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Abstract

In this paper we study groups generated by a set X with the property

that every two elements in X generate a nilpotent subgroup.

1 Introduction

In this paper we deal with groups that have a special type of presentation.

Definition 1 Let G be a group with a generating set X. We say that (G, X)
is a pairwise nilpotent presentation of G if one has the property that any
pair of elements x, y ∈ X generates a nilpotent subgroup. A group that has
a pairwise nilpotent presentation will be referred to as a pairwise nilpotent
group.

Of course every locally nilpotent group is pairwise nilpotent and more gener-
ally every group with the property that all 2-generator subgroups are nilpo-
tent. Another example of a pairwise nilpotent group is any 2-group generated
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by involutions. In fact if G is a 2-group and a1, a2 ∈ G are distinct involutions
with a1a2 of order 2n then 〈a1, a2〉 is the dihedral group of order 2n+1.

Definition 2 Let (G, X) be a pairwise nilpotent presentation. Let N be a
function that assigns to every pair of distinct elements x, y ∈ X a positive
integer N(x, y). If 〈x, y〉 is nilpotent of class at most N(x, y), we say that
the presentation is of type N .

We will in particular focus on presentations where the number of generators
is three. Suppose X = 〈a, b, c〉 and that 〈a, b〉 is nilpotent of class r, 〈a, c〉 of
class s and 〈b, c〉 of class t. In this case we will usually say that the presen-
tation is of type (r, s, t). We will say a group G is of type (r, s, t) if it has a
presentation of type (r, s, t).

We are interested in finding criteria under which a finitely generated pairwise
nilpotent group must be nilpotent. All groups of exponent 4 are known to
be locally finite. As we mentioned above every 2-group generated by two
involutions is finite. It is still an open question whether a group of exponent
8 generated by three involutions must be finite. The best result here seems
to be one of Hermanns [5] who has shown that every group of exponent 8
generated by three involutions and of type (1, 2, 3) must be nilpotent.

Another motivation for our study comes from the work on 4-Engel groups.
It is a long-standing conjecture that an n-Engel group is locally nilpotent.
In [4] the affirmative answer is given for n = 4. In proving that 4-Engel
groups are locally nilpotent an important step was to show that any 4-Engel
group of type (1, 2, 3) is nilpotent [4, 7]. In fact any group 〈a, b, c〉 of type
(1, 2, 3) with the extra properties that [b, c, c] = 1 and that the generators
are of {2, 3}-free order must be nilpotent [7].

By a result of Zorn [8], every finite group with all two generator subgroups
nilpotent must be nilpotent. Hence if (G, G) is a pairwise nilpotent presen-
tation of a finite group then G is nilpotent. This property fails miserably for
infinite groups as there are famous non-nilpotent three generator examples
of Golod [1] for which every two generator subgroup is nilpotent.

Let us consider for the moment groups with a three generator pairwise nilpo-
tent presentation. Of course any group 〈a, b, c〉 with a pairwise nilpotent
presentation of type (1, 1, t) must be nilpotent as a is in the center. It is
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hardly surprising that apart from these obvious cases we can not deduce
global nilpotence. In fact in almost all the situations we can not even say
that the group is solvable. There is one interesting exception: in Section 2 we
will see that any group of type (1, 2, 2) is solvable of derived length at most
3 and if the generators are of 2-free order the group is furthermore nilpotent.
However we will see in Section 3 that there are non-solvable groups of types
(1, 2, 3) and (2, 2, 2).

In Section 4 we deal with pairwise nilpotent groups that are solvable. Here
we have some positive results. We observe that any pairwise nilpotent group
that is nilpotent-by-abelian must be nilpotent. This is not true for solvable
groups in general and there are already pairwise nilpotent groups that are
abelian-by-(class 2) but that are non-nilpotent. However if all the generators
are of {2, 3}-free order the group must be nilpotent. We make the following
conjecture:

Conjecture 1. For each positive integer c there exists a finite set of primes
Pc so that any pairwise nilpotent group that is abelian-by-(class c) generated
by elements of Pc-free order must be nilpotent.

If this conjecture is true it would follow in particular that any solvable torsion-
free group that is pairwise nilpotent group must be nilpotent. In Section 4 we
also study the minimal finite solvable groups that are pairwise nilpotent but
non-nilpotent. These are minimal in the sense that any pairwise nilpotent
proper subgroup and quotient is nilpotent. We also give examples that give
lower bounds for the largest prime in Pc, provided that this set of exceptional
primes is finite.

In Section 5 we consider bounds for the class. We will see that any nilpotent
group of type (1, 2, 2) with generators of 2-free order, is nilpotent of class
at most 3 and that any nilpotent group of type (1, 2, 3) with generators of
{2, 3}-free order is nilpotent of class at most 5. We will also see that for any
prime p there are nilpotent p-groups of types (2, 2, 2) and (1, 3, 3) of arbitrary
large class. Of course any group of type (1, 1, t) is nilpotent of class at most
t. This leaves out groups of type (1, 2, t) where t ≥ 4. We make the following
conjecture.

Conjecture 2. For each positive integer t there exists a finite set of primes
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Pt and a positive integer c(t) such that any nilpotent group of type (1, 2, t)
with generators of Pt-free order is nilpotent of class at most c(t).

In this paper we will be using the left normed convention for commutators.
That is: [x, y] = x−1y−1xy and [x, y, z] = [[x, y], z].

2 Groups of type (1,2,2)

We start with a generic example.

Example. Let
Dn = 〈a, b : a2 = b2 = 1, (ab)n = 1〉

be the dihedral group of order 2n (n here possibly ∞). Let

En = Dn wr 〈c〉

where c is an involution.

Lemma 1 If n is coprime to 2 then En(a, b, c) = 〈a, bc, c〉 is a non-nilpotent
group of type (1, 2, 2).

Proof To see this notice first that a, bc obviously commute. Then

[c, a, a] = [aca, a] = 1

and
[a, c, c] = [aac, c] = acaaca = 1

which shows that 〈a, c〉 is nilpotent of class 2. Similarly we see that 〈bc, c〉 is
nilpotent of class 2. 2

The next theorem shows that, in a sense, these examples generate all non-
nilpotent (1, 2, 2) groups.

Theorem 1 Let G = 〈a, b, c〉 be of type (1,2,2). Then G is soluble of derived
length at most three, and has a finitely generated nilpotent normal subgroup
N such that

G/N = 〈ā, b̄, c̄〉

is a quotient of En(a, bc, c) for some n. In particular we have that a2, b2, c2 ∈
N .
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Proof As 〈c〉〈a〉 is abelian and 1 = [c, a, a] we have

ca2

= c2ac−1.

Using [c, cb] = 1, it follows that

1 = [ca2b, ca2

]

= [c2abc−b, c2ac−1]

= [c2ab, c2ac−1]c
−b

[c−b, c2ac−1]

= [c2ab, c−1]c
−b

[c−b, c2a]c
−1

= [c2ab, c−1][c−b, c2a]

and hence
[c−1, c2ab] = [c−b, c2a].

The RHS commutes with ca and cb, while the LHS commutes with c and cab.
Thus, both sides are in the centre of

〈c〉G = 〈c, ca, cb, cab〉.

Consider the group

M = 〈c2〉G = 〈c2, c2a, c2b, c2ab〉.

The only non-trivial commutators in these generators are [c2, c2ab] and [c2b, c2a]
which as we have seen are in the centre of 〈c〉G. In particular we have that
M is nilpotent of class at most 2. Now consider

N = 〈a2, b2, c2〉G.

As
[a2, c] = [a, c]2 = [a, c2] ∈ M

and
[b2, c] = [b, c]2 = [b, c2] ∈ M,

it follows that
N = 〈a2, b2〉M.

As 〈c2, a2〉, 〈c2, a2〉a, 〈c2, a2〉b, 〈c2, b2〉, 〈c2, b2〉a, 〈c2, b2〉b are all nilpotent of class
at most 2, and a2 commutes to b2, we have

[M,3 N ] ≤ γ2(M).
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Then

[M, M,5 N ] ≤
∏

i+j=5

[[M,i N ], [M,j N ]] ≤ γ3(M) = 1.

As N ′ ≤ M we thus have γ10(N) = 1.

Now consider

G/N = 〈ā, b̄, c̄〉.

Then ā, b̄, c̄ are involutions. Let D = 〈ā, b̄c〉 then Dc = 〈āc, b̄〉. Notice that
[D, Dc] = 1 and that D is dihedral. Also

G/N = (DDc) · 〈c̄〉

which is clearly a quotient of some En(ā, b̄c, c̄).

It remains to show that G(3) = {1}. As a preparation we first make a useful
observation. We have seen that [c−b, c2a] = [c−1, c2ab] is in R = Z(〈c〉G). As
c2a commutes with c and cab it follows that c2a ∈ Z2(〈c〉G). But Z2(〈c〉)G)
is normal in G and hence 〈c2〉G ≤ Z2(〈c〉G). Let us now turn back to the
derived length of G. First notice that G′ ≤ 〈c〉G = 〈c, ca, cb, cab〉. The only
nontrivial commutators in these generators are [ca, cb] and [c, cab] and thus
G′′ ≤ 〈[ca, cb], [c, cab]〉G. As ca, cb commute with c, cab it suffices to show that

G′′ ≤ 〈[ca, cb], [c, cab]〉R.

It now remains to see that [ca, cb]x and [c, cab]x are in 〈[ca, cb]〉R for x ∈
〈a, a−1, b, b−1, c, c−1〉. But these come from straightforward calculations using
ca2

= c2ac−1, ca−1

= c2c−a, cb2 = c2bc−1, cb−1

= c2c−b and 〈c2〉G ≤ Z2(〈c〉G).
For example we have modulo R

[ca, cb]a ≡ [c2ac−2c, cab] ≡ [c, cab].

This finishes the proof. 2

Remark If G is generated by torsion elements a, b, c of 2-prime order then
G = N as a2, b2, c2 ∈ N . Thus G is nilpotent and in section 5 we will see that
the class is at most 3. If G is a 2-group however then the class is unbounded
as E2n(a, b, c) has class at least n.
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3 The question of solubility

Whereas all groups of type (1,2,2) are soluble of derived length at most three
we will see in this section that there are non-soluble groups of types (1,2,3)
and (2,2,2).

All the examples will be obtained through different pairwise nilpotent pre-
sentations of the group

E = A5 wrC3.

Lemma 2 If {i1, i2, i3}, {j1, j2, j3} are two three-element sets with union
{1, 2, 3, 4, 5} then

A5 = 〈(i1, i2, i3), (j1, j2, j3)〉.

Proof Without loss of generality we can suppose that i1 = 1, i2 = 2, i3 =
3, j1 = 1, j2 = 4, j3 = 5. Let a = (1, 2, 3), b = (1, 4, 5), and H = 〈a, b〉. We
want to show that H = A5. Notice first that H contains c = ab = (1, 2, 3, 4, 5)
and thus 5 divides |H|. As (1, 2, 3) ∈ H we also have that 3 divides |H|. Then
H contains

ac = (1, 2, 3)(1,2,3,4,5) = (2, 3, 4)

and then also

aac = (1, 2, 3)(2, 3, 4) = (1, 3)(2, 4)

(aac)a = [(1, 3)(2, 4)](1,2,3) = (2, 1)(3, 4).

That is H contains the Klein-4 group and 4 divides |H|. From this it follows
that 60 divides |H| and thus H = A5. 2

Lemma 3 Let a = (i1, i2, i3) and b = (j1, j2, j3) be as in the previous lemma.
Then E is of type (1, 3, 3).

Proof Suppose that C3 = 〈c〉 and that a, b are as in previous lemma. By
that lemma we have that

E = 〈a, bc, c〉.

Clearly a and bc commute. As 〈a〉〈c〉 is abelian, any commutator in a, c that
involves a twice is trivial. As

[a, c, c, c] = a(−1+c)3 = a−1+c3 = a0 = 1
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it follows that 〈a, c〉 is nilpotent of class at most 3. Similarly 〈bc, c〉 is nilpo-
tent of class at most 3. 2

Thus E is a non-soluble group of type (1,3,3).

Lemma 4 Let a, b, and c be as in the previous lemma and its proof. If
F = 〈[a, c2], bc, c〉, then F = E and the presentation is of type (1, 2, 3).

Proof Clearly [a, c2] = a−1ac2 commutes with bc. We have already seen that
〈bc, c〉 is nilpotent of class at most 3. Finally 〈[a, c2]〉〈c〉 is abelian and thus
any commutator in [a, c2] and c that involves [a, c2] twice is trivial. As

[[a, c2], c, c] = a(−1+c2)(−1+c)2 = a(1+c)(−1+c)3 = a0 = 1

it follows that 〈[a, c2], c〉 is nilpotent of class at most 2. Thus F is of type
(1,2,3). We show that F = E by showing that F contains A5.

Firstly F contains b = (1, 4, 5) and thus

b[a,c2] = ba−1ac2

= ba−1

= (1, 4, 5)(1,3,2) = (3, 4, 5)

and
b[a,c2]c

−2

= ba−c−2

a = ba = (1, 4, 5)(1,2,3) = (2, 4, 5).

It follows that F contains (4, 1, 5)(4, 5, 2) = (4, 1, 2). By Lemma 2 we have
that F contains 〈(4, 1, 2), (3, 4, 5)〉 = A5. 2

Thus E is an example of a non-soluble group of type (1, 2, 3). We next
show that E is also of type (2,2,2). First we remark that if G = 〈a, b, c〉 is
any group of type (1, 2, 3) then

G̃ = 〈a, cb, c〉

is of type (2, 2, 2). This is because 〈a, c〉 is nilpotent of class 2 and thus also
〈a, cb〉 = 〈ab, cb〉. Furthermore, as 〈b, c〉 is nilpotent of class at most 3, we
have that

〈cb, c〉 = 〈[c, b], c〉

is nilpotent of class at most 2.

Since E = F = 〈[a, c2], bc, c〉 is of type (1,2,3), we have that G = 〈[a, c2], cbc

, c〉
is of type (2,2,2). By the following Lemma, E = G and this gives an example
of a non-soluble group of type (2, 2, 2).
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Lemma 5 G = E.

Proof Notice first that

G = 〈[a, c2], [bc, c], c〉

= 〈a−1ac2, b−cbc2 , c〉.

The commutator of the first two elements is [a, b]c
2

and as G contains c, G
then contains

[a, b] = (1, 3, 2)(1, 2, 3)(1,4,5) = (1, 3, 2)(4, 2, 3) = (1, 4, 2),

and then also

[a, b]a
−1ac2

= [a, b]a
−1

= (1, 4, 2)(1,3,2) = (3, 4, 1)

and

[a, b](b
−cbc2 )c−2

= [a, b]b = (1, 4, 2)(1,4,5) = (4, 5, 2).

By Lemma 2 we have that A5 = 〈(3, 4, 1), (4, 5, 2)〉. 2

4 The question of nilpotence for solvable groups

In this section we are interested in criteria for a solvable group that is pair-
wise nilpotent to be nilpotent. A starting point for our investigation is the
following elementary fact.

Lemma 6 Let G = 〈a1, a2, . . . , ar〉 be a metabelian group for which every
pair ai, aj generates a nilpotent subgroup. Then G is nilpotent.

Proof This follows easily from the following laws that hold in any metabelian
group:

[x, y, z][y, z, x][z, x, y] = 1,

[u, x, y] = [u, y, x] for any u ∈ [G, G].

Let us see why this is the case. For each i ∈ {1, . . . , r}, let ni be the smallest
non-negative integer such that [xj ,ni+1 xi] = 1 for all 1 ≤ j ≤ r. We show
that G is nilpotent of class at most n = n1 + n2 + · · ·+ nr. In fact if we take
a commutator of weight n+1 in the generators then some generator xi must
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occur at least ni + 1 times. Using the identities above, such a commutator
is generated by commutators of the form

[xj1,ni+1 xi, xj2 , . . . , xjl
] = 1.

Hence G is nilpotent of class at most n. 2

In fact using a well known nilpotence criterion of P. Hall we get the fol-
lowing generalisation.

Theorem 2 Let G = 〈a1, a2, . . . , ar〉 be a group that is nilpotent by abelian
and for which every pair ai, aj generates a nilpotent subgroup. Then G is
nilpotent.

Proof. Let N be a normal nilpotent subgroup of G such that G/N is abelian.
By last lemma G/[N, N ] is nilpotent and as N is nilpotent, a well known
criterion of P. Hall [2] shows that G is nilpotent. 2

4.1 Minimal three generator counterexamples

It comes hardly as a surprise that the last theorem does not generalise to
all solvable groups. Let G = 〈a1, a2, . . . , ar〉 be a solvable group. If any
quotient of G that is abelian by nilpotent must be nilpotent a simple inductive
argument shows that G must be nilpotent. We therefore focus on groups
that are abelian by nilpotent. By another well known result of P. Hall such a
group must be residually finite [3]. We are therefore led to considering finite
groups that are abelian by nilpotent. We restrict our investigation to three
generator groups, as that will suffice for our purposes here. So we consider a
group G = 〈a, b, c〉 that is abelian by nilpotent and that is of type (r, s, t). We
are interested in finding criteria for the group to be nilpotent so to begin with
we look for minimal counterexamples. We mean here minimal in the sense
that no proper quotient is non-nilpotent and that no proper subgroup of type
(r, s, t) is non-nilpotent. Suppose then that G is a minimal counterexample.
Suppose that the generators a, b, c are {p1, p2, . . . , pn}-elements and that

a = a1a2 · · ·an

b = b1b2 · · · bn

c = c1c2 · · · cn.
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are the unique factorisations of a, b, c in the cyclic groups 〈a〉, 〈b〉, 〈c〉, where
ai, bi, ci are pi-elements. If i 6= j then 〈ai, bj〉 = 〈al, bm〉 for some integers l
and m, and thus nilpotent. As the elements ai, bj are coprime it follows that
they commute. This argument shows also that ai, bi commute with cj if i 6= j.
Let Gi = 〈ai, bi, ci〉. From what we have seen it follows that G = G1 · · ·Gn,
a product of normal subgroups, and

γm(G) = γm(G1)γm(G2) · · · γm(Gn).

As G is non-nilpotent we must have that one of the Gi, i = 1, . . . , n, is non-
nilpotent. By minimality we have then that G = Gi. So G is generated by
p-elements for some prime p.

Also by minimality, G has a unique minimal normal subgroup N and G/N is
a nilpotent group generated by p-elements and thus a p-group. As G is solv-
able N is an elementary abelian q-group for some prime q 6= p. Let P be a
Sylow p-subgroup of G, so G = PN . The subgroup P ∩CG(N) is centralised
by N and normalised by P . As N is the unique minimal normal subgroup
it follows that P ∩ CG(N) = 1. This implies that P acts faithfully on N by
conjugation and we can think of P as being a subgroup of GL(N).

Lemma 7 NG(P ) = P .

Proof Otherwise there is some x ∈ N that normalises P . Then for any
y ∈ P we have [y, x] ∈ P ∩ N = 1 and x centralises P . It follows that
x ∈ Z(G) and as N was the minimal normal subgroup we must have that
N = 〈x〉 and G is nilpotent. By this contradiction it is clear that NG(P ) = P .
2

It follows that there are exactly [G : NG(P )] = |N | Sylow p-subgroups,
namely

{P u : u ∈ N}.

In particular if N has dimension n then qn ≡ 1 (mod p).

Lemma 8 If f = ex with e, f ∈ P and x ∈ N then e = f and x commutes
with e.

Proof We have that e, ex ∈ P and thus

e−1ex = [e, x] ∈ P ∩ N = 1.

Thus x commutes with e and f = ex = e. 2.
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Lemma 9 Suppose that G = 〈a, b, c〉 where a, b and c are p-elements as
before. There exist linearly independent elements x, y ∈ N such that

ax = a,

by = b,

cxy = c.

Proof Let P be a Sylow p-subgroup containing a and c. Let x ∈ N such
that a, b ∈ P x. As a ∈ P ∩ P x we know from last lemma that a commutes
with x. If b = dx with d ∈ P then

G = 〈a, dx, c〉 = 〈ax, dx, c〉.

Let y ∈ N such that 〈d, cx−1

〉 = 〈b, c〉x
−1

≤ P y. Then d ∈ P ∩ P y and d
commutes with y and then b = dx commutes also with y. Then as cx−1

∈
P x−1

∩ P y we have that c ∈ P ∩ P xy and c commutes with xy. Thus

G = 〈a, dx, c〉 = 〈ax, dx, c〉 = 〈a, dxy, cxy〉.

Finally x and y must be linearly independent since otherwise a commutes
with y and G = 〈axy, dxy, cxy〉 would be nilpotent. 2

Lemma 10 If G is a minimal counterexample that is abelian-by-(class c)
then γc(G) = N . In particular, it follows that P is nilpotent of class c.

Proof. We have that γc(G) is abelian. Let R be the Sylow-p subgroup
of γc(G). As N is the unique minimal normal subgroup of G, R must be
trivial. Hence γc(G) ≤ N and as G is non-nilpotent and again as N is the
unique minimal normal subgroup it follows that γc(G) = N . In particular
γc(P ) ≤ N and therefore trivial. 2

If N has rank n, we have seen that p divides qn − 1. Suppose q has or-
der r modulo p and let F be the Galois field of order qr. Then we can think
of N as a vector space over F of dimension n/r. Suppose that F has basis
e1, . . . , er over the field of q elements, where e1 = 1. Let d = n/r. If

N = F ⊕ F ⊕ · · · ⊕ F
︸ ︷︷ ︸

d

,
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we let vi be the vector (δ1i, . . . , δdi) and for 0 ≤ i ≤ d − 1 and 1 ≤ j ≤ r we
let uir+j = ejvi. Hence u1, . . . , un is a basis for N over the field of q elements
and v1 = u1, v2 = u1+r, . . . , vd = u1+(d−1)r is a basis for N over F . Notice
that if p = 2 then r = 1 and F is the field of q elements. In this manner we
have that GLn/r(F ) embeds into GLn(q). Let D be the diagonal subgroup of
GLn/r(F ) with respect to the basis {u1, ur+1, u2r+1 · · · , u(d−1)r+1}. For each
d-tuple (λ1, . . . , λd) ∈ F d we get an element in D that maps f1v1 + · · ·+ fdvd

to λ1f1v1 + · · ·+λdfdvd. We also have that any element σ ∈ Sd acts naturally
on N by mapping f1v1 + · · · + fdvd to fσ(1)vσ(1) + · · · + fσ(d)vσ(d). Let D(p)
be the Sylow p-subgroup of D and Sd(p) be a Sylow p-subgroup of Sd.

Lemma 11 If p is an odd prime, then the semidirect product D(p)Sd(p) is
a Sylow p-subgroup of GL(n, q).

Proof We have that

|GLn(q)| = (qn − 1) · (qn − q) · · · (qn − qn−1).

We know that the order of q modulo p is r. Thus p divides qn − qi if and
only if r|i. The highest p-power factor of |GLn(q)| thus divides

(qn − 1)(qn − qr)(qn − q2r) · · · (qn − q(d−1)r),

which is equal to

(qr)d(d−1)/2 · (qr − 1)d · (qr + 1)(q2r + qr + 1) · · · (q(d−1)r + q(d−2)r + · · ·+ 1).

Clearly the highest p-power factor of (qr − 1)d is the order of D(p). So it
suffices to show that

(qr + 1)(q2r + qr + 1) · · · (q(d−1)r + q(d−2)r + · · · + 1)

has the same highest p-power factor as d!. As qr ≡ 1 (mod p), we have that
q(m−1)r + · · · + 1 is divisible by p if and only if p|m. We finish the proof by
showing that m and q(m−1)r + · · ·+1 have the same highest p-factor. Suppose
qr = 1+xp and that m = piy where y is coprime to p. We need to show that

piy−1
∑

k=0

(1 + px)k ≡ piy (mod pi+1).
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To see this notice that the left hand side is equal to

piy +

(
piy

2

)

px +

(
piy

3

)

(px)2 + · · ·

(
piy

piy

)

(px)piy−1.

We want to see that apart from the first term all the other terms are divisible
by pi+1. Thus consider

(
piy

pjz

)

(px)pjz−1, with (z, p) = 1

where 2 ≤ pjz ≤ piy. This is equal to pi−j+pjz−1. When j = 0 then z ≥ 2 and
thus i− j + pjz−1 = i+ z−1 ≥ i+1. We are left with the case when j ≥ 1.
But then i−j+pj −1 ≥ i−j+(1+2)j−1 ≥ i−j+1+j ·2+2j−1 ≥ i+1. 2

When p is an odd prime we can assume that P is a subgroup of the Sylow-
subgroup from last lemma. Let λ be any element in F of p-power order.
Then the multiplication by λ on N = F d induces a linear map on N . Clearly
this linear map commutes with everything in D(p) and Sd(p) which implies
that any element in P induces a F -linear map on N . We will need this in
next section.

4.2 Groups that are abelian-by-(class 2)

Let G = 〈a, b, c〉 be of type (r, s, t) and suppose that γ3(G) is abelian. We
want to find criteria under which G must be nilpotent. Let G = PN therefore
be a finite minimal counterexample as described in last section. Here we will
use additive notation for the group operation in N . By Lemma 10 we know
that P is nilpotent of class 2. Let a, d, c, x, y be as in previous section. Thus
b = dx,

P = 〈a, d, c〉, xa = x, yd = y, (x + y)c = x + y,

and
G = 〈a, dx, c〉 = 〈ax, dx, c〉 = 〈a, dx+y, cx+y〉.

Lemma 12 With notation as above, we have ap = dp = cp = [a, d]p =
[c, d]p = [a, c]p = 1.

Proof We first show that [a, d]p = 1. By minimality

H = 〈a, bp, c〉 = 〈a, dpx, c〉

14



is nilpotent. Let P z, z ∈ N , be a Sylow-p subgroup that contains H .
As a, c, dpx ∈ P ∩ P z it follows from Lemma 8 that az = a, cz = c and
dp(z−x) = dp. As cx 6= c we must have that z − x 6= 0 and as N is irreducible
we have that G = 〈a, d, c, z − x〉. Then both a and dp commute with z − x
and thus [a, d]p is in Z(G). As N is the unique minimal normal subgroup of
G it follows that [a, d]p = 1. Similar argument shows that [a, c]p = [c, d]p = 1.
From the reasoning above it follows that ap commutes with x, a, b, c and is
therefore in Z(G). Again, as N is the unique minimal normal subgroup of G
is follows that ap = 1. Similarly dp = cp = 1. 2

We have now enough material to find all the minimal counterexamples that
are abelian-by-(class 2). For the time being we will assume that the prime
p is odd in order to be able to apply Lemma 11. We will turn back to the
prime 2 later. Notice first that none of a, d, c can be in Z(P ). To see this
we argue by contradiction and without loss of generality we can assume that
a ∈ Z(P ). Then a commutes with a, d, c and x that generate G. This contra-
dicts the fact that N is the unique minimal normal subgroup of G. It follows
that at most one of the commutators [a, d], [d, c] and [c, a] can be trivial. We
deal first with the case when exactly one of these is trivial. Without loss of
generality we can suppose that [a, d] = 1. As [c, a] is of order p and in Z(P )
and as N is an irreducible FP -module, it follows that [c, a] acts like scalar
multiplication by some λ in F of order p in F \ {1}. Similarly [d, c] acts like
multiplication by a scalar and by replacing d by some di if necessary we can
assume that [c, d] = [c, a]. Let z be a non-trivial element of N that is fixed
by c. As N is an irreducible FP -module, it follows that N is generated as
an FP -module by

zaidj

, 0 ≤ i, j ≤ p − 1.

As a and d commute we have that the subspace of N fixed by a is d-invariant.
And as d 6= 1 is of order p and p divides |F | − 1, it follows that there exists
an element in u ∈ N that is fixed by a and such that ud = λju for some
1 ≤ j ≤ p − 1. As N is irreducible, it follows that N is generated as an
FP -module by

u, uc, . . . , ucp−1

.

Calculations show that

ucia = λiuci

,

ucib = λi+juci

.
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In particular u, uc, . . . , ucp−1

are eigenvectors with respect to distinct eigen-
values for a and they are therefore linearly independent and form a basis for
N as a vector space over F . From the equations above we must have

x = αu,

y = βuc−j

.

for some non-trivial α, β ∈ F . As x and y are linearly independent we must
have that j is coprime to p. We have been restricting to odd primes. The
fact that x + y must be fixed by c shows that no minimal counterexample
exists in that case. We are thus left only with p = 2 are a possibility. The
calculations above suggest the following example:

Example 1. Let N be a vector space of dimension two over the field of
q-elements where q 6= 2. Suppose that with respect to some fixed basis

a =

[
1 0
0 −1

]

, c =

[
0 1
1 0

]

, d = ac =

[
−1 0

0 1

]

.

Let x = (1, 0). One can easily check that P is a 2-group of order 8. Let G
be the semidirect of N by P = 〈a, d, c〉. One can verify that G = 〈a, dx, c〉
is a non-nilpotent (1, 2, 2)-group that is abelian-by-(class 2). It is clearly a
minimal counter example.

Assuming that one of [a, d], [d, c], [c, a] was non-trivial therefore led us to
a family of minimal counterexamples where in all the examples P is of order
8. We can thus assume from now on that all of [a, d], [d, c] and [c, a] are
non-trivial. As we have seen before these are all multiplications by a scalar
of order p. Replacing a, d, c by some ai, dj, ck we can assume that

[d, a] = [c, d] = [a, c] = λ.

Calculations show that adc is then in Z(P ). As we have already counterex-
amples when p = 2, we will assume that p ≥ 3. Here adc is of order p and
therefore a power of [a, d]. Hence P = 〈a, d〉 and N is generated as a vector
space over F by

x, xd, . . . , xdp−1

.

As before we see that
xdia = λixdi
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and x, xd, . . . , xdp−1

are eigenvectors for a with respect to distinct eigenvalues.
Hence these vectors form a basis for N over F . Now as y is fixed by d we
must have

y = e(x + xd + . . . + xdp−1

)

for some non-trivial e ∈ F . As (adc)−1 = c−1d−1a−1 is in Z(P ) and of order
p we must have that it is equal to some power of [d, a]. Hence

c−1 = ad[d, a]r

for some 0 ≤ r ≤ p − 1. As x + y is fixed by c it follows that

((e+1)x+exd+exd2

+ · · ·+exdp−1

)ad[d,a]r = (e+1)x+exd+exd2

+ · · ·+exdp−1

.

From these we get the following equations

e + 1 = e · λr−1

e = (e + 1) · λr

e = eλr+1

...

e = eλr+p−2.

As λ 6= 1 we must have p = 3. It follows then from the equations that r = −1
and e = 1/(λ− 1). So when p ≥ 3 then p must be three and the situation is
as in the following example:

Example 2. Let q be a prime distinct from 3 and suppose that the or-
der of q modulo 3 is r. Let F be the field of qr elements and let λ be an
element in F \ {0} of order 3. Let N be a three dimensional vectors space
over F and with respect to some fixed basis let

a =





1 0 0
0 λ 0
0 0 λ2



 , d =





0 0 1
1 0 0
0 1 0



 , c = ad[a, d] =





0 0 λ
λ2 0 0
0 1 0



 .

Then P = 〈a, d〉 is a 3-group of order 27 and class 2. Let x = (1, 0, 0),
y = 1

λ−1
(1, 1, 1). Then a fixes x, b fixes y and c fixes x + y. Furthermore

G = 〈a, bx, c〉 is non-nilpotent and abelian-by-(class 2). In fact G is the
semidirect product of N by P .
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Proposition 1 Let G = 〈a1, . . . , ar〉 be a group that is abelian-by-(class 2)
and for which every pair of generators generates a nilpotent group. If none
of the generators has order that is divisible by 2 or 3 then G is nilpotent.

Proof As G is abelian by nilpotent we know that G is residually finite
and we can assume that G is finite. We argue by contradiction and suppose
that we have a minimal counterexample. A similar argument as we used for
three generator groups shows that G is an extension of a elementary abelian
q-group N by a p-group P of class at most 2. We know also that we can
assume that all the generators are p-elements. Therefore [ai, aj , ak] ∈ N for
all 1 ≤ i, j, k ≤ r. We want to show that all such commutators must be
trivial. If not we get a non-nilpotent group 〈ai, aj, ak〉 where ai, aj, ak are
p-elements for some p 6= 2, 3. But we have seen that no such group exists. 2

As we said in the introduction we conjecture that the proposition above
extends to groups that are abelian-by-(class c) and that there is a finite set
Pc of exceptional primes such that for any pairwise nilpotent presentation of
a abelian-by-(class c) group is nilpotent if the generators are of Pc-free order.
The following example gives some information for how big the exceptional
primes must be.

Example 3. Take an odd prime p and any other prime q. Suppose that
qn ≡ 1 modulo p and that K is the Galois field of order qn. Let λ be an
element in K that generates the cyclic Sylow p-subgroup of K \ {0}. Let
N be a vector space over K of dimension p with basis u0, u1, . . . , up−1. For
i = 0, . . . , p−1 let di be the linear map that maps ui to λui but fixes the other
basis vectors. Let σ be the linear map that cyclically permutes u0, . . . , up−1.
Let r = (p − 3)/2 and

a = [d0,r σ] = d
(−1+σ)r

0 ,

b = aσp−1−r

,

c = σ.

As 2(p− 1− r) = 2(p− 1)− (p− 3) = p + 1 > p we can then choose linearly
independent vectors x, y such that x + y = u0 + u1 + · · ·+ up−1 where a fixes
x, b fixes y and c fixes x+y. For example we can take x = (0, · · · , 0

︸ ︷︷ ︸

(p+1)/2

, 1, · · · , 1
︸ ︷︷ ︸

(p−1)/2

)

and y = (1, · · · , 1
︸ ︷︷ ︸

(p+1)/2

, 0, · · · , 0
︸ ︷︷ ︸

(p−1)/2

). As 〈d0, σ〉 is nilpotent of class p we have that
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P = 〈a, c〉 is nilpotent of class p − r = (p + 3)/2. Consider now the group

G = 〈a, bx, c〉.

Then G is nilpotent-by-(class s) where s = (p + 3)/2 and G is also of type
(1, s, s). To see that G is non-nilpotent one can calculate directly that [bx, c, a]
is a non-trivial element in N . The prime p is equal to 2s − 3. This shows
that if there is a largest exceptional prime, then it is at least equal to 2s− 3.

5 Bounds for the nilpotency class

In this last section, we investigate the possibility to bound the nilpotency
class of a finite p-group G = 〈a, b, c〉 of type (r, s, t). First we deal with cases
where such a bound exists.

5.1 Some positive results

Let G = 〈a, b, c〉 be a three generator pairwise nilpotent group. We say that
G is of type (r, s,−) if the exact value of t is immaterial.

Frequently we shall use the following relations, valid in any group G:

[x, y, z] ≡ [x, z, y] · [x, [y, z]] (mod γ4(G))

(or equivalently [x, [y, z]] ≡ [x, y, z] · [x, z, y]−1 (mod γ4(G))

and
[x−1, y] ≡ [x, y−1] ≡ [x, y]−1 ≡ [y, x] (mod γ3(G)).

Lemma 13 In a group G = 〈a, b, c〉 of type (1, 2,−), we have:

(i) [x, y, z] = 1 when x, y, z ∈ {a, b} or x, y, z ∈ {a, c} (and also when
x, y, z ∈ {b, c} if G is of type (1, 2, 2));

(ii) [a, b, c] = [b, a, c] = 1;

(iii) [a, c, b] ≡ [c, a, b]−1 ≡ [c, b, a]−1 ≡ [b, c, a] (mod γ4(G)).
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Proof Easy (in particular, (i) and (ii) are obvious). 2

Lemma 14 In a group G = 〈a, b, c〉 of type (1, 2,−), we have modulo γ5(G):

(i) [a, c, b, a] ≡ 1;

(ii) [c, a, [b, c]] ≡ [a, c, b, c]−1;

(iii) [b, c, c, a] ≡ [a, c, b, c]2;

(iv) [b, c, b, a] ≡ [a, c, b, b].

Proof (i) [a, c, b, a] ≡ [a, c, a, b]·[a, c, [b, a]] ≡ 1 (mod γ5(G)) since [a, c, a] =
[b, a] = 1.

(ii) [c, a, [b, c]] ≡ [c, a, b, c]·[c, a, c, b]−1 ≡ [c, a, b, c] ≡ [a, c, b, c]−1 (mod γ5(G)).

(iii) We have [b, c, c, a] ≡ [b, c, a, c] · [b, c, [c, a]] (mod γ5(G)), hence

[b, c, c, a] ≡ [a, c, b, c] · [b, c, [c, a]] (mod γ5(G))

for [b, c, a] ≡ [a, c, b] (mod γ4(G)). Since [b, c, [c, a]] = [c, a, [b, c]]−1, the re-
sult follows from (ii).

(iv) [b, c, b, a] ≡ [b, c, a, b] · [b, c, [b, a]] (mod γ5(G)). Since [b, a] = 1 and
[b, c, a] ≡ [a, c, b] (mod γ4(G)), we obtain the desired result. 2

Proposition 2 For any prime p ≥ 3, the nilpotency class of a finite p-group
G = 〈a, b, c〉 of type (1, 2, 2) is at most 3.

Proof We must show that [x1, x2, x3, x4] ≡ 1 (mod γ5(G)) for all xi ∈
{a, b, c}. Actually, by Lemma 13, it suffices to verify that [a, c, b, x] ≡ 1
(mod γ5(G)) for x = a, b or c.
Case 1: x = a. This is Lemma 14(i).
Case 2: x = b. By Lemma 13(iii), [a, c, b, b] ≡ [b, c, a, b] (mod γ5(G)), and

[b, c, a, b] ≡ [b, c, b, a] · [b, c, [a, b]] ≡ 1 (mod γ5(G))

for [b, c, b] = [a, b] = 1.
Case 3: x = c. By Lemma 14(iii), [a, c, b, c]2 ≡ [b, c, c, a] ≡ 1 (mod γ5(G))
since [b, c, c] = 1. But p is odd, so [a, c, b, c] ≡ 1 (mod γ5(G)), as required.
2
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Lemma 15 In a group G = 〈a, b, c〉 of type (1, 2, 3), we have modulo γ6(G):

(i) [a, c, b, b, a] ≡ 1;

(ii) [a, c, b, b, b] ≡ 1;

(iii) [a, c, b, c, b]2 ≡ 1;

(iv) [a, c, b, c, c]3 ≡ 1.

Proof (i) We can write

[a, c, b, b, a] ≡ [a, c, b, a, b] · [a, c, b, [b, a]] ≡ [a, c, b, a, b] (mod γ6(G)),

and by Lemma 14(i), this last commutator belongs to γ6(G).

(ii) By Lemma 13(iii), [a, c, b, b, b] ≡ [b, c, a, b, b] (mod γ6(G)). Since a and
b commute and [b, c, b, b] = 1, we can write

[b, c, a, b, b] ≡ [b, c, b, a, b] ≡ [b, c, b, b, a] ≡ 1 (mod γ6(G))

and the result follows.

(iii) We have [a, c, b, c, b]2 ≡ [[a, c, b, c]2, b] (mod γ6(G)) and so, by Lemma
14(iii), [a, c, b, c, b]2 ≡ [b, c, c, a, b] (mod γ6(G)). As in the preceding case,
since a and b commute and [b, c, c, b] = 1, we have

[b, c, c, a, b] ≡ [b, c, c, b, a] ≡ 1 (mod γ6(G))

and the result follows.

(iv) Using once again Lemma 14(iii), we can write

[a, c, b, c, c]2 ≡ [[a, c, b, c]2, c] ≡ [b, c, c, a, c] (mod γ6(G)).

It remains to verify that [b, c, c, a, c] ≡ [a, c, b, c, c]−1 (mod γ6(G)). For that,
we can write modulo γ6(G):

[b, c, c, a, c] ≡ [b, c, c, c, a] · [b, c, c, [a, c]] ≡ [b, c, c, [a, c]]
≡ [b, c, [a, c], c] · [b, c, [c, [a, c]]] ≡ [b, c, [a, c], c]
≡ [b, [a, c], c, c] · [b, [c, [a, c]], c] ≡ [b, [a, c], c, c]
≡ [[a, c, b]−1, c, c] ≡ [a, c, b, c, c]−1

and the proof is complete.2
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Lemma 16 In a group G = 〈a, b, c〉 of type (1, 2,−), we have

[a, c, b, b, c, a] ≡ [a, c, b, c, a, b] (mod γ7(G)).

Proof First notice that

[a, c, b, b, c, a] ≡ [a, c, b, b, a, c] · [a, c, b, b, [c, a]] (mod γ7(G)).

In this product, consider the first factor: since a and b commute, we have

[a, c, b, b, a, c] ≡ [a, c, b, a, b, c] ≡ [a, c, a, b, b, c] ≡ 1 (mod γ7(G)).

Now consider the second factor:

[a, c, b, b, [c, a]] ≡ [a, c, b, [c, a], b] · [a, c, b, [b, [c, a]]] (mod γ7(G)).

Since [a, c, b] ≡ [b, [c, a]] (mod γ4(G)), we have [a, c, b, [b, [c, a]]] ≡ 1 (mod γ7(G)).
Therefore, we have

[a, c, b, b, c, a] ≡ [a, c, b, [c, a], b] (mod γ7(G)).

Since [a, c, b] ≡ [b, c, a] (mod γ4(G)) by Lemma 13(iii), we can write

[a, c, b, b, c, a] ≡ [b, c, a, [c, a], b]

≡ [b, c, [c, a], a, b] · [b, c, [a, [c, a]], b]

≡ [b, c, [c, a], a, b]

≡ [b, [c, a], c, a, b] · [b, [c, [c, a]], a, b]

≡ [b, [c, a], c, a, b]

≡ [a, c, b, c, a, b],

as required. 2

Lemma 17 In a group G = 〈a, b, c〉 of type (1, 2, 3), we have modulo γ7(G):

(i) [a, c, b, c, a, a] ≡ 1;

(ii) [a, c, b, c, a, b]2 ≡ 1;

(iii) [a, c, b, c, a, c]6 ≡ 1;

(iv) [a, c, b, b, c, a]2 ≡ 1;
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(v) [a, c, b, b, c, b]6 ≡ 1;

(vi) [a, c, b, b, c, c] ≡ 1.

Proof (i) We have [a, c, b, c, a, a] ≡ [a, c, b, a, c, a]·[a, c, b, [c, a], a] (mod γ7(G)),
hence [a, c, b, c, a, a] ≡ [a, c, b, [c, a], a] (mod γ7(G)) by Lemma 14(i). Since

[a, c, b, [c, a], a] ≡ [a, c, b, a, [c, a]] · [a, c, b, [[c, a], a]] ≡ 1 (mod γ7(G))

(by applying once again Lemma 14(i)), we obtain the desired result.

(ii) Since a and b commute, we can write

[a, c, b, c, a, b]2 ≡ [a, c, b, c, b, a]2 ≡ [[a, c, b, c, b]2, a] (mod γ7(G)),

and we are done thanks to Lemma 15(iii).

(iii) We can write modulo γ7(G):

[a, c, b, c, a, c] ≡ [a, c, c, b, a, c] · [a, c, [b, c], a, c] ≡ [a, c, [b, c], a, c]
≡ [a, c, a, [b, c], c] · [a, c, [b, c, a], c] ≡ [a, c, [b, c, a], c]
≡ [a, c, c, [b, c, a]] · [a, c, [b, c, a, c]] ≡ [a, c, [b, c, a, c]]
≡ [[b, c, a, c], [a, c]]−1 ≡ [b, c, a, c, a, c]−1[b, c, a, c, c, a]
≡ [a, c, b, c, a, c]−1[a, c, b, c, c, a].

It follows that [a, c, b, c, a, c]2 ≡ [a, c, b, c, c, a] (mod γ7(G)) and so

[a, c, b, c, a, c]6 ≡ [a, c, b, c, c, a]3 ≡ [[a, c, b, c, c]3, a] (mod γ7(G)).

Therefore, by Lemma 15(iv), we can say that the element [a, c, b, c, a, c]6 be-
longs to γ7(G), as required.

(iv) That follows from (ii) and Lemma 16.

(v) We can write modulo γ7(G):

[a, c, b, b, c, b] ≡ [b, c, a, b, c, b]

≡ [b, c, b, a, c, b]

≡ [b, c, b, c, a, b] · [b, c, b, [a, c], b]

≡ [b, c, b, [a, c], b]
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≡ [b, c, b, b, [a, c]] · [b, c, b, [a, c, b]]

≡ [a, c, b, [b, c, b]]−1

≡ [a, c, b, [b, c], b]−1[a, c, b, b, [b, c]].

In this product, we can write the first factor in the form

[a, c, b, [b, c], b]−1 ≡ [a, c, b, b, c, b]−1[a, c, b, c, b, b] (mod γ7(G))

and the second one in the form

[a, c, b, b, [b, c]] ≡ [a, c, b, b, b, c][a, c, b, b, c, b]−1 (mod γ7(G)),

thus [a, c, b, b, [b, c]] ≡ [a, c, b, b, c, b]−1 (mod γ7(G)) by Lemma 15(ii). Con-
sequently, we obtain the relation

[a, c, b, b, c, b] ≡ [a, c, b, b, c, b]−1[a, c, b, c, b, b] · [a, c, b, b, c, b]−1 (mod γ7(G))

and it follows that

[a, c, b, b, c, b]3 ≡ [a, c, b, c, b, b] (mod γ7(G)).

Thus

[a, c, b, b, c, b]6 ≡ [a, c, b, c, b, b]2 ≡ [[a, c, b, c, b]2, b] (mod γ7(G))

and so [a, c, b, b, c, b]6 ≡ 1 (mod γ7(G)) by Lemma 15(iii).

(vi) We have modulo γ7(G):

[a, c, b, b, c, c] ≡ [b, c, a, b, c, c]

≡ [b, c, b, a, c, c]

≡ [b, c, b, c, a, c] · [b, c, b, [a, c], c]

≡ [b, c, b, [a, c], c]

≡ [b, c, b, c, [a, c]] · [b, c, b, [[a, c, c]]

≡ 1.

The proof is now complete. 2
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Proposition 3 For any prime p ≥ 5, the nilpotency class of a finite p-group
G = 〈a, b, c〉 of type (1, 2, 3) is at most 5.

Proof Using Lemma 13 and Lemma 14(iii,iv), it is easy to see that every
commutator of the form [x1, . . . , x6] (with xi ∈ {a, b, c}) is equivalent modulo
γ7(G) to an expression of the form [a, c, b, x, y, z]ǫ, where x, y, z ∈ {a, b, c} and
ǫ = 0,±1,±2. Therefore, to prove our proposition, it suffices to show that

[a, c, b, x, y, z] ≡ 1 (mod γ7(G))

for all x, y, z ∈ {a, b, c}. For that, consider three cases.
Case 1: x = a. The result follows from Lemma 14(i).
Case 2: x = b. If y = a or b, the result follows from Lemma 15(i,ii); if y = c,
it is a consequence of Lemma 17(iv,v,vi).
Case 3: x = c. In the same way, the result follows from Lemma 15(iii,iv) if
y = b or c and from Lemma 17(i,ii,iii) if y = a. 2

5.2 Some negative results

If R is an associative commutative ring with 1, consider the free associative
(non-commutative) R-algebra A freely generated by three elements u, v, w.
Thus A =

⊕

i≥0 Ai, where the elements of Ai are linear combinations of
monomials of degree i.

For positives integers r, s, t, k, denote by Ik(r, s, t) the ideal of A generated
by all elements of the form x1 . . . xn (xi ∈ {u, v, w}), with one at least of the
following conditions holds:

(i) x1, . . . , xn ∈ {u, v} and n = r + 1;

(ii) x1, . . . , xn ∈ {u, w} and n = s + 1;

(iii) x1, . . . , xn ∈ {v, w} and n = t + 1;

(iv) n = k + 1.

Thanks to the relation (1 + x)(1− x + x2 − · · ·+ (−1)kxk) = 1 + (−1)kxk+1,
it is easy to prove that in the quotient A/Ik(r, s, t), the set of cosets of the
form 1 + y + Ik(r, s, t) (with y ∈

⊕

i≥1 Ai) is a multiplicative group, which is
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nilpotent of class at most k (see for example [6, Lemma 9.1]). In this group,
consider elements a, b, c defined by

a = 1 + u + Ik(r, s, t), b = 1 + v + Ik(r, s, t), c = 1 + w + Ik(r, s, t)

and denote by Γk(r, s, t) the subgroup generated by these elements. Then
Γk(r, s, t) = 〈a, b, c〉 is of type (r, s, t): for example, let us verify that the
nilpotency class of 〈a, b〉 is at most r. A commutator of the form [x1, . . . , xr+1]
(xi ∈ {a, b}) is equal to an element of the form 1+ y + Ik(r, s, t), where y is a
linear combination of monomials y1 . . . yn (yi ∈ {u, v, w}), with n ≥ r+1 ((see
[6, Lemma 9.1]). Since A is free, we can assume that all these yi belong to
{u, v}. It follows that y lies in Ik(r, s, t) and so [x1, . . . , xr+1] = 1, as desired.
In the sequel, we shall suppose that R is a field of characteristic p > 0. Then
one can see easily that Γk(r, s, t) is a finite p-group. The following result
shows that the bounds of the nilpotency class obtained in both propositions
2 and 3 are sharp.

Proposition 4 If R is a field of characteristic p > 0, then:

(i) The nilpotency class of Γ3(1, 2, 2) is 3;

(ii) If p 6= 2, the nilpotency class of Γ5(1, 2, 3) is 5.

Proof First, note that the nilpotency class of Γ3(1, 2, 2) (resp. Γ5(1, 2, 3))
is at most 3 (resp. 5).

(i) By [6, Lemma 9.1], the commutator [a, c, b] is equal to 1 + [u, w, v] +
I3(1, 2, 2), where in this latter expression, the brackets must be interpreted
as the Lie product. An easy calculation leads to

[u, w, v] ≡ uwv + vwu (mod I3(1, 2, 2)).

Clearly, uwv + vwu does not belong to I3(1, 2, 2). Thus [a, c, b] 6= 1 and so
Γ3(1, 2, 2) is nilpotent of class 3 exactly.

(ii) Applying [6, Lemma 9.1] again: the commutator [a, c, b, c, a] is equal
to 1 + [u, w, v, w, u] + I5(1, 2, 3). After a calculation, we get

[u, w, v, w, u] ≡ 2uwvwu 6≡ 0 (mod I5(1, 2, 3)),

hence [a, c, b, c, a] 6= 1. 2
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The results obtained in Propositions 2 and 3 lead to the following ques-
tion:

Question. Consider positive integers r, s, t (we can assume r ≤ s ≤ t with-
out loss of generality). Is it possible to find integers p0 and k such that, for
any prime p ≥ p0, the nilpotency class of every finite p-group of type (r, s, t)
is at most k ?

It follows from the next proposition that the answer is negative as from r = 2:

Proposition 5 If R is is a field of characteristic p > 0, the nilpotency class
of Γ3k+1(2, 2, 2) is exactly 3k + 1 for any integer k > 0.

Proof Already we know that the nilpotency class of Γ3k+1(2, 2, 2) is at most
3k + 1. Thus it suffices to find a non trivial commutator in a, b, c of weight
3k + 1. By induction on the integer n > 0, it is easy to prove the relation

[u, v, w, u, . . . , v, w, u] ≡ u(vwu)n + (−1)nu(wvu)n (mod I3k+1(2, 2, 2)),

where the sequence v, w, u appears n times in the Lie product [u, v, w, u, . . . , v, w, u].
Consequently, for n = k, we have clearly

[u, v, w, u, . . . , v, w, u] 6≡ 0 (mod I3k+1(2, 2, 2)).

By [6, Lemma 9.1], the commutator [a, b, c, a, . . . , b, c, a] (in which the se-
quence b, c, a appears k times) is equal to 1+[u, v, w, u, . . . , v, w, u]+I3k+1(2, 2, 2)
and so is non trivial, as desired. 2

Therefore, we can restrict to r = 1. Trivially, there is a positive answer
when s = 1 (for any t). As we have seen previously (Propositions 2 and 3),
we also have a positive answer when s = 2 and t = 2 or t = 3. We conjecture
that this answer remains positive for an arbitrary integer t when r = 1 and
s = 2. On the other hand, the problem has a negative answer when s ≥ 3:

Proposition 6 If R is is a field of odd characteristic p > 0, the nilpotency
class of Γ4k+1(1, 3, 3) is exactly 4k + 1 for any integer k > 0.

Proof The nilpotency class of Γ4k+1(1, 3, 3) is bounded by 4k + 1. Thanks
to an induction on n, we can write

[u, w, v, w, u, . . . , w, v, w, u] ≡ 2nu(wvwu)n (mod I4k+1(1, 3, 3)),
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where in the Lie product [u, w, v, w, u, . . . , w, v, w, u] the sequence w, v, w, u
appears n times. If n = k, we have

[u, w, v, w, u, . . . , w, v, w, u] 6≡ 0 (mod I4k+1(1, 3, 3))

since p 6= 2. By [6, Lemma 9.1], the commutator [a, c, b, c, a, . . . , c, b, c, a] (in
which the sequence c, b, c, a appears k times) is equal to 1+[u, w, v, w, u, . . . , w, v, w, u]+
I4k+1(1, 3, 3) and so is non trivial. That completes the proof. 2
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