A NOTE ON CONCISENESS OF ENGEL WORDS

GUSTAVO A. FERNANDEZ-ALCOBER, MARTA MORIGI,
AND GUNNAR TRAUSTASON

ABSTRACT. It is still an open problem to determine whether the n-th
Engel word [z,,y] is concise, that is, if for every group G such that
the set of values e,(G) taken by [z,,y] on G is finite it follows that
the verbal subgroup E,(G) generated by e,(G) is also finite. We prove
that if e, (G) is finite then [E,(G), G] is finite, and either G/[En(G), G]
is locally nilpotent and FE,(G) is finite, or G has a finitely generated
section that is an infinite simple n-Engel group. It follows that [z, y]

is concise if n is at most four.

1. INTRODUCTION

Let =,y be two symbols, to which we refer as indeterminates, and let F
be the free group having z,y as a free basis. The n-th Engel word [z, y]

can be identified with the element of F' defined inductively by

[.%',0 y] = [l'm y] - [[xvn—l y]ﬂy]v

for all positive integers n.
Given a group G, we think of [z,,y] as a function from G2 to G, by
substituting group elements for the indeterminates. Thus we can consider

the set e, (G) of all values taken by this function, that is,
en(G) ={lg.n ] [ g,h € G}.
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The subgroup generated by e, (G) is called the n-th Engel verbal subgroup
of G, and is denoted by E,(G).

In this paper we address the problem of determining whether [x,, y] is a
concise word. In general, a word w in some alphabet x1,...,x; is said to be
concise if for every group G such that w takes only a finite number of values
in G it follows that the verbal subgroup w(G) is also finite.

As mentioned in [9], Philip Hall had conjectured that every word is con-
cise, and he proved this for every non-commutator word (i.e. a word outside
the commutator subgroup of the free group), and for lower central words. In
[10], Turner-Smith showed that derived words are also concise, and Jeremy
Wilson [11] subsequently extended this result to all outer commutator words
(which are words obtained by nesting commutators, but using always dif-
ferent indeterminates). On the other hand, Hall’s conjecture was eventually
refuted in 1989 by Ivanov, see [5]. Note that [z, y] is not an outer commu-
tator word if n > 1 (because the indeterminate y occurs more than once),
and that the problem of determining its conciseness is still open.

In this paper we are able to prove a partial result in this direction, namely,
that if G is a group such that e,(G) is finite, then [E,(G),G] is finite.

Moreover, a strong dichotomy result holds.

Dichotomy Theorem. Let G be a group, and assume that e, (G) has order
m. Then [E,(G),G] is finite of (n,m)-bounded order. Furthermore, there
exists a function f: Nx N — N such that for each n € N, exactly one of the
following holds:
(1) G/[En(GQ),G] is locally nilpotent and E,(G) is finite of order at
most f(n,m).
(2) G has a finitely generated section that is an infinite simple n-Engel

group.

Note that if G is locally solvable, or locally finite, or more generally locally

graded, then case (1) occurs by Corollary 6 of [6]. Furthermore, since it
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was proved in [4] that 4-Engel groups are locally nilpotent, we obtain as a

consequence that [z,, y] is concise for every n < 4.

Corollary. Let G be a group and let n < 4. If e,(G) is finite of order m,
then En(G) is finite of m-bounded order.

The existence of infinite simple n-Engel groups is a longstanding problem
which is open for n > 4. Note however that it might happen that such a

group exists for some n, and still the n-th Engel word is concise.

2. PROOFS OF THE RESULTS

We first prove that if G is a group such that e,(G) is finite of order m
then [E,(G), G] is finite of (n, m)-bounded order. The first step of the proof
is to show that E,(G)’ is finite of m-bounded order. We obtain this result
as a particular case of the following general proposition. In the remainder,
if w is a group word, we use the notation G, for the set of all values of w in

a group G.

Proposition 1. Let w be a group word, and let G be a group such that
G| =m. Then |w(G)| < ((m—1)(m —2))™".

Proof. The proof is modelled on the second part of the proof of Theorem A

in [3] (and so also, indirectly, on the second part of the proof of Theorem

3.4 in [1]). Suppose that w depends on the indeterminates 1, ..., x, and
choose a new set y1,...,yx of indeterminates. If we define a new word « by
= [W(i’l, s :Ek)7w(yla s yk)]a

then |Go| < m? and a(G) = w(G)'.

We claim that the order of an element g € G, is at most (m — 1)(m — 2).
Of course, we may assume g # 1. Let us write g = [a, b] with a,b € G,,, and
consider the subgroup H = (a,b). Put C' = Cg(a). Since a € G, \ {1}, it
has at most m — 1 conjugates in G, and consequently |H : C| < m—1. Now

C permutes the m—1 non-trivial values of G,, and leaves the element a fixed
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by definition. Thus |C' : C¢(b)| < m — 2, and consequently |H : Z(H)| =
|H : Cg(a) N Cl(b)] < (m —1)(m — 2). By applying Schur’s Theorem |7,
10.1.4] to H, it follows that the exponent of H' is at most (m — 1)(m — 2),
which proves the claim.

Since GG, is a normal finite set of elements of finite order, we can apply

Dietzmann’s Lemma [7, 14.5.7] (more precisely, its proof) to conclude that

w(G) = (Gg) is finite, of order at most ((m — 1)(m — 2))™". O
We need two more lemmas.

Lemma 2. Let G be a group, let g,h € G and assume that [g,;+1 h] =1 for

some positive integer i. Then
[9,i-1 h,h*] = [g,i h]®

for every positive integer s.

Proof. The proof is by induction on s. The result is obviously true for s = 1,
so we assume that s > 2 and that the result holds for s — 1. By using the

induction hypothesis and the fact that [g,;+1 h] = 1, we have

[gai—l hvhs] = [gvi h”g7i—1 h7h871]h = [gai h]([gﬂ h]871)h

= [gvi h]([gn h]h)871 = [gai h]([gn h][gai h, h])871 = [gvi h]s’

which proves the lemma. O

Since G acts by conjugation on the normal subgroup E,(G), if E,(G)
is abelian then it is actually a Z[G]-module. In this case, we will keep the
multiplicative notation in F,(G), and the action of an element z € Z[G| on

an element v € E,(G) will be denoted by v?.

Lemma 3. Let G be a group such that E,(G) is abelian. If u € e, (G) then

u® € ey (Q) for every positive integer s.
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Proof. Write u = [g,2n, h] € ean(G), with g,h € G, and let a = [g,, h].
Hence u = [a,, h]. If we view E,(G) as a Z|G]-module, then

n

u = (a(hfl)")s _ (GS)(hfl) _ [asm h] c en(G),

as desired. O

Proposition 4. Let G be a group such that |e,(G)| = m. Then [E,(G),G]|

is finite of (n,m)-bounded order.

Proof. By Proposition 1, we may assume that E,(G) is abelian.

Let |e;(G)| =1; fori=n+1,...,2n. If u € es,(G), then since |e,(G)| =
m, it follows from Lemma 3 that there exist positive integers s,t with 1 <
s <t <m+ 1 such that u* = «!. Hence u has finite order, which is at most
t —s < m. It follows that FEs,(G) has order at most m!2", since it is an
abelian group generated by l9, elements of order at most m.

Now consider the normal series of subgroups

1< E2n(G) < EQn—l(G) << En—i—l(G) < En(G)

We are going to show that
’EZ(G)/EZ—H(G)’ < (lz'—l _ li+1>li—li+1,

foreach i =n+1,...,2n — 1, and as a consequence that E,1(G) is finite
of (n,m)-bounded order.

Let G = G/E;11(G) and let z denote the image of z in G. We have
lei(G)| <l —liv1 +1and |e;_1(G)| < l;—1 —lix1 + 1 (here the +1 takes into
account the identity).

Now consider an element [g,; h] € e;(G) such that [g,; h] # 1. Since
[Gyi-1 E] has at most [;_1 — [;41 conjugates, there exists s < l;_1 — ;11 such
that h* centralizes [g,;—1 h]. It follows from Lemma 2 that [g,; h] has order

at most ;1 — l;41, and so

’EZ(G)/EZ—H(G)’ < (li—l _ li+1>li—li+1,
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as we wanted.

Now we prove that [E,(G),G]| is finite of (n,m)-bounded order. By
the previous paragraphs, we may assume that F,;1(G) = 1. Let o; =
[©m Y, 2], where ¢ > 0. Then «; takes at most (Qm)zi values in G, since
each value of q; is a product of 2¢ elements, each lying in e,(G) U e,(G)™!
(note that a; = a; ", ;). Also the verbal subgroup a,11(G) is contained
in E,41(G) =1 and oy (G) = [En(G), G.

Consider the normal series of subgroups

1= Oén+1(G) << OzZ(G) S e < Ozl(G).

The same argument as before shows that every value of a; in G/a;+1(G)

has order at most (2m)2" ', and consequently
0(G) /011 (G)] < (2m)>

for each i = 1,...,n. Thus a;(G) is finite of (n, m)-bounded order, which

concludes the proof. O

Before embarking on the proof of the Dichotomy Theorem, we consider

locally nilpotent groups G in which e, (G) is finite.

Lemma 5. Let G be a locally nilpotent group such that e,(G) is finite of

order m. Then G is an (n +m — 1)-Engel group.

Proof. Let a,b € G, and consider the set

A= {[am b],[ams1 O, ., [@msm D).

Since A has at most m elements, there exist i, j € {0,...,m} with j > i such
that [a,n4i b] = [a,nys b]. Then [a,n4i b] = [a,n1i12(j—i) D] for each positive
integer A and, by the nilpotency of (a,b), it follows that [a,,+; b] = 1. So
[@yn+m—1 b] = 1 for each a,b € G, and G is an (n+m — 1)-Engel group. O



CONCISENESS OF ENGEL WORDS 7

Proposition 6. Let G be a locally nilpotent group such that e,(G) is finite
of order m. Then E,(G) is finite of (n,m)-bounded order.

Proof. By the previous lemma, G is a locally nilpotent (n 4+ m — 1)-Engel
group, and so by the Main Theorem of [2] there exist (n,m)-bounded con-
stants ¢ and d such that v.(G)? = 1. Moreover, by Proposition 1 we may
assume that E,(G) is abelian, so it is enough to show that [a,,b] is of
finite (n, m)-bounded order for every a,b € G. Thus we may assume that
G = (a,b). Also, since 7.(G) is of (n, m)-bounded exponent, we may assume
without loss of generality that ~.(G) = 1.

Now let F' = (z,y) be the free nilpotent group of class ¢ — 1 and rank 2.

Then F is torsion-free and

F/’72(F)7 72(F)/’Y3(F)7 a’Yc—l(F)/’YC(F)

are free abelian groups of finite (n,m)-bounded rank. Consider the verbal
subgroup E = E,(F'), and let E; = EN~,;(F). Notice that E < v,41(F).
Then

Ei/Eiv1 = Eiyip1(F) /v (F)

is a free abelian group of rank at most the rank of ~;(F')/vi+1(F). We can
thus choose a set T' =T, 11 UTp 42 U---UT,._1 of generators for F such that
the elements

{wyit1(F) : w e T3}

freely span E;vit1(F)/vi+1(F) as a free abelian group. Notice that |T is
(n,m)-bounded (at most the sum of the ranks of the groups v, +1(F) /Yn+2(F),
o Ye—1(F)/v:(F)). As a consequence, every element w € T is a product
in e,(F)Ue,(F)~! of (n,m)-bounded length.

We now move back to the original setting with the group G = (a, b) such
that 7.(G) = 1, and let A; = E,(G) N v;(G). Consider some word w € T,

which is a product of left-normed commutators of weight ¢ (in z,y) modulo
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Yi+1(F). Now w takes only a finite number of values [ in G/7;11(G), where
[ is (n, m)-bounded.
We want to prove that A;/A;11 = Aivit1(G)/7vi+1(G) is of (n, m)-bounded

exponent, so we assume that v;+1(G) = 1. Now
wa’,b') = w(a,b)",

and as w only takes [ values, we have w(a,b)” = w(a,b)” for some 0 < i <
j <. Then w(a, b)’"j*’”i = 1. This proves that A;/A;41 is of (n, m)-bounded
exponent for eachi=n-+1,...,c— 1.

Since ¢ is (n,m)-bounded, it follows that A,11 = E,(G) is of (n,m)-
bounded exponent. In particular [a,yb] is of (n,m)-bounded order, as we

wanted to prove. O

Now we can prove our main theorem and its corollary.

Proof of the Dichotomy Theorem. Let G be a group such that e,(G) has
order at most m. It follows from Proposition 4 that [E,(G),G] is finite of
(n, m)-bounded order.

First suppose that G/[E,(G), G] is not locally nilpotent. This group is an
(n+ 1)-Engel group, and by a folklore result on Engel groups, G/[E,(G), G]
has a finitely generated infinite simple section H (see Theorem 4.1 of [8] for
a proof). Now H is centre-by-(n-Engel), and since it is simple non-abelian,
H is necessarily an n-Engel group. Hence G is of type (2). We are left with
the situation when G/[E,(G),G] is locally nilpotent. Then Proposition 6
implies that G is of type (1). O

Proof the Corollary. Let n < 4 and let G be a group such that e, (G) has
order m. By the Main Theorem in [4], it follows that G/E, (G) is locally
nilpotent. So G/[E,(G),G] is also locally nilpotent, and by the Dichotomy
Theorem, E,(G) is finite of bounded order. O
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