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We observe that there exists a positive integer c(n) such that for every
locally nilpotent n-Engel group G we have that G/Zc(n)(G) is of n-
bounded exponent. This strengthens a result of Burns and Medvedev.

By the solution to the restricted Burnside problem we have that, for any
given positive integer n, the locally nilpotent groups of exponent n form a
variety Bn. Building also on Zel’manov’s work, Wilson [8] has proved an
analogous result for the variety of n-Engel groups. Thus, for any positive
integer n, the locally nilpotent n-Engel groups form a subvariety En. Now
clearly Bn is contained in some Em(n) and in fact these two types of varieties
are closely related. Let Nc be the variety of groups that are nilpotent of
class at most c. In [2] Burns and Medvedev have shown that there exist
positive integers e(n), c(n) such that every locally nilpotent n-Engel group
is in the the intersection of the varieties Nc(n)Be(n) and Be(n)Nc(n). In this
note we will show that the integers e(n) and c(n) can be chosen such that
the former variety can be replaced by the variety of groups that are (c(n)th
centre)-by-Be(n). Notice that every locally nilpotent variety V is a subvariety
of some En so that it follows from our result that there exist integers c = cV
and e = eV such that the law

[xe, x1, . . . , xc] = 1

holds in V.
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Let F be the relatively free locally nilpotent n-Engel group on a count-
ably infinite set X and let T be the torsion subgroup of F . Then, as F/T
is torsion-free, it is nilpotent [9] of class say c = c(n). It follows that, for
x, x1, . . . , xc ∈ X,

[x, x1, · · · , xc]
l = 1

where l is the order of [x, x1, . . . , xc] in F . Then every locally nilpotent n-
Engel group satisfies this law. Now let G be the relatively free nilpotent
n-Engel group on c(n) + 1 generators. Suppose that the nilpotency class of
G is r = r(n). Notice that r(n) ≥ c(n).

Theorem Every locally nilpotent n-Engel group satisfies the law

[xlr−c

, x1, x2, . . . , xc] = 1.

Proof. We show by reverse induction on m that the law

[xlr−c−m

, x1, . . . , xc, y1, · · · , ym] = 1

holds in G for m = 0, . . . , r− c. As G is nilpotent of class r this is clearly the
case for m = r − c. Now suppose that 0 ≤ m ≤ r − c− 1 and that the result
holds for larger values of m in {0, 1, . . . , r − c}. By the induction hypothesis
we have that xlr−c−m−1

is in the (c + m + 1)st centre. Hence

[xlr−c−m

, x1, . . . , xc, y1, . . . , ym] = [(xlr−c−m−1

)l, x1, . . . , xc, y1, . . . , ym]

= [xlr−c−m−1

, x1, . . . , xc, y1, . . . , ym]l

= 1.

This finishes the inductive proof. Letting m = 0 gives the result. �

Remarks. (1) The integer c(n) above has been chosen to be the class of
F/T where F was the free locally nilpotent n-Engel group of countably infi-
nite rank. We then have laws

[x, x1, . . . , xc(n)]
l(n) = 1 (1)

[xe(n), x1, . . . , xc(n)] = 1 (2)

where l(n) is the order of [x1, . . . , xc(n)] and e(n) is the exponent of F/Zc(n)(F ).
The prime divisors of l(n) and e(n) are the same. These are the primes p
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where there exists a finite n-Engel p-group with class greater than c(n).

(2) Let P = Pn be the set of primes p where there is an upper bound
for the nilpotency classes of finite n-Engel p-groups. For each p ∈ P, let
cp(n) be the least upper bound for these nilpotency classes. As every finitely
generated torsion-free nilpotent group is residually a finite p-group for any
prime p it is clear that c(n) = min {cp(n) : p ∈ P}. In fact c(n) = cp(n) for
all primes p ∈ P except those that are the divisors of l(n) and e(n). Now
let c̄(n) = max {cp(n) : p ∈ P} and let f(n) be the exponent of F/Z∞(F ).
It is a routine to show that there is an integer d(n) ≥ c̄(n) that is minimal
subject to the conditions that F/Zd(n)(F ) is of exponent f(n) and such that
(for x, x1, . . . , xd(n) ∈ X) [x, x1, x2, . . . , xd(n)] is of least possible order s(n).
Then we get identities

[x, x1, . . . , xd(n)]
s(n) = 1 (3)

[xf(n), x1, . . . , xd(n)] = 1 (4)

Those primes that divide s(n) are the same as those that divide f(n) and
are those primes p where there is no upper bound for the nilpotency class of
n-Engel p-groups.

Let us consider the situation for small values of n. For n = 1 we have
c(1) = d(1) = l(1) = s(1) = e(1) = f(1) = 1 and all the four identities above
become [x, x1] = 1. For n = 2 it is well known that we get the identities

[x, x1, x2]
3 = 1

[x3, x1, x2] = 1

[x, x1, x2, x3] = 1

where c(2) = 2, d(2) = 3, e(2) = l(2) = 3 and f(2) = s(2) = 1.

We end this article by describing the picture for 3-Engel groups. From the
work of Heineken [5] and Bachmuth and Mochizuki [1] we know that c(3) = 4
and that the exceptional primes are 2 and 5. Gupta and Newman [4] have
also shown that l(3) = 20 and that s(3) = 10. In particular we have the
identities

[x, x1, x2, x3, x4]
20 = 1

[x, x1, x2, x3, x4, x5]
10 = 1
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(in fact they prove that γ5(G)20 = γ6(G)10 = 1). We will see that d(3) = 5
and that e(3) = f(3) = 20. First we show that every 3-Engel group satisfies
the law

[x20, x1, x2, x3, x4] = 1.

Using the fact [6] that all commutators with a triple entry are trivial we

have that [y20, z] = [y, z]20[y, z, y](
20

2 ) for all y, z. Using this fact and the two
Gupta-Newman identities above, we have

[x20, x1, x2, x3, x4] =[[x, x1]
20[x, x1, x]190, x2, x3, x4]

=[[x, x1]
20, x2, x3, x4][[x, x1, x]190], x2, x3, x4]

=[[x, x1, x2]
20[x, x1, x2, [x, x1]]

190, x3, x4][x, x1, x, x2, x3, x4]
190

=[[x, x1, x2]
20, x3, x4][x, x1, x2, [x, x1], x3, x4]

190

=[[x, x1, x2, x3]
20, x4][x, x1, x2, x3, [x, x1, x2], x4]

190

=[x, x1, x2, x3, x4]
20[x, x1, x2, x3, x4, [x, x1, x2, x3]]

190

=fl1

If G is an n-Engel group, it is well known that for all the primes p < n there
are finite n-Engel p-groups of arbitrary large class. If every finite 3-Engel
2-group were to satisfy the identity

[x10, x1, · · · , xt] = 1

then, for any finite 3-Engel 2-group G, we would have G/Zt(G) of exponent
2 and thus abelian. Hence we would get the contradiction that the class of
finite 3-Engel 2-groups would be bounded above by t + 1. This shows that
e(3) = f(3) = 20 and that d(3) = 5.

For 4-Engel groups it is known that c(4) = 7 [3,7] and that the exceptional
primes are 2, 3 and 5. Thus e(4), f(4), l(4), s(4) have 2, 3 and 5 as the only
prime divisors. The exact values are unknown and as far as we are aware the
value of d(4) is also unknown.
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