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Let G be a torsion-free group with all subgroups subnormal of defect

at most 4. We show that G is nilpotent of class at most 4.

1 Introduction

A subgroup H of a group G is said to be subnormal of defect at most n, or
n-subnormal, if there exists a chain of subgroups of the form

H = H0 � H1 � · · · � Hn = G.
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The property of having all subgroups subnormal is a generalized nilpotence
property and indeed it is not difficult to see that any group that is nilpotent
of class at most n has the property that all subgroups are n-subnormal. A
group with all subgroups subnormal need not be nilpotent, as the well known
examples of Heineken and Mohammed [4] show. If the subnormal defect of
the subgroups of G is bounded the situation is different, and by the celebrated
theorem of Roseblade [6], any group which has all subgroups subnormal of
defect at most n is nilpotent of class at most f(n) where f is some function
depending only on n. This function is not well understood and although the
bound given by Roseblade’s proof is probably not close to being the best
possible there is a lack of examples to form any worthwhile conjecture. For
small values of n we have though some detailed information. For n = 1 we
have the class of Dedekind groups whose structure has been well known for a
long time [1,2] and groups with all subgroups 2-subnormal are also quite well
understood [8]. From this work we know that f(1) = 2 and that f(2) = 3.
As far as we are aware the exact value of f(3) is still unknown. Restricting
oneself to groups of prime exponent one gets the best possible value 3 for
almost all primes but curiously enough there is one exception, namely the
prime 7, in which case the class goes up to 4 [9]. The best upper bound in
general is certainly higher than this but as we have said the value still seems
to be unknown.

Whereas the structure of an arbitrary group with all subgroups n-subnormal
seems hopelessly complicated with regard to obtaining reasonable general
bounds for the nilpotency class, the situation appears to be very differ-
ent when one adds the extra property that the group is torsion-free. To
start with, here there are no counterexamples like the Heineken-Mohammed
groups, as all torsion-free groups with all subgroups subnormal are nilpotent
[7]. For torsion-free groups with all subgroups n-subnormal there also seems
to be some good hope for a reasonable best upper bound for the class. For
n = 1, 2 and 3 we know indeed that we get the best possible value, n, for
the class [9]. It therefore seems natural to conjecture that the same is true
for all n. In this paper we verify this for n = 4. The case n = 4 turns out
to be far more difficult than when dealing with smaller values of n. Whereas
the proofs for n ≤ 3 are short and easy, our proof for n = 4 is quite long
and technical and does not appear to hold much promise for dealing with the
general case.
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The conjecture that the structure in the torsion-free case is much simpler
is also supported by a related result. Let us consider for a while groups with
the weaker property that all cyclic subgroups are n-subnormal. It is not dif-
ficult to see that these groups satisfy the (n + 1)-Engel law [y,n+1 x] = 1 and
we know that this Engel degree is the best possible in general. However, if
one furthermore assumes that the group has at least one element of infinite
order then the situation is different and we get the best possible result: every
non-torsion group with all cyclic subgroups n-subnormal is a n-Engel group.
This was proved by Heineken [3] for n = 3 and in general by Kappe and
Traustason [5].

2 A general lemma

Before moving to the case n = 4, we will first establish a lemma that works
in a more general setting. Let G be a group with all subgroups n-subnormal
where n is any integer greater than or equal to 4. For any x, y ∈ G we have
that

[y,n x] = xm (1)

where m = m(x, y) is some integer. It follows that G is (n+1)-Engel. In fact
it is not difficult to see that under the hypothesis that G is torsion-free one
has the stronger property that G is n-Engel. This can be shown as follows.
Suppose that x 6= 1. By (1) we have that xm ∈ γn+1(〈x, y〉). Then also

xm2

= [y,n−1 x, xm] ∈ γ2n+1(〈x, y〉)

and an easy induction shows that

xmr

∈ γrn+1(〈x, y〉).

As 〈x, y〉 is nilpotent, it follows that xmr

= 1 for some positive integer r. But
as G is torsion-free we have that m = 0 and thus [y,n x] = x0 = 1.

Before going further we introduce some notation. Let G be a torsion-free
nilpotent group, m a positive integer and a, b elements of G. We will write

a ≡m b
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if ab−1 ∈ Gm. The following properties are all well known. If p is some prime
greater than the class of G then, for each positive integer r, Gpr

= {gpr

:
g ∈ G}. Thus if gpr

= hpr+1
∈ Gpr+1

then g = hp ∈ Gp. Or in the notation
above, if apr

≡pr+1 1 then a ≡p 1. Furthermore, we have that

[Gpr

, Gps

] ≤ Gpr+s

.

Also, if P is an infinite set of primes then ∩p∈PGp = 1. Thus if a ≡p 1 for
infinitely many primes then a = 1.

Now suppose that G is torsion-free with all subgroups n-subnormal and that
we want to show that G is nilpotent of class at most n. Without loss of
generality we can assume that G has class at most n+1. In this context one
might use the following lemma.

Lemma 2.1 Let G be a torsion-free group with all subgroups n-subnormal

and suppose that G is nilpotent of class at most n + 1. Then G is centre by

(n − 1)-Engel.

Proof We argue by contradiction and assume that there are elements
x, y, z ∈ G such that

a = [x,n−1 y, z] 6= 1.

Let P be some infinite set of primes greater than the class of G. Then
Gp = {gp : g ∈ G} for all p ∈ P. Notice that, as the class of G is at
most n, for any g, h1, . . . , hn ∈ G we have that [g, [h1, . . . , hn]] is a product of
commutators of the form [g, hσ(1), . . . , hσ(n)] with σ ∈ Sn. Using this property
we see that for each p ∈ P we have that

ap = [xp,n−1 y, z] = [z, [xp,n−1 y]]−1 ∈ 〈xp, y〉

as 〈xp, y〉 is n-subnormal in G. Notice that any commutator in xp and y with
two or more occurrences of xp is in Gp2

. This implies that for each p ∈ P
there is an equation of the form

ap ≡p2 yαp(xp)α(0,p) [xp, y]α(1,p) · · · [xp,n−1 y]α(n−1,p)

where we have used the fact that G is n-Engel.
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We first show that for almost all primes in P all the indices α(0,p), . . . , α(n−1,p)

are divisible by p. Assuming this false, there is a least integer i with 0 ≤
i ≤ n − 1 such that p does not divide α(i,p) for infinitely many primes
from P. Omitting those finitely many p that do not divide some of the
α(0,p), . . . , α(i−1,p), we obtain an infinite subset P1 of P such that, for each
p ∈ P1, we have an equation

ap ≡p2 yαp[xp,i y]α(i,p) · · · [xp,n−1 y]α(n−1,p).

It follows that for all p ∈ P1 we have

1 = [ap,n−1−i y, z] ≡p2 [xp,n−1 y, z] ≡p2 apα(i,p).

As G is torsion-free and all the primes in P1 are greater than the class of G,
we have

a ≡p 1

for all p ∈ P1, which gives the contradiction that a = 1. So for almost all
primes in P, all the indices α(0,p), . . . , α(n−1,p) are divisible by p. By removing
the finitely many exceptions we can thus assume that this is true for all the
primes in P.

This means that for all p ∈ P, we have

ap ≡p2 yαp.

We claim that for almost all p ∈ P, αp is divisible by p2. Supposing this
false, we have an infinite subset P1 ⊂ P with the property that p2 does not
divide αp for all p ∈ P1. It follows that

1 = [x,n−2 y, ap, z] ≡p2 [x,n−1 y, z]αp ≡p2 aαp

and again we get the contradiction that

a ≡p 1

for all p ∈ P1 and hence a = 1. So without loss of generality we can suppose
that ap ∈ Gp2

for all p ∈ P, and as before

a ≡p 1



6

for all p ∈ P and thus again a must be trivial. This final contradiction com-
pletes the proof of the lemma. 2

We remark that this might provide a starting point for an argument to prove
that every torsion-free group with all subgroups n-subnormal is nilpotent of
class at most n. Unfortunately we do not know how to continue with this
general case, and in the rest of the paper we restrict ourselves to groups with
all subgroups 4-subnormal.

3 The groups generated by two or three ele-

ments

For the rest of this paper we work with a torsion-free group G of nilpotency
class at most 5 with all subgroups 4-subnormal. Our aim is to show that
they are nilpotent of class at most 4. In this section we deal with two- and
three-generator groups. The two-generator groups are easily dealt with using
Lemma 2.1.

Lemma 3.1 Let x, y ∈ G. Then γ4(〈x, y〉) ≤ Z(G). In particular, any

torsion-free two-generator group with all subgroups 4-subnormal is nilpotent

of class at most 4.

Proof. By Lemma 2.1 we have that G/Z(G) is 3-Engel. Thus modulo Z(G)
we have

1 ≡ [y, yx, yx, yx] ≡ [y, x, x, y]2

and as G/Z(G) is torsion-free it follows that [y, x, x, y] ∈ Z(G). It is now
clear that all commutators in x, y of weight 4 are in Z(G). 2

Remark. The group G is 4-Engel. Expanding [y,4 x1x2x3x4] = 1 leads
to the linearized 4-Engel identity

∏

σ∈S4

[y, xσ(1), xσ(2), xσ(3), xσ(4)] = 1.

In fact any multihomogenous identity of weight 5 satisfied by G implies the
corresponding linearized version. As G is torsion-free these two are equiva-
lent.
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We next deal with a 3-generator group G. We can assume that G is a
counterexample of minimal Hirch length; it follows in particular that Z(G)
is cyclic. First we tackle commutators of weight 5 with an entry repeated
three times.

Lemma 3.2 Let x, y, z ∈ G. All commutators of multiweight (3, 1, 1) in

x, y, z are trivial.

Proof This is also an easy corollary of Lemma 2.1. Let e1 = [z, y, x, x, x],
e2 = [z, x, y, x, x], e3 = [z, x, x, y, x] and e4 = [z, x, x, x, y]. It suffices to
show that these four commutators are trivial. That e4 = 1 is an immediate
corollary of Lemma 2.1. That lemma also implies that

1 = [z, [y, x, x, x]]

= [z, y, x, x, x][z, x, y, x, x]−3[z, x, x, y, x]3[z, x, x, x, y]

= e1e
−3
2 e3

3.

As G is 4-Engel we also have

1 = [z, y, x, x, x][z, x, y, x, x][z, x, x, y, x][z, x, x, x, y]

= e1e2e3

and

1 = [y, z, x, x, x]−1[y, x, z, x, x]−1[y, x, x, z, x]−1

= [z, y, x, x, x]3[z, x, y, x, x]−3[z, x, x, y, x]

= e3
1e

−3
2 e3.

As
∣

∣

∣

∣

∣

∣

∣

1 1 1
1 −3 3
3 −3 1

∣

∣

∣

∣

∣

∣

∣

= 20 6= 0

and G is torsion-free, it follows that e1 = e2 = e3 = 1. 2

To prove that all commutators of weight 5 in x, y, z are trivial it remains
to show that all commutators of multi-weight (2, 2, 1) in x, y, z are trivial.
Let e1 = [z, x, x, y, y], e2 = [z, x, y, x, y], e3 = [z, x, y, y, x], e4 = [z, y, y, x, x],
e5 = [z, y, x, y, x] and e6 = [z, y, x, x, y].
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Lemma 3.3 The commutators of multiweight (2, 2, 1) in x, y, z are all pow-

ers of e = [z, y, x, y, x]. Furthermore

[z, x, x, y, y] = e−3 [z, x, y, x, y] = e [z, x, y, y, x] = e2

[z, y, y, x, x] = e−3 [z, y, x, y, x] = e [z, y, x, x, y] = e2.

Proof From Lemma 3.2 (the linearized version) we have

1 = [z, x, x, y, y][z, x, y, x, y][z, x, y, y, x]

= e1e2e3,

1 = [z, y, y, x, x][z, y, x, y, x][z, y, x, x, y]

= e4e5e6

1 = [z, y, y, x, x][z, x, y, y, x][z, x, y, x, y]

= e4e3e2

1 = [z, x, y, x, y][z, y, x, x, y][z, y, y, x, x]

= e2e6e4

1 = [x, z, y, y, x][x, y, z, y, x][x, y, y, z, x]

= [z, x, y, y, x]−3[z, y, x, y, x]3[z, y, y, x, x]−1

= e−3
3 e3

5e
−1
4 .

By trivial linear algebra calculations one sees that the solution to these equa-
tions is as described in the lemma. 2

Lemma 3.4 There exist some x, y, z ∈ G such that [z, y, x, y, x] 6= 1 but

[y, x, x, x] = 1.

Proof As G has class 5, we know from Lemma 3.3 that there exist x, y, z ∈ G
such that e = [z, y, x, y, x] 6= 1. Suppose that [y, x, x, x] 6= 1 and let r, s be
arbitrary integers. Then using Lemma 3.3, we get

[y,3 xr[z, y]s] = [y, x, x, x]r
3

([y, [z, y], x, x][y, x, [z, y], x][y, x, x, [z, y])r2s

= ([y, x, x, x]r[z, y, y, x, x]−3s[z, y, x, y, x]3s[z, y, x, x, y]−s)r2

= ([y, x, x, x]re10s)r2

.



9

As Z(G) is cyclic, there exist some non-zero integers r, s such that [y, x, x, x]re10s =
1. Replacing x by xr[z, y]s we have the elements x, y, z required. 2

Up till now we have used the 4-subnormal property only in the proof of
Lemma 2.1, everything else being a consequence of that lemma. To finish the
proof that G is nilpotent of class at most 4, we need to use the 4-subnormal
property again.

Lemma 3.5 If [z, y, x, y, x] 6= 1 and [y, x, x, x] = 1 then [y, x, x, y] 6= 1.

Proof Let P be the set of all primes greater than the class of G and let
p ∈ P. As [y, x, x, x] = 1 we have an equation of the form

[z, yp, x, yp, x] = xα(p)(yp)β(p)[yp, x]γ(p)[yp, x, x]η(p)[x, yp, yp]ρ(p)

[yp, x, x, yp]θ(p)[x, yp, yp, yp]φ(p).

Taking commutators on both sides with [z, y, x, y] and using Lemma 3.2
gives [z, y, x, y, x]α(p) = 1 and thus α(p) = 0. Similarly, the equation 1 =
[z, y, x, ep2

, x] = [z, y, x, yp, x]β(p) = 1 gives β(p) = 0. We continue in this
manner. Next

1 = [z, y, x, ep2

]

= [z, y, x, [y, x]p]γ(p)

= ([z, y, x, y, x][z, y, x, x, y]−1)pγ(p)

= e−pγ(p)

which shows that γ(p) = 0. Then

1 = [z, y, ep2

]

= [z, y, [y, x, x]p]η(p)

= ([z, y, y, x, x][y, x, y, x, y]−2[z, y, x, x, y])pη(p)

= e−3pη(p)

which gives η(p) = 0 and

1 = [z, x, ep2

]

= [z, x, [x, y, y]p
2

]ρ(p)

= e−3p2ρ(p)
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giving ρ(p) = 0. So we have shown that for each p ∈ P, there is an equation

ep2

≡p3 [y, x, x, y]p
2θ(p)

This implies that [y, x, x, y] 6= 1, since otherwise

e ≡p 1

for all p ∈ P that gives the contradiction that e = 1. This finishes the proof
of the lemma. 2

Proposition 3.6 Every torsion-free 3-generator group with all subgroups 4-
subnormal is nilpotent of class at most 4.

Proof We argue by contradiction and suppose that this is not the case.
Working with a minimal counterexample G as before we know by Lemma
3.4 that there exist x, y, z ∈ G such that [z, y, x, y, x] 6= 1 but [y, x, x, x] = 1.
From Lemma 3.5 we then have that [y, x, x, y] 6= 1. But we also have for any
non-zero integers r, s that

[z, yr[z, y]s, x, yr[y, z]s, x] = [z, y, x, y, x]r
2

6= 1

and (using Lemma 3.2)

[yr[z, y]s, x, x, x] = [y, x, x, x]r[z, y, x, x, x]s = 1.

Thus Lemma 3.5 also gives that [yr[z, y]s, x, x, yr[z, y]s] 6= 1. We obtain a
contraction from this. Expanding gives

1 6= [y, x, x, y]r
2

([z, y, x, x, y][y, x, x, [z, y]])rs

= [y, x, x, y]r
2

([z, y, x, x, y][y, x, x, z, y])rs

= [y, x, x, y]r
2

([z, y, x, y, x]2[z, x, x, y, y]−1)rs

= ([y, x, x, y]re5s)r.

By Lemma 2.2 we know that [y, x, x, y] is a nontrivial element of Z(G).
But the centre is cyclic so we can choose nonzero integers r, s such that
[y, x, x, y]re5s = 1. By this final contradiction we know that the proposition
holds. 2
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4 The general case

We wish to extend the result of Proposition 3.6 to all torsion-free groups with
all subgroups 4-subnormal. This will be deduced easily from the 4-generator
case.

Let G be a 4-generator group that is torsion-free and with all subgroups
4-subnormal. Our aim is to show that G is nilpotent of class at most 4.
First we will see how much information we can get using only the result
from the last section that all 3-generator subgroups are nilpotent of class at
most 4. From now on until the final paragraph of this section, we shall as-
sume that G = 〈y, x1, x2, x3〉. Let e1 = [x1, y, y, x2, x3], e2 = [x1, y, x2, y, x3],
e3 = [x1, y, x2, x3, y], e4 = [x1, x2, y, y, x3], e5 = [x1, x2, y, x3, y] and e6 =
[x1, x2, x3, y, y]. From Proposition 3.6 it follows that any commutator of
multiweight (1, 1, 1, 2) in x1, x2, x3, y is antisymmetric in x1, x2, x3. Notice
also that the Hall-Witt identity gives

1 = [x1, x2, x3, y, y][x2, x3, x1, y, y][x3, x1, x2, y, y]

= e3
6

which gives that e6 = 1 as G is torsion-free.

Lemma 4.1 Let e = [x1, y, x2, y, x3]. Then

[x1, y, y, x2, x3] = e−3

[x1, y, x2, y, x3] = e
[x1, y, x2, x3, y] = e−1

[x1, x2, y, y, x3] = e2

[x1, x2, y, x3, y] = e−2.

Proof From Proposition 3.6 we have the following identities.

1 = [x1, y, y, x2, x3][x1, y, x2, y, x3][x1, x2, y, y, x3]

= e1e2e4

1 = [x1, x2, x3, y, y][x1, x2, y, x3, y][x1, x2, y, y, x3]

= e5e4
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1 = [x1, x2, x3, y, y][x1, y, x3, x2, y][x1, y, x3, y, x2]

= e−1
3 e−1

2

Solving these equations together gives

e5 = e−1
4 , e3 = e−1

2 , e1 = e−1
2 e−1

4 .

Then using the antisymmetry, we also have

[x1, y, x2, y, x3] = [x2, y, x1, y, x3]
−1

= [x1, [x2, y], y, x3]

= [x1, x2, y, y, x3][x1, y, x2, y, x3]
−1,

which gives e4 = e2
2 and thus e5 = e2

3 and

e1 = e−3
2 , e3 = e−1

2 , e4 = e2
2, e5 = e−2

2 .

This proves the lemma. 2

To go further we need to use the subnormality condition. We want to show
that the class of G is at most 4. We argue by contradiction and take a coun-
terexample with minimal Hirsch length. In particular it follows that Z(G) is
cyclic. Let

H = {x ∈ G : [g, x, x] ∈ Z2(G) ∀g ∈ G}.

Lemma 4.2 Without loss of generality we can assume that H is a charac-

teristic subgroup of G such that G/H is infinite cyclic.

Proof G has class 5 and we can thus apply Lemma 4.1 to deduce that
[x1, y, x2, y, x3] 6= 1 for some generators x1, x2, x3, y for G. Now Z(G) is
cyclic. Suppose that

|Z(G)/〈[x1, y, x2, y, x3]〉| = r.

Now the commutators [y, x1, x2, x1, x3], [y, x2, x3, x2, x1], [y, x3, x1, x3, x2] are
in the centre of G. Thus the r-th powers are in 〈[x1, y, x2, y, x3]〉. Suppose

[y, x1, x2, x1, x3]
r = [x1, y, x2, y, x3]

α

[y, x2, x3, x2, x1]
r = [x2, y, x3, y, x1]

β

[y, x3, x1, x3, x2]
r = [x3, y, x1, y, x2]

γ.
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Notice that it follows from the antisymmetry in x1, x2, x3 that [x1, y, x2, y, x3] =
[x2, y, x3, y, x2] = [x3, y, x1, y, x2]. It is convenient to write this same element
differently as we want to apply some symmetry arguments.

Let x̄1 = xr
1y

α, x̄2 = xr
2y

β and x̄3 = xr
3y

γ. Then, using the fact that all
3-generator subgroups have class at most 4, we have

[y, x̄1, x̄2, x̄1, x̄3] = [y, xr
1, x

r
2y

β, xr
1y

α, xr
3y

γ]

= [y, xr
1, x

r
2, x

r
1y

α, xr
3]

= [y, x1, x2, x1, x3]
r4

[x1, y, x2, y, x3]
−r3α

= 1.

By symmetry we also have that [y, x̄2, x̄3, x̄2, x̄1] = 1 and [y, x̄3, x̄1, x̄3, x̄2] = 1.
As 〈x̄1, x̄2, x̄3, y〉 has nilpotency class 5, we can without loss of generality as-
sume that x̄i = xi. From what we have done we know that all commutators
of weight 5 in x1, x2, x3, y that are of multiweight different from (1, 1, 1, 2)
are trivial, and that γ5(G) = 〈[x1, y, x2, y, x3]〉.

We next show that H = 〈x1, x2, x3〉γ2(G). Firstly it is easy to see from
the work above that [g, xi, xi] ∈ Z2(G) for i = 1, 2, 3 and all g ∈ G. Also
by the antisymmetry in x1, x2, x3 we have that [g, xi, xj ][g, xj, xi] ∈ Z2(G)
for all 1 ≤ i, j ≤ 3. It follows that 〈x1, x2, x3〉γ2(G) ⊂ H . But if h ∈
〈x1, x2, x3〉γ2(G), then for each non-zero integer s

[x1, y
sh, ysh, x2, x3] = [x1, y, y, x2, x3]

s2

which is non-trivial by Lemma 4.1. Thus no element in G \ 〈x1, x2, x3〉γ2(G)
is in H and it follows that H = 〈x1, x2, x3〉γ2(G).

It is clear from the definition of H that it is a characteristic subset of G.
Finally if modulo Z2(G) we have that

1 ≡ [g, xs, xs] ≡ [g, x, x]s
2

then, as G/Z2(G) is torsion-free, s must be 0. This shows that G/H is
torsion-free and thus infinite cyclic. 2

Lemma 4.3 We have that [g, x, x, x] = 1 for all g ∈ G and all x ∈ H.
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Proof Take generators y, x1, x2, x3 for G such that G = 〈H, y〉 and H =
〈x1, x2, x3〉γ2(G). We will show that

[y, x1, x1, x2][y, x1, x2, x1][y, x2, x1, x1] = 1. (2)

From this we will then derive the lemma.

Notice first that if y, x1, x2 are replaced by ȳ = ysv, x̄1 = xr1
1 u1, x̄2 = xr2

2 u2

with s, r1, r2 non-zero integers and v, u1, u2 ∈ γ2(G), then

[ȳ, x̄1, x̄1, x̄2][ȳ, x̄1, x̄2, x̄1][ȳ, x̄2, x̄1, x̄1] = [y, x̄1, x̄1, x2]
r2s[y, x̄1, x2, x̄1]

r2s[y, x2, x̄1, x̄1]
r2s.

Furthermore, if x̄1 = xr
1[y, x1]

α[y, x2]
β[y, x3]

γc, with c ∈ H ′γ3(G), then

[y, x̄1, x̄1, x2][y, x̄1, x2, x̄1][y, x2, x̄1, x̄1] = [y, x1, x1, x2]
r2
1 [y, x1, x2, x1]

r2
1 [y, x2, x1, x1]

r2
1

[y, [y, x3], x1, x2]
r1γ[y, x1, [y, x3], x2]

r1γ

[y, [y, x3], x2, x1]
r1γ[y, x1, x2, [y, x3]]

r1γ

[y, x2, [y, x3], x1]
r1γ[y, x2, x1, [y, x3]]

r1γ

= [y, x1, x1, x2]
r2
1 [y, x1, x2, x1]

r2
1 [y, x2, x1, x1]

r2
1 .

Here the last equality holds because every commutator of multiweight (2, 1, 1, 1)
in y, x1, x2, x3 is antisymmetric in x1, x2. From these calculations it is clear
that (2) holds if and only it holds for x1, x2, x3, y replaced by x̄1, x̄2, x̄3, ȳ.
The idea is now to chose x̄1, x̄2, x̄3, y in such a way that we can apply the
subnormality property effectively. Before finishing the proof of Lemma 4.3,
we summarise those properties needed in two separate lemmas that we will
also make use of later.

Lemma 4.4 There exists an integer r and elements u1, u2, u3 ∈ γ2(G) such

that for x̄i = xr
i ui we have that

[y, x̄i, x̄i]

commutes with x̄j , y when i 6= j, and

[y, x̄i, x̄j ][y, x̄j, x̄i]

commutes with y when i, j are distinct. Furthermore the choice can be made

such that

[y, x̄1, x̄2, x̄3][y, x̄2, x̄1, x̄3] = 1.
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Proof Suppose that (i, j, k) is one of (1, 2, 3), (2, 3, 1), (3, 1, 2). Then the
elements

[y, xi, xi, y], [y, xi, xi, xj ], [y, xi, xi, xk], [y, xi, xj, y][y, xj, xi, y]

all lie in the centre. Suppose that

[y, xi, xi, y]r = [xj , y, xk, y, xi]
−αi

([y, xi, xj , y][y, xj, xi, y])r = [xi, y, xj, y, xk]
−βk

[y, xi, xi, xj ]
r = [xi, y, xj, y, xk]

γi

[y, xi, xi, xk]
r = [xi, y, xj, y, xk]

−σi .

Let
x̄i = x28r

i [xj , xk]
7αi [xk, xi]

7βk [y, xk]
4γi [y, xj]

4σi

We then have, using Lemmas 4.1 and 4.2,

[y, x̄i, x̄i, y] = [y, x28r
i [xj , xk]

7αi , x28r
i [xj , xk]

7αi , y]

= [y, xi, xi, y]7
2·16r2

[y, xi, xj , xk, y]7
2·16rαi

= 1,

[y, x̄i, x̄j , y][y, x̄j, x̄i, y] = [y, x28r
i [xk, xi]

7βk , x28r
j , y][y, x28r

j , x28r
i [xk, xi]

7βk , y]

= ([y, xi, xj, y][y, xj, xi, y])72·16r2

[y, xk, xi, xj , y]7
2·16rβk

= 1,

[y, x̄i, x̄i, x̄j ] = [y, x28r
i [y, xk]

4γi , x28r
i [y, xk]

4γi , x28r
j ]

= [y, xi, xi, xj ]
43·73r3

([y, [y, xk], xi, xj ][y, xi, [y, xk], xj ])
43·72r2γi

= [y, xi, xi, xj ]
43·73r3

([xk, y, y, xi, xj]
2[xk, y, xi, y, xj]

−1)43·72r2γi

= [y, xi, xi, xj ]
43·73r3

[xk, y, xi, y, xj]
−43·73r2γi

= 1,

[y, x̄i, x̄i, x̄k] = [y, x28r
i [y, xj]

4σi , x28r
i [y, xj]

4σi , x28r
k ]

= [y, xi, xi, xk]
43·73r3

([y, [y, xj], xi, xk][y, xi, [y, xj], xk])
43·72r2σi

= [y, xi, xi, xk]
43·73r3

([xj , y, y, xi, xk]
2[xj , y, xi, y, xk]

−1)43·72r2σi
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= [y, xi, xi, xk]
43·73r3

[xi, y, xj, y, xk]
43·73r2γi

= 1.

Finally suppose that

([y, x̄1, x̄2, x̄3][y, x̄2, x̄1, x̄3])
l = [x̄1, y, x̄2, y, x̄3]

τ .

Let x̃1 = x̄1
7l[y, x̄1]

τ . One easily checks that all the previous properties still
hold if x̄1 is replaced by x̃1 and furthermore we have

[y, x̃1, x̄2, x̄3][y, x̄2, x̃1, x̄3] = [y, x̄1, x̄2, x̄3]
7l[y, x̄2, x̄1, x̄3]

7l

[y, [y, x̄1], x̄2, x̄3]
τ [y, x̄2, [y, x̄1], x̄3]

τ

= [y, x̄1, x̄2, x̄3]
7l[y, x̄2, x̄1, x̄3]

7l

[x̄1, y, y, x̄2, x̄3]
2τ [x̄1, y, x̄2, y, x̄3]

−τ

= [y, x̄1, x̄2, x̄3]
7l[y, x̄2, x̄1, x̄3]

7l

[x̄1, y, x̄2, y, x̄3]
−7τ

= 1.

This finishes the proof of the Lemma 4.4. 2

Notice that the above lemma still holds if y is replaced by any element from
〈y〉γ2(G) and x̄i by any element from 〈x̄i〉γ3(G). To simplify the notation we
assume that we have replaced xi by x̄i and thus we use xi as notation instead
of x̄i.

Lemma 4.5 There exists some non-zero integer r and v ∈ γ2(G), such that

for ȳ = yrv, we have

[xi, ȳ, ȳ, ȳ] = 1

[ȳ, xj , [ȳ, xi]][ȳ, xi, xj , ȳ]−4 = 1

for all (i, j) ∈ {(1, 2), (2, 3), (3, 1)}.

Proof We have that the commutators [xi, y, y, y], i = 1, 2, 3, are in the
centre of G. Suppose that

[x1, y, y, y]r = [x1, y, x2, y, x3]
α

[x2, y, y, y]r = [x2, y, x3, y, x1]
β

[x3, y, y, y]r = [x3, y, x1, y, x2]
γ.
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Using Lemma 4.1, we also have

[y, x2, [y, x1]][y, x1, x2, y]−4, x3] = [x2, y, y, x1, x3]
−1[x2, y, x1, y, x3][x1, y, x2, y, x3]

4

= [x1, y, y, x2, x3][x1, y, x2, y, x3]
3

= 1.

This shows that [y, x2, [y, x1]][y, x1, x2, y]−4 lies in the centre of G. By symme-
try the same is true for [y, x3, [y, x2]][y, x2, x3, y]−4 and [y, x1, [y, x3]][y, x3, x1, y]−4.
Suppose

([y, x2, [y, x1]][y, x1, x2, y]−4)r = [x1, y, x2, y, x3]
σ

([y, x3, [y, x2]][y, x2, x3, y]−4)r = [x2, y, x3, y, x1]
τ

([y, x1, [y, x3]][y, x3, x1, y]−4)r = [x3, y, x1, y, x2]
ρ.

Let
ȳ = y8r[x2, x3]

α[x3, x1]
β[x1, x2]

γ[y, x3]
−σ[y, x1]

−τ [y, x2]
−ρ.

Calculations show that ȳ has the properties required. 2

We can now finish the proof of Lemma 4.3. By replacing x1, x2, x3, y by
x̄1, x̄2, x̄3, ȳ, we can assume that all the equations from the last two lemmas
hold.

First we notice that we can without loss of generality assume that either
[y, x1, x1, x1] 6= 1 or [y, x1, x1] = 1. To see this suppose that [y, x1, x1, x1] = 1.
This together with previous lemmas then implies that [y, x1, x1] is in the cen-
tre of G. Suppose that

[y, x1, x1]
r = [x1, y, x2, y, x3]

−s.

Let x̄1 = x3r
1 [y, x2, x3]

s. Then

[y, x̄1, x̄1] = [y, x1, x1]
9r2

([y, [y, x2, x3], x1][y, x1, [y, x2, x3]])
3rs

= [y, x1, x1]
9r2

[x1, y, x2, y, x3]
6rs[x1, y, x2, x3, y]−3rs

= [y, x1, x1]
9r2

[x1, y, x2, y, x3]
9rs

= 1.

By replacing x1 by x̄1 we would thus have the property wanted. Notice
that, as we have remarked before, the change of x1 has no influence on all
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the previous established properties. By replacing x2 by a suitable element
if necessary, we can also assume that either [y, x2, x2, x2] 6= 1 or [y, x2, x2] = 1.

Let P be a infinite set of primes greater than the class of G, and let p ∈ P.

As H = 〈xp2

1 , xp
2, y〉 is 4-subnormal in G, we have

1 6= [xp2

1 , y, xp
2, y, x3] = [x3, y, xp2

1 , y, xp
2] ∈ H

We can thus express [xp2

1 , y, xp
2, y, x3] in basic commutators in xp2

1 , xp
2, y of

weight at most 4. We will eventually work modulo Gp4
and we will thus

not write down those of the commutators which are in Gp4
. These are the

commutators that have either at least two occurrences of x1 or include x1

and have at least two occurrences of x2. With the order xp2

1 < xp
2 < y and

[xp
2, x

p2

1 ] < [y, xp2

1 ] < [y, xp
2], the basic commutators are

xp2

1 , xp
2, y, [xp

2, x
p2

1 ], [y, xp2

1 ], [y, xp
2], [x

p
2, x

p2

1 , y], [y, xp2

1 , xp
2], [y, xp2

1 , y],

[y, xp
2, x

p
2], [y, xp

2, y], [xp
2, x

p2

1 , y, y], [y, xp2

1 , xp
2, y], [y, xp2

1 , y, y],

[y, xp
2, x

p
2, x

p
2], [y, xp

2, x
p
2, y], [y, xp

2, y, y], [y, xp
2, [y, xp2

1 ]],

and commutators that lie in Gp4
, all of which lie in γ3(H). The elements

written can clearly be replaced by

xp2

1 , xp
2, y, [xp

2, x
p2

1 ], [y, xp2

1 ], [y, xp
2], [y, xp2

1 , xp
2][y, xp

2, x
p2

1 ], [y, xp2

1 , xp
2],

[y, xp2

1 , y], [y, xp
2, x

p
2], [y, xp

2, y], [y, xp2

1 , xp
2, y][y, xp

2, x
p2

1 , y], [y, xp2

1 , xp
2, y],

[y, xp2

1 , y, y], [y, xp
2, x

p
2, x

p
2], [y, xp

2, x
p
2, y], [y, xp

2, y, y], [y, xp
2, [y, xp2

1 ]][y, xp2

1 , xp
2, y]−4.

From the previous lemmas we know that, of those elements listed of weight
4, the only possible non-trivial elements are [y, xp

1, x
p
2, y] and [y, xp

2, x
p
2, x

p
2].

We thus have an equation of the form

[xp2

1 , y, xp
2, y, x3] = (xp2

1 )α1(xp
2)

α2yα3[xp
2, x

p2

1 ]α4 [y, xp2

1 ]α5 [y, xp
2]

α6

[y, xp2

1 , xp
2]

α7 [y, xp2

1 , y]α8[y, xp
2, y]α9[y, xp

2, x
p
2]

α

([y, xp2

1 , xp
2][y, xp

2, x
p2

1 ])β[y, xp
2, x

p
2, x

p
2]

γ[y, xp2

1 , xp
2, y]τC.

Where C is a product of commutators which all lie in γ3(H) and have two
occurrences of either x1 or x2 and thus lie in the second centre of G.
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Before continuing we introduce some notation. For elements g, g1, . . . , gn ∈ G
we define the commutator of g and (g1, . . . , gn) as the element [g, g1, . . . , gn].
Now we work with the equation above. Taking commutators on both sides
with (y, x2, y, x3), (y, x1, y, x3) and (x1, x2, y, x3) gives

1 = [x1, y, x2, y, x3]
p2α1 = [x2, y, x1, y, x3]

pα2 = [y, x1, x2, y, x3]
α3 ,

which implies that α1 = α2 = α3 = 0. Similarly, taking commutators on both
sides with (y, y, x3), (x2, y, x3) and (y, x1, x3) gives that α4 = α5 = α6 = 0.
We continue like this, taking next commutators on both sides with (y, x3),
(x2, x3) and (x1, x3) which gives α7 = α8 = α9 = 0. We have thus shown
that for all p ∈ P there is modulo Gp4

an equation of the form

[xp2

1 , y, xp
2, y, x3] ≡ [y, xp

2, x
p
2]

αp([y, xp2

1 , xp
2][y, xp

2, x
p2

1 ])βp[y, xp
2, x

p
2, x

p
2]

γp [y, xp2

1 , xp
2, y]τp.

We next show that, for all but finitely many primes p in P, p divides τp.
Otherwise there would be an infinite subset P1 of P such that τp is coprime
with p for all p ∈ P1. From the previous lemmas we know that [y, xp

2, x
p
2],

[y, xp2

1 , xp
2][y, xp

2, x
p2

1 ] and [y, xp
2, x

p
2, x

p
2] commute with x3, thus taking commu-

tator on both sides with x3 gives that [y, x1, x2, y, x3]
p3

is in Gp4
for all p ∈ P1.

But then we get the contradiction that

[x1, y, x2, y, x3] ∈
⋂

p∈P1

Gp = {1}.

Without loss of generality we can thus assume that p divides τp for all p ∈ P.
So for each p ∈ P we have the equation

[xp2

1 , y, xp
2, y, x3] ≡p4 [y, xp

2, x
p
2]

αp([y, xp2

1 , xp
2][y, xp

2, x
p2

1 ])βp[y, xp
2, x

p
2, x

p
2]

γp . (3)

We next show that for all but finitely many primes in P, we have that βp

is coprime to p. To see this we argue by contradiction and suppose this is
not the case. Then there is a infinite subset P1 of P such that we have an
equation of the form

[xp2

1 , y, xp
2, y, x3] ≡p4 [y, xp

2, x
p
2]

αp[y, xp
2, x

p
2, x

p
2]

γp , (4)

for all p ∈ P1 There are then two possibilities. For infinitely many of the
primes p ∈ P1, we have that p2 does not divide αp and taking the commutator
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with x2 on both sides gives that [y, x2, x2, x2]
p3

≡p4 1 for all those primes.
Otherwise we have the equation

[xp2

1 , y, xp
2, y, x3] ≡p4 [y, xp

2, x
p
2, x

p
2]

γp (5)

for infinitely many primes. Then for infinitely many primes we must have
that γp is coprime to p since otherwise there is an infinite subset P2 of P1 such
that [x1, y, x2, y, x3]

p3
≡p4 1 for all p ∈ P2 and we have the contradiction that

[x1, y, x2, y, x3] = 1. Thus in both cases we have that [y, x2, x2, x2]
p3

≡p4 1 for
infinitely many primes, which shows as before that [y, x2, x2, x2] = 1 and by
our choice of x2 we then have that [y, x2, x2] = 1. Thus our equation becomes

[x1, y, x2, y, x3]
p3

≡p4 1

for infinitely many primes and as before we get the contradiction that [x1, y, x2, y, x3] =
1.

This shows that we can assume without loss of generality that βp is co-
prime to p for all p in P. Taking the commutator with x1 on both sides in
(2) and using previous lemmas gives that

([y, x1, x2, x1][y, x2, x1, x1])
p3

≡p4 1

for all p ∈ P and this implies that [y, x1, x2][y, x2, x1] commutes with x1.
But, as [y, x1, x1, x2] = 1, it follows that

[y, x1, x1, x2][y, x1, x2, x1][y, x2, x1, x1] = 1.

So we have established that (2) holds. This is true for any choice of generating
set {y, x1, x2, x3} with x1, x2, x3 ∈ H . Thus we can replace x2 by x1x2, which
gives

[y, x1, x1, x1] = 1.

Replacing x1 by x1x3 in (2) also gives
∏

σ∈S3

[y, xσ(1), xσ(2), xσ(3)] = 1.

It is now clear that [y, x, x, x] = 1 for all x ∈ H and all y ∈ G\H . Replacing
y by yh for some h ∈ H we get also that

[h, x, x, x] = 1

for all h ∈ H . This finishes the proof of the lemma. 2
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Proposition 4.6 G is nilpotent of class at most 4.

Proof We argue in a similar manner as in the proof of Lemma 4.3. By
Lemma 4.4 and 4.5 we can assume that G is generated by elements x1, x2, x3, y
with x1, x2, x3 ∈ H such that the elements [y, x1, x1], [y, x2, x2] and [y, x1, x2][y, x2, x1]
commute with y and x3. By replacing x2 by x2[y, x3] if necessary we can fur-
thermore assume that

[y, x2, x2, x1] 6= 1. (6)

Notice that as

[y, x2, x2, x1][y, x2, x1, x2][y, x1, x2, x2] = 1

we also have that
[y, x1, x2, x2][y, x2, x1, x2] 6= 1. (7)

Let P be a infinite set of primes greater than the class of G. The subgroup

〈xp2

1 , xp
2, y〉 is 4-subnormal in G. As in the proof of Lemma 4.3 we have an

equation of the form

[xp2

1 , y, xp
2, y, x3] ≡p4 [y, xp

2, x
p
2]

αp([y, xp2

1 , xp
2][y, xp

2, x
p2

1 ])βp[y, xp
2, x

p
2, x

p
2]

γp [y, xp2

1 , xp
2, y]τp.

But now we know from Lemma 4.3 that [y, xp
2, x

p
2, x

p
2] = 1. Also, taking

the commutator with x3 on both sides, using the fact that [y, x2, x2], and
[y, x1, x2][y, x2, x1] commute with x3, we see that τp must be divisible by p
for almost all the primes in P. (Otherwise we would get the contradiction as
in the proof of Lemma 4.3 that [y, x1, x2, y, x3] = 1.) So we can assume that

[xp2

1 , y, xp
2, y, x3] ≡p4 [y, xp

2, x
p
2]

αp([y, xp2

1 , xp
2][y, xp

2, x
p2

1 ])βp (8)

for all p ∈ P. We use from Lemma 4.3 the fact that [y, xp
2, x

p
2, x

p
2] = 1. Thus

taking the commutator with x2 on both sides in (8), gives

([y, x1, x2, x2][y, x2, x1, x2])
p3βp ≡p4 1.

But then we must have that for all but finitely many βp, we have that p
divides βp. Otherwise

[y, x1, x2, x2][y, x2, x1, x2] = 1,
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which contradicts (7). Thus we can assume that

[xp2

1 , y, xp
2, y, x3] ≡p4 [y, xp

2, x
p
2]

αp (9)

for all p ∈ P. Taking the commutator with x1 on both sides in (9) gives that

([y, x2, x2, x1]
pα

p2 ≡p4 1

for all p ∈ P. Again it follows that for almost all primes p, we have that p2

divides αp, since otherwise we would get [y, x2, x2, x1] = 1 which contradicts
(6). Thus we can assume that

[x1, y, x2, y, x3]
p3

≡p4 1 (10)

for all p ∈ P. Hence

[x1, y, x2, y, x3] ∈
⋂

p∈P

Gp = {1}.

This gives the final contradiction! Hence every torsion-free 4-generator group
with all subgroups 4-subnormal is nilpotent of class at most 4. 2

We can now prove our theorem.

Theorem 4.7 Let G be a torsion-free group with all subgroups 4-subnormal.

Then G is nilpotent of class at most 4.

Proof By Proposition 4.6 we have that G satisfies the law

[y, x, x, z, t] = 1.

Hence G/Z2(G) is a torsion-free 2-Engel group. But it is well known that
such a group is nilpotent of class at most 2. Hence G is nilpotent of class at
most 4. 2
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