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Abstract. It is still an open problem to determine whether the n-th

Engel word [x,n y] is concise, that is, if for every group G such that

the set of values en(G) taken by [x,n y] on G is finite it follows that

the verbal subgroup En(G) generated by en(G) is also finite. We prove

that if en(G) is finite then [En(G), G] is finite, and either G/[En(G), G]

is locally nilpotent and En(G) is finite, or G has a finitely generated

section that is an infinite simple n-Engel group. It follows that [x,n y]

is concise if n is at most four.

1. Introduction

Let x, y be two symbols, to which we refer as indeterminates, and let F

be the free group having x, y as a free basis. The n-th Engel word [x,n y]

can be identified with the element of F defined inductively by

[x,0 y] = x; [x,n y] = [[x,n−1 y], y],

for all positive integers n.

Given a group G, we think of [x,n y] as a function from G2 to G, by

substituting group elements for the indeterminates. Thus we can consider

the set en(G) of all values taken by this function, that is,

en(G) = {[g,n h] | g, h ∈ G}.
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The subgroup generated by en(G) is called the n-th Engel verbal subgroup

of G, and is denoted by En(G).

In this paper we address the problem of determining whether [x,n y] is a

concise word. In general, a word ω in some alphabet x1, . . . , xt is said to be

concise if for every group G such that ω takes only a finite number of values

in G it follows that the verbal subgroup ω(G) is also finite.

As mentioned in [9], Philip Hall had conjectured that every word is con-

cise, and he proved this for every non-commutator word (i.e. a word outside

the commutator subgroup of the free group), and for lower central words. In

[10], Turner-Smith showed that derived words are also concise, and Jeremy

Wilson [11] subsequently extended this result to all outer commutator words

(which are words obtained by nesting commutators, but using always dif-

ferent indeterminates). On the other hand, Hall’s conjecture was eventually

refuted in 1989 by Ivanov, see [5]. Note that [x,n y] is not an outer commu-

tator word if n > 1 (because the indeterminate y occurs more than once),

and that the problem of determining its conciseness is still open.

In this paper we are able to prove a partial result in this direction, namely,

that if G is a group such that en(G) is finite, then [En(G), G] is finite.

Moreover, a strong dichotomy result holds.

Dichotomy Theorem. Let G be a group, and assume that en(G) has order

m. Then [En(G), G] is finite of (n,m)-bounded order. Furthermore, there

exists a function f : N×N→ N such that for each n ∈ N, exactly one of the

following holds:

(1) G/[En(G), G] is locally nilpotent and En(G) is finite of order at

most f(n,m).

(2) G has a finitely generated section that is an infinite simple n-Engel

group.

Note that if G is locally solvable, or locally finite, or more generally locally

graded, then case (1) occurs by Corollary 6 of [6]. Furthermore, since it
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was proved in [4] that 4-Engel groups are locally nilpotent, we obtain as a

consequence that [x,n y] is concise for every n ≤ 4.

Corollary. Let G be a group and let n ≤ 4. If en(G) is finite of order m,

then En(G) is finite of m-bounded order.

The existence of infinite simple n-Engel groups is a longstanding problem

which is open for n > 4. Note however that it might happen that such a

group exists for some n, and still the n-th Engel word is concise.

2. Proofs of the results

We first prove that if G is a group such that en(G) is finite of order m

then [En(G), G] is finite of (n,m)-bounded order. The first step of the proof

is to show that En(G)′ is finite of m-bounded order. We obtain this result

as a particular case of the following general proposition. In the remainder,

if ω is a group word, we use the notation Gω for the set of all values of ω in

a group G.

Proposition 1. Let ω be a group word, and let G be a group such that

|Gω| = m. Then |ω(G)′| < ((m− 1)(m− 2))m
2
.

Proof. The proof is modelled on the second part of the proof of Theorem A

in [3] (and so also, indirectly, on the second part of the proof of Theorem

3.4 in [1]). Suppose that ω depends on the indeterminates x1, . . . , xk, and

choose a new set y1, . . . , yk of indeterminates. If we define a new word α by

α = [ω(x1, . . . , xk), ω(y1, . . . , yk)],

then |Gα| ≤ m2 and α(G) = ω(G)′.

We claim that the order of an element g ∈ Gα is at most (m− 1)(m− 2).

Of course, we may assume g 6= 1. Let us write g = [a, b] with a, b ∈ Gω, and

consider the subgroup H = 〈a, b〉. Put C = CH(a). Since a ∈ Gω \ {1}, it

has at most m− 1 conjugates in G, and consequently |H : C| ≤ m− 1. Now

C permutes the m−1 non-trivial values of Gω, and leaves the element a fixed
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by definition. Thus |C : CC(b)| ≤ m − 2, and consequently |H : Z(H)| =

|H : CH(a) ∩ CH(b)| ≤ (m − 1)(m − 2). By applying Schur’s Theorem [7,

10.1.4] to H, it follows that the exponent of H ′ is at most (m− 1)(m− 2),

which proves the claim.

Since Gα is a normal finite set of elements of finite order, we can apply

Dietzmann’s Lemma [7, 14.5.7] (more precisely, its proof) to conclude that

ω(G)′ = 〈Gα〉 is finite, of order at most ((m− 1)(m− 2))m
2
. �

We need two more lemmas.

Lemma 2. Let G be a group, let g, h ∈ G and assume that [g,i+1 h] = 1 for

some positive integer i. Then

[g,i−1 h, hs] = [g,i h]s

for every positive integer s.

Proof. The proof is by induction on s. The result is obviously true for s = 1,

so we assume that s ≥ 2 and that the result holds for s − 1. By using the

induction hypothesis and the fact that [g,i+1 h] = 1, we have

[g,i−1 h, hs] = [g,i h][g,i−1 h, hs−1]h = [g,i h]([g,i h]s−1)h

= [g,i h]([g,i h]h)s−1 = [g,i h]([g,i h][g,i h, h])s−1 = [g,i h]s,

which proves the lemma. �

Since G acts by conjugation on the normal subgroup En(G), if En(G)

is abelian then it is actually a Z[G]-module. In this case, we will keep the

multiplicative notation in En(G), and the action of an element z ∈ Z[G] on

an element v ∈ En(G) will be denoted by vz.

Lemma 3. Let G be a group such that En(G) is abelian. If u ∈ e2n(G) then

us ∈ en(G) for every positive integer s.
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Proof. Write u = [g,2n h] ∈ e2n(G), with g, h ∈ G, and let a = [g,n h].

Hence u = [a,n h]. If we view En(G) as a Z[G]-module, then

us = (a(h−1)n
)s = (as)(h−1)n

= [as,n h] ∈ en(G),

as desired. �

Proposition 4. Let G be a group such that |en(G)| = m. Then [En(G), G]

is finite of (n,m)-bounded order.

Proof. By Proposition 1, we may assume that En(G) is abelian.

Let |ei(G)| = li for i = n+ 1, . . . , 2n. If u ∈ e2n(G), then since |en(G)| =

m, it follows from Lemma 3 that there exist positive integers s, t with 1 ≤

s < t ≤ m+ 1 such that us = ut. Hence u has finite order, which is at most

t − s ≤ m. It follows that E2n(G) has order at most ml2n , since it is an

abelian group generated by l2n elements of order at most m.

Now consider the normal series of subgroups

1 ≤ E2n(G) ≤ E2n−1(G) ≤ · · · ≤ En+1(G) ≤ En(G).

We are going to show that

|Ei(G)/Ei+1(G)| ≤ (li−1 − li+1)li−li+1 ,

for each i = n + 1, . . . , 2n− 1, and as a consequence that En+1(G) is finite

of (n,m)-bounded order.

Let Ḡ = G/Ei+1(G) and let z̄ denote the image of z in Ḡ. We have

|ei(Ḡ)| ≤ li− li+1 + 1 and |ei−1(Ḡ)| ≤ li−1− li+1 + 1 (here the +1 takes into

account the identity).

Now consider an element [g,i h] ∈ ei(G) such that [ḡ,i h̄] 6= 1̄. Since

[ḡ,i−1 h̄] has at most li−1− li+1 conjugates, there exists s ≤ li−1− li+1 such

that h̄s centralizes [ḡ,i−1 h̄]. It follows from Lemma 2 that [ḡ,i h̄] has order

at most li−1 − li+1, and so

|Ei(G)/Ei+1(G)| ≤ (li−1 − li+1)li−li+1 ,
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as we wanted.

Now we prove that [En(G), G] is finite of (n,m)-bounded order. By

the previous paragraphs, we may assume that En+1(G) = 1. Let αi =

[x,n y,i z], where i ≥ 0. Then αi takes at most (2m)2i
values in G, since

each value of αi is a product of 2i elements, each lying in en(G) ∪ en(G)−1

(note that αi = α−1
i−1α

z
i−1). Also the verbal subgroup αn+1(G) is contained

in En+1(G) = 1 and α1(G) = [En(G), G].

Consider the normal series of subgroups

1 = αn+1(G) ≤ · · · ≤ αi(G) ≤ · · · ≤ α1(G).

The same argument as before shows that every value of αi in G/αi+1(G)

has order at most (2m)2i−1
, and consequently

|αi(G)/αi+1(G)| ≤ (2m)2i−1(2m)2
i

for each i = 1, . . . , n. Thus α1(G) is finite of (n,m)-bounded order, which

concludes the proof. �

Before embarking on the proof of the Dichotomy Theorem, we consider

locally nilpotent groups G in which en(G) is finite.

Lemma 5. Let G be a locally nilpotent group such that en(G) is finite of

order m. Then G is an (n+m− 1)-Engel group.

Proof. Let a, b ∈ G, and consider the set

A = {[a,n b], [a,n+1 b], . . . , [a,n+m b]}.

Since A has at most m elements, there exist i, j ∈ {0, . . . ,m} with j > i such

that [a,n+i b] = [a,n+j b]. Then [a,n+i b] = [a,n+i+λ(j−i) b] for each positive

integer λ and, by the nilpotency of 〈a, b〉, it follows that [a,n+i b] = 1. So

[a,n+m−1 b] = 1 for each a, b ∈ G, and G is an (n+m− 1)-Engel group. �
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Proposition 6. Let G be a locally nilpotent group such that en(G) is finite

of order m. Then En(G) is finite of (n,m)-bounded order.

Proof. By the previous lemma, G is a locally nilpotent (n + m − 1)-Engel

group, and so by the Main Theorem of [2] there exist (n,m)-bounded con-

stants c and d such that γc(G)d = 1. Moreover, by Proposition 1 we may

assume that En(G) is abelian, so it is enough to show that [a,n b] is of

finite (n,m)-bounded order for every a, b ∈ G. Thus we may assume that

G = 〈a, b〉. Also, since γc(G) is of (n,m)-bounded exponent, we may assume

without loss of generality that γc(G) = 1.

Now let F = 〈x, y〉 be the free nilpotent group of class c− 1 and rank 2.

Then F is torsion-free and

F/γ2(F ), γ2(F )/γ3(F ), . . . , γc−1(F )/γc(F )

are free abelian groups of finite (n,m)-bounded rank. Consider the verbal

subgroup E = En(F ), and let Ei = E ∩ γi(F ). Notice that E ≤ γn+1(F ).

Then

Ei/Ei+1
∼= Eiγi+1(F )/γi+1(F )

is a free abelian group of rank at most the rank of γi(F )/γi+1(F ). We can

thus choose a set T = Tn+1 ∪Tn+2 ∪ · · · ∪Tc−1 of generators for E such that

the elements

{ωγi+1(F ) : ω ∈ Ti}

freely span Eiγi+1(F )/γi+1(F ) as a free abelian group. Notice that |T | is

(n,m)-bounded (at most the sum of the ranks of the groups γn+1(F )/γn+2(F ),

· · · , γc−1(F )/γc(F )). As a consequence, every element ω ∈ T is a product

in en(F ) ∪ en(F )−1 of (n,m)-bounded length.

We now move back to the original setting with the group G = 〈a, b〉 such

that γc(G) = 1, and let Ai = En(G) ∩ γi(G). Consider some word ω ∈ Ti,

which is a product of left-normed commutators of weight i (in x, y) modulo
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γi+1(F ). Now ω takes only a finite number of values l in G/γi+1(G), where

l is (n,m)-bounded.

We want to prove thatAi/Ai+1
∼= Aiγi+1(G)/γi+1(G) is of (n,m)-bounded

exponent, so we assume that γi+1(G) = 1. Now

ω(ar, br) = ω(a, b)r
i
,

and as ω only takes l values, we have ω(a, b)r
i

= ω(a, b)r
j

for some 0 ≤ i <

j ≤ l. Then ω(a, b)r
j−ri

= 1. This proves that Ai/Ai+1 is of (n,m)-bounded

exponent for each i = n+ 1, . . . , c− 1.

Since c is (n,m)-bounded, it follows that An+1 = En(G) is of (n,m)-

bounded exponent. In particular [a,n b] is of (n,m)-bounded order, as we

wanted to prove. �

Now we can prove our main theorem and its corollary.

Proof of the Dichotomy Theorem. Let G be a group such that en(G) has

order at most m. It follows from Proposition 4 that [En(G), G] is finite of

(n,m)-bounded order.

First suppose that G/[En(G), G] is not locally nilpotent. This group is an

(n+ 1)-Engel group, and by a folklore result on Engel groups, G/[En(G), G]

has a finitely generated infinite simple section H (see Theorem 4.1 of [8] for

a proof). Now H is centre-by-(n-Engel), and since it is simple non-abelian,

H is necessarily an n-Engel group. Hence G is of type (2). We are left with

the situation when G/[En(G), G] is locally nilpotent. Then Proposition 6

implies that G is of type (1). �

Proof the Corollary. Let n ≤ 4 and let G be a group such that en(G) has

order m. By the Main Theorem in [4], it follows that G/En(G) is locally

nilpotent. So G/[En(G), G] is also locally nilpotent, and by the Dichotomy

Theorem, En(G) is finite of bounded order. �
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