . . , n}. It can be easily seen that |CN (h)| ≤ |S|r(h) and |N : CH(h)| ≥
|S|v(h), hence

|Ω| ≥ |S|
∑

1≤i≤d v(hi).

Therefore we obtain the following bound:∑
1≤i≤d

v(hi) ≤ log|S| κ. (4.1)

Proposition 8. Let G = NH be a finite group with a unique minimal normal
subgroup N , where N is non abelian and complemented by H. If (N,H) satisfied
the strong complement property, then

d(2n− 2) ≤ (d+ 1) log|S| κ,

where d = d(H) and κ is the number of complements of N in G.

Proof. By hypothesis, (N, (h1, . . . , hd)) satisfies the strong complement property for
all the generating sequence of H of cardinality d = d(H). If d = 1, then the bound
follows from (4.1). So assume d ≥ 2 and choose a generating sequence (h1, . . . , hd).
Let

x1 = h1h2 · · ·hd−1hd, x2 = h2h3 · · ·hdh1, . . . , xd = hdh1 · · ·hd−2hd−1.

Since x1, . . . , xd are conjugate in H, we have v(x1) = · · · = v(xd). Set

γ0 = v(x1), γ1 = v(h1), . . . , γd = v(hd)

and, for i ∈ {0, . . . , d},
κi =

∑
0≤j≤d,j 6=i

γj .

Notice that ∑
0≤i≤d

κi = d(γ0 + γ1 + · · ·+ γd).
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By applying (4.1) to the generating sequence (h1, . . . , hd) we get κ0 ≤ log|S| κ; sim-

ilarly considering the generating sequence (h1, . . . , hi−1, xi, hi+1, . . . , hd) we obtain
κi ≤ log|S| κ for every i 6= 0. This implies

d(γ0 + γ1 + · · ·+ γd) =
∑

0≤i≤d

κi ≤ (d+ 1) log|S| κ. (4.2)

On the other hand, by a theorem of Ree [12, Theorem 1],

γ0 + γ1 + · · ·+ γd ≥ 2n− 2. (4.3)

Comparing (4.2) and (4.3) we deduce

d(2n− 2) ≤ (d+ 1) log|S| κ,

as desired. �

It is quite hard to produce a good bound for the number of complements of
N = Sn in G. An easy case occurs when |N | and |G/N | are coprime, indeed by
the Schur-Zassenhaus theorem N is complemented and all the complements are
conjugate in G, hence κ ≤ |N |.

The case n = 1 of the forthcoming Theorem 10 follows from the following lemma.

Lemma 9. Let G be a finite almost simple group and S = socG. If (|G/S|, |S|)
are coprime, then G/S is cyclic.

Proof. We have to prove that if a subgroup X of OutS has order coprime with
the order of S, then X is cyclic. If S is an alternating or a sporadic simple group,
then |OutS| divides 4 so, since |S| is even, we are done. Thus we may assume
that S is a simple group of Lie type. In this case OutS is a semidirect product
(in this order) of groups of order d (diagonal automorphisms), f (field automor-
phisms), and g (graph automorphisms modulo field automorphisms), except that
for B2(2f ), G3(3f ), F4(2f ) the graph automorphism square to the generating field
automorphism. The groups of order d, f, g are cyclic except in the case D4(q)
(where the graph automorphisms generates a group isomorphic to Sym(3)). On the
other hand it follows from [4, Table 5 and Table 6] that d and g divides |S| so X
must be a subgroup of a cyclic group of order dividing f. �

In the following we will need Gaschütz’s Lemma [5], which says that if K is a
normal subgroup of a finite group G and 〈g1, . . . , gd,K〉 = G with d ≥ d(G), then
we can find k1, . . . , kd ∈ K such that 〈g1k1, . . . , gdkd〉 = G.

Theorem 10. Let G be a finite group with a unique minimal normal subgroup N ,
where N is non abelian and (|G : N |, |N |) = 1. Let H be a complement of N in G.
If (N,H) satisfies the strong complement property, then H is cyclic.

Proof. Let N ∼= Sn, where n ∈ N and S is a finite non abelian simple group. By
the Schur-Zassenhaus theorem, κ ≤ |N | = |S|n so by Proposition 8

d(2n− 2) ≤ (d+ 1)n, (4.4)

that is (n− 2)d ≤ n. Hence for n > 5, we must have d ≤ 1 and H cyclic.
Let us analyze the cases where n ≤ 4. Notice that H acts transitively on the

n factors of N : so if n = 2 or n = 4 then 2 divides |H|, but then |H|, |N | are
not coprime, against our assumption. If n = 1, it follows from Lemma 9 that H
is cyclic. So the only case that is left is n = 3. In this case, by the above bound,
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d ≤ 3. First assume d = 3. In this case, by Gaschütz’s Lemma [5], we can choose
the generators h1, h2, h3 so that σh1 = σh2 = (1, 2, 3), σh3 = (1, 3, 2) but then
v(h1) = v(h2) = v(h3) = 3− 1 = 2 so v(h1) + v(h2) + v(h3) = 6 > 3 against (4.1).
Similarly if d = 2 we can choose choose h1, h2 so that σh1

= σh2
= (1, 2, 3) but then

v(h1) = v(h2) = 2 so v(h1) + v(h2) = 4 and again (4.1) fails. So H is cyclic in all
the cases. �

5. The coprime case

Proof of Theorem 1. Let G = H n N be a semidirect product of finite groups N
and H where H is not cyclic and where H and N have coprime orders. We want to
prove that if (N,H) satisfies the strong complement property, then H acts trivially
on N .

We argue by contradiction and take a counter example where the order of N is
smallest possible. Let U be a minimal normal subgroup of G contained in N . It is
easy to see that both (U,H) and (N/U,H) satisfy the strong complement property.
If U is a non-trivial proper subgroup of N , then, by minimality, H acts trivially on
N/U and U . Since the action is coprime, we deduce that H acts trivially on N ,
against our assumption. Thus N is a minimal normal subgroup of G.

Let C = CH(N) and d = d(H). For short, we will use the bar notation to
denote the image of the elements and subgroups in H/C. We want to prove that for
every d-generating sequence (h̄1, . . . , h̄d) of H̄, (N̄ , (h̄1, . . . , h̄d)) satisfies the strong
complement property. So, given n1, . . . nd ∈ N we need to prove that 〈h̄n̄1

1 , . . . , h̄n̄dd 〉
intersects trivially N̄ in Ḡ. By Gaschütz’s Lemma, there exist elements c1, . . . , cd ∈
C such that 〈h1c1, . . . , hdcd〉 = H. As (N,H) satisfies the strong complement
property, the subgroup 〈(h1c1)n1 , . . . , (hdcd)

nd〉 is a complement of N , hence, by
the Schur-Zassenhaus theorem, it is a conjugate Hn of H for some n ∈ N . Note
that C ≤ Hn. Therefore

〈hn1
1 C, . . . , hndd C〉 ≤ 〈(h1c1)n1 , . . . , (hdcd)

nd〉 = Hn.

and we conclude that 〈h̄n̄1
1 , . . . , h̄n̄dd 〉 is a complement of N̄ . This proves that

(N̄ , (h̄1, . . . , h̄d)) satisfies the strong complement property for any generating se-
quence h̄1, . . . , h̄d of H̄ of length d. In particular, if d > d(H̄), then by Remark 5
the action results to be trivial and thus H = C against our assumption. We deduce
that d(H̄) = d = d(H) and (N̄ , H̄) satisfies the strong complement property.

Note that N̄ is the unique minimal normal subgroup of Ḡ. If N is non-abelian,
then by Theorem 10 we get that H̄ is cyclic. If N is abelian, then by the Schur-
Zassenhaus theorem all complements are conjugate, hence H1(H̄, N̄) is trivial.
Therefore from Lemma 6 it follows that H̄ is cyclic. In both cases, since d(H̄) =
d(H), it follows that H is cyclic, against our assumption. �

In the case where H is of odd order and nilpotent of class at most 2 acting
coprimely on a faithful irreducible H-module N , the strong complement property
is quite limiting: namely it suffices that (N, (h1, . . . , hd)) satisfies the strong com-
plement property for one generating sequence h1, . . . , hd of H to deduce that H is
cyclic.

We will need the following consequence of Corollary 3.

Lemma 11. Suppose that N is a faithful irreducible H-module and that H1(H,N) =
0. If (N, (h1, . . . , hd)) satisfies the strong complement property and d ≥ 2, then
CN (hi) 6= 0 for every 1 ≤ i ≤ d.
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Proof. Assume by contradiction that CN (hi) = 0 for some index i. Let F =
EndH(N) and let n = dimF N. As H1(H,N) = 0, by Corollary 3 we have that∑

1≤j≤d

dimF CN (hj) = n(d− 1).

Since dimF CN (hi) = 0 and dimF CN (hj) ≤ n for j 6= i, we deduce that dimF CN (hj) =
n for all j 6= i. Hence the action is not faithful, a contradiction. �

Proposition 12. Suppose that N is a faithful irreducible H-module, where H =
〈h1, h2, . . . , hd〉 is nilpotent of class at most 2, |H| is odd and (|N |, |H|) = 1. If
(N, (h1, . . . , hd)) satisfies the strong complement property, then H is cyclic.

Proof. By standard arguments we only need to consider the case when H is a p-
group where p is an odd prime. Let F = EndH(N) and let n = dimF N. We may
identify H with a subgroup of GL(n, F ). Moreover for every z ∈ Z = Z(H), there
exists λ ∈ F such that z acts on N as the scalar multiplication by λ. In particular
Z is isomorphic to a subgroup of F ∗ and it is cyclic. So we may assume that H is
non-abelian, in particular there exists i 6= j such that, setting a = hi and b = hj ,
we have [b, a] 6= 1. Hence [b, a] acts as the scalar multiplication by an element λ of F
whose order is a non-trivial p-power. By Lemma 11, that there exists an 0 6= x ∈ N
that commutes with a. Notice that

xb
ja = xab

j [b,a]j = λjxb
j

.

Thus xb
j

is an eigenvector for a with eigenvalue λj . Since (N, (h1, . . . , hd)) satisfies

the strong complement property, 〈axb , b〉 is contained in a complement of N , and

therefore we should have that [ax
b

, b, b] is trivial. However calculations show that

[ax
b

, b, b] = (λ−1(1− λ)x+ λ−1(λ2 − 1)xb + (1− λ)xb
2

)b.

Notice that λ2 6= 1 as p ≥ 3. In particular x, xb, xb
2

are eigenvectors for the
different eigenvalues 1, λ, λ2 so they are linearly independent. But then (λ−1(1 −
λ)x+λ−1(λ2− 1)xb + (1−λ)xb

2

)b 6= 0, a contradiction. [Notice that for p = 2 and
λ = −1 this expression becomes (−2x+ 0 + 2x)b = 0]. �

In the next example we show that the assumption that |H| is odd in Proposition
12 is essential.

Example. Let N = 〈x〉 × 〈y〉 be an elementary abelian p group where p is an odd
prime. Let P = 〈a, b〉 be the subgroup of Aut(N) where the action of P on N is
given by

xa = x, ya = y−1, xb = y, yb = x.

Notice that P is the dihedral group of order 8 with x[a,b] = x−1 and y[a,b] = y−1.
Thus in particular P is nilpotent of class 2. The action of P on N is faithful. Let
us see also that (N, (a, b)) satisfies the strong complement property. This follows
from the fact that a commutes with x and b with xy. Thus, if w = xα(xy)β and
z = xγ(xy)δ are any two elements of N , then

〈aw, bz〉 = 〈awx
γ−α

, bz(xy)β−δ〉 = 〈a, b〉x
γ(xy)β

and so 〈aw, bz〉 is a complement of N .
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6. Some examples

Another case in which we can produce suitable bounds for the number of com-
plements of a non-abelian minimal normal subgroup N in G is where G = S oH is
actually the wreath product of a finite non-abelian simple group S and a d-generated
transitive subgroup H of Sym(n), and N = Sn is the base subgroup.

The so call “McIver-Neumann Half-n Bound” says that if Y is a subgroup of
Sym(n), then d(Y ) ≤ n/2 if n 6= 3, and d(Y ) ≤ 2 if n = 3 (see [11, Lemma 5.2]
or [3, Section 4]). Moreover, from the main result of [8] it follows that if Y is a
p-group, then d(Y ) ≤ n/p.

Arguing as in [10, Lemma 2.8], we can derive the following bounds.

Lemma 13. Let H be a transitive subgroup of Sym(n), S a finite non-abelian
simple group, G the wreath product S oH and N ∼= Sn the socle of G. For n 6= 4,
the number κ of complements of N in G is at most |S|(3n−1)/2. If H is a p-group,
then κ ≤ |S|n+n/p−1.

Proof. We can identify G with a subgroup of the wreath product of S and Sym(n).
So the elements of G are of the kind g = (x1, . . . , xn)σ with xi ∈ S and σ ∈ Sym(n).
For any 1 ≤ i ≤ n, denote by Si the subset of N = Sn consisting of the elements
x = (x1, . . . , xn) with xj = 1 for every j 6= i. Let K = S2 × · · · × Sn. Note
that NG(K) is isomorphic to a subgroup of S × (S o Sym(n − 1)) and NG(K)/K
is isomorphic to a subgroup of S × Sym(n − 1). Then by [7, Corollary 4.4] or [2,
Theorem 2] there is a bijection between the conjugacy classes of complements of N
in G and the conjugacy classes of complements of N/K in NG(K)/K.

Let Y be a complement of N/K in NG(K)/K. The number of complements of
N/K in NG(K)/K equals the cardinality of the set Der(Y,N/K) of derivations from
Y to N/K. Since δ ∈ Der(Y,N/K) is uniquely determined by the images yδ1, . . . , y

δ
m

of a set of generators of Y , we derive that |Der(Y,N/K)| ≤ |N/K|d(Y ) = |S|d(Y ).
As Y is isomorphic to a subgroup of Sym(n − 1) and n − 1 6= 3, we have that
d(Y ) ≤ (n−1)/2, hence |Der(Y,N/K)| ≤ |S|(n−1)/2. Finally, as every complement
X of N in G has index |N |, there are at most |N | conjugates of X in G. Therefore,

κ ≤ |S|(n−1)/2|S|n = |S|(3n−1)/2.

Let consider that case where H is a p-group. Then n = pt and Y is a permutation
p-group of degree at most pt − 1. Therefore Y is a permutation group of degree at
most pt − p and so, by [8], d(Y ) ≤ (pt − p)/p = pt−1 − 1. Arguing as above we
deduce that

κ ≤ |S|n+n/p−1,

as desired. �

Proposition 14. Let H be a transitive subgroup of Sym(n), S a finite non-abelian
simple group, G the wreath product S o H and N ∼= Sn the socle of G. If (N,H)
satisfies the strong complement property, then d(H) ≤ 4. Moreover, if n ≥ 12 then
d(H) ≤ 3 and if H is a p-group for a prime p > 3, then H is cyclic.

Proof. Let d = d(H). Recall that a permutation group of degree n can be generated
by at most [n/2] elements if n 6= 3, and at most 2 elements if n = 3. So, if n ≤ 8,
then d ≤ 4.
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If n ≥ 8, then by Lemma 13 κ ≤ |S|3n/2−1/2. From Proposition 8 it follows that

d(2n− 2) ≤ (d+ 1)

(
3n

2
− 1

2

)
i.e.

nd ≤ 3d+ 3n− 1. (6.1)

Since d ≤ n/2, we deduce

nd ≤ 3n

2
+ 3n− 1 =

9n

2
− 1

an consequently d ≤ 4.
In particular, if n ≥ 12 then 8/(n− 3) < 1 and by (6.1) we deduce that

d ≤ 3n− 1

n− 3
= 3 +

8

n− 3
< 4.

Suppose now that H is a non cyclic p-group where p > 3. In this case n = pt for
some t > 1. Then by Lemma 13 κ ≤ |S|n+n/p−1, and by Proposition 8 we deduce

d(2n− 2) ≤ (n+ n/p− 1) (d+ 1)

hence
d

d+ 1
≤ pt + pt−1 − 1

2pt − 2
.

For p > 3, we have
pt + pt−1 − 1

2pt − 2
<

2

3
.

But d/(d + 1) < 2/3 would imply d = 1, against the assumption that H is not
cyclic. �

We now give an example of a semidirect product NH where both N and H
are elementary abelian p-groups with H of an arbitrary large rank r ≥ 2 acting
faithfully on N and where (N,H) satisfies the strong complement property. This
is in sharp contrast with the coprime case where (N,H) can only satisfy the strong
complement property if we either have a direct product or H is cyclic.

Example. Let r be an integer where r ≥ 2 and p a prime. Let N = Fv1+· · ·+Fvr+
Fw be a vector space of dimension r + 1 over F = GF(p). Let H = 〈a1, . . . , ar〉 ≤
GL(N) where vaii = vi + w and ai acts trivially on w and vj when j 6= i. Then
H is an elementary abelian p-group acting faithfully on N . We claim that (N,H)
satisfies the strong complement property. Let h1, . . . , hr be any generators of H and
let x1, . . . , xr ∈ N . Then K = 〈hx1

1 , . . . , hxrr 〉 ≤ H〈w〉. Thus K is also elementary
abelian of rank r. Notice also that K ∩N ≤ H〈w〉 ∩N = 〈w〉. Thus if K was not
a complement of N , then K ∩N = 〈w〉 that would imply that K = K〈w〉 = H〈w〉
giving the contradiction that |K| = pr+1. It follows that K is a complement of N
and thus (N,H) satisfies the strong complement property.

The next example is again a semidirect product NH where both N and H are
p-groups and (N,H) satisfies the strong complement property.

Example. Let N = 〈a, b〉 be a p-group of rank 2 and class 2 with [a, b] = c
and ap = bp = cp = 1. Let P = 〈C,A〉 be the elementary abelian p-group of
order p2 where C acts trivially on N and A is the inner automorphism induced by
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conjugation by a. We claim that (N,P ) satisfies the strong complement property.
Let ArCs, AlCm be any generators of P and let x, y be any elements of N . Notice
that the two conjugates (ArCs)x and (AlCm)y are in 〈A,C, c〉 and thus commute
(c and C are in Z(PN)). Hence Q = 〈(ArCs)x, (AlCm)y〉 is also an elementary
abelian p-group of order p2. Notice also that Q∩N ≤ 〈c〉. Thus if (N,P ) does not
satisfy the strong complement property we would need Q ∩ N = 〈c〉 for some Q.
But then Q ≥ 〈c〉 and then Q = 〈A,C, c〉 contradicting the previous observation
that the order of Q is p2. Thus (N,P ) satisfies the strong complement property.
Notice however that P does not act trivially on N as bA = bc−1.
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Mariapia Moscatiello, Università degli Studi di Padova, Dipartimento di Matematica
“Tullio Levi-Civita”, email: mariapia.moscatiello@math.unipd.it

Pablo Spiga, University of Milano-Bicocca, Dipartimento di Matematica Pura e Ap-
plicata, email: pablo.spiga@unimib.it

Gunnar Traustason, University of Bath, Department of Mathematical Sciences,

email:gt223@bath.ac.uk


