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Using known results on 4-Engel groups one can see that a 4-Engel

group is locally nilpotent if and only if all its 3-generator subgroups

are nilpotent. As a step towards settling the question whether all 4-

Engel groups are locally nilpotent we show that all 2-generator 4-Engel

groups are nilpotent.
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1 Introduction

In this paper we continue our study on 4-Engel groups. Before we discuss the
contents of the paper we give a short overview on what is known on 4-Engel
groups. The main open question concerning their structure is whether they
need to be locally nilpotent. This was proved to be the case for 3-Engel
groups by Heineken in 1961 [5]. For 4-Engel groups, some partial results
have been obtained. We know that in a 4-Engel group the torsion elements
form a subgroup which is modulo its centre a direct product of p-groups [12].
Furthermore we have that in any 4-Engel p-group G, G/R is of exponent di-
visible by p where R is the Hirsch-Plotkin radical of G. These results reduce
the local nilpotence question for 4-Engel groups to groups that are either
torsion-free or of prime exponent. All groups of exponent 2 and 3 are locally
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finite and Vaughan-Lee [15] has shown that 4-Engel groups of exponent 5 are
also locally finite (see also [9] for further structure results). It follows from
this and the structure results mentioned above that every 4-Engel {2, 3, 5}-
group is locally nilpotent. A crucial fact for these results is the fact that any
two conjugates in a 4-Engel group generate a nilpotent subgroup of class at
most 4 [13]. That result also implies that 4-Engel groups satisfy a semigroup
identity (see also [8]).

Whereas the local nilpotency problem still remains to be fully solved, we
now have quite a good understanding of the structure of locally nilpotent
4-Engel groups. Every 4-Engel group that is locally nilpotent and without
elements of order 2, 3 or 5 is nilpotent of class at most 7 [12]. If only the
primes 2 and 5 are excluded the groups are not in general nilpotent but
they are still soluble [1]. On the other hand there are examples of locally
nilpotent 4-Engel 2-groups and 5-groups that are not soluble [2,11]. In [6]
L. C. Kappe and W. K. Kappe proved that a group is 3-Engel if and only
if the normal closure of any element is nilpotent of class at most 2. N. D.
Gupta and F. Levin [4] have on the other hand constructed examples that
show that the analogue for 4-Engel groups does not hold and that there is
a locally nilpotent 4-Engel group with an element whose normal closure has
class larger than 3. They also showed that a locally nilpotent n-Engel group
does not need to be a Fitting group if n ≥ 5. In [14] we proved however that
all locally nilpotent 4-Engel groups are Fitting groups and furthermore that
the normal closure of any element is nilpotent of class at most 4. It follows in
particular that any nilpotent r-generated 4-Engel group is nilpotent of class
at most 4r.

So our picture of the structure of locally nilpotent 4-Engel groups is get-
ting quite clear. Coming back to the local nilpotence question one can easily
see using known results that a 4-Engel group is locally nilpotent if and only
if all its 3-generator subgroups are nilpotent. Let us see why this is the case.
We recall that a group H is said to be restrained [7] if

〈a〉〈b〉

is finitely generated for all a, b ∈ H . It is not difficult to show that in a
finitely generated restrained group all the terms of the derived series are
finitely generated (see [7, Corollary 4]). Notice that in every 4-Engel group
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〈a〉〈b〉 is generated by a, ab, ab2 and ab3 , so every 4-Engel group is restrained.
We first prove an elementary lemma that we will also need in the next section.

Lemma 1.1 Let G be a 4-Engel group and let R be the Hirsch-Plotkin radical
of G. Then the Hirsch-Plotkin radical of G/R is trivial.

Proof Let S/R be the Hirsch-Plotkin radical of G/R. It suffices to show
that S is locally nilpotent. Let H be a finitely generated subgroup of S.
Then H/(H∩R) is nilpotent and thus soluble of derived length, say n. As H
is restrained we have that H(n) is a finitely generated subgroup of H ∩R and
thus nilpotent. Therefore H is soluble and then nilpotent by a well known
theorem of Gruenberg [3]. 2

In fact the same proof works for n-Engel groups where n is an arbitrary
positive integer.

Corollary 1.2 A 4-Engel group G is locally nilpotent if and only if all its
3-generator subgroups are nilpotent.

Proof Let a, b, c ∈ G. As H = 〈a, b, c〉 is nilpotent, it follows from [14] that
the normal closure of b in H is nilpotent of class at most 4 (this can also be
read from a polycyclic presentation of the free nilpotent 3-generator 4-Engel
group). Hence [[a, b, b, b], [a, b, b, b]c] = 1. This holds for all a, b, c ∈ G and it
follows that 〈[a, b, b, b]〉G is abelian for all a, b ∈ G. Hence G/R is 3-Engel
where R is the Hirsch-Plotkin radical. But 3-Engel groups are locally nilpo-
tent [5] and thus G/R is locally nilpotent. But by Lemma 1.1 we then have
that G/R is trivial. Hence G = R and thus locally nilpotent. 2

As a step towards solving the local nilpotence problem we prove in the next
section.

Theorem 1.3 All 2-generator 4-Engel groups are nilpotent.

Using this result one also gets some sharpening of known structure results.
The first is an immediate corollary.

Corollary 1.4 Let G be a 4-Engel group then the torsion elements form a
subgroup which is a direct product of p-groups.
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Most of this was proved in [12] but then we could only conclude that the
torsion subgroup is a product of p-groups modulo its centre.

Corollary 1.5 Any two conjugates in a 4-Engel group generate a nilpotent
subgroup that is nilpotent of class at most 3.

Using Theorem 1.3 this can be read from a polycyclic presentation of the free
nilpotent 4-Engel group on two generators [10]. This sharpens the bound 4
for the nilpotency class that was obtained in [13].

2 Two generator 4-Engel groups

Let G = 〈x, y〉 be a 2-generator 4-Engel group. We want to show that G is
nilpotent. If R is the Hirsch-Plotkin radical of G this is the same as proving
that G/R is trivial. By Lemma 1.1 we know that the Hirsh-Plotkin radical of
G/R is trivial. By replacing G by G/R we can thus without loss of generality
assume that G has a trivial Hirsch-Plotkin radical. It follows by Gruenbergs
Theorem that there are no normal locally-soluble subgroups. We prove in a
few steps that G must then be trivial.

From [12] we know that the torsion elements of G form a subgroup that
is a direct product of p-groups modulo the centre. As the locally nilpotent
radical of G is trivial we conclude that this centre is trivial and thus the
torsion group is a direct product of p-groups. As we mentioned in the intro-
duction, all {2, 3, 5}-subgroups of G are locally nilpotent. As a result, we can
assume that G has no element of order 2, 3 or 5. In fact we will only need
to assume that G has no element of order 2. We make use of the fact that
in every 4-Engel group, a subgroup generated by two conjugates is nilpotent
[13]. In particular the subgroup 〈xy−1, y−1x〉 of G is nilpotent. The aim
is to show that this subgroup is trivial. It suffices to show that the centre
is trivial. Let a be an arbitrary element of the centre. Then ax = ay and
ax−1

= ay−1

. If we let c = ax−1

then cx = cy = a and cx2

= cy2

.

Lemma 2.1 The subgroups 〈x, xc〉 and 〈y, yc〉 are nilpotent of class at most
3 and furthermore [[c, x, x], [c, x]] = [[c, y, y], [c, y]] = 1.

Proof From [13] we know that the subgroups 〈x, xc〉 and 〈y, yc〉 are nilpotent
of class at most 4. We also know that any commutator in x and xc with three
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occurrences of either x or xc must be trivial. From this and the choice of the
element c we have that [[c, x, x], [c, x], [c, x]] = [[c, y, y], [c, y], [c, y]] and that
this element commutes with x and y and is thus in the centre of G. But then
it must be the identity. Expanding we get

1 = [x−cx, x, x−cx, x−cx]

= [x−c, x, x−c, x][x−c, x, x, x−c]

= [xc, x, xc, x]2.

As G has no element of order 2 it follows that 〈x, xc〉 and likewise 〈y, yc〉
are nilpotent of class at most 3. Next consider the element [[c, x, x], [c, x]] =
[[c, y, y], [c, y]]. From what we have just proved this element commutes with
both x and y and is thus in the centre of G and must therefore be the identity.
2

Lemma 2.2 The subgroups 〈cx, xc〉 and 〈cy, yc〉 are nilpotent of class at
most 3. Furthermore [x, c]x

−1

commutes with all elements in 〈[x, c]〉〈c〉.

Proof Let d = [xc, cx, (cx)−1xc, (cx)−1xc]. As the conjugates xc, cx generate
a subgroup that is nilpotent of class at most 4 we know that this element
commutes with xc and cx. By Lemma 2.1 we know that [x, c, x] commutes
with [x, c]. Thus

d = [cx[x, c], cx, [x, c], [x, c]]

= [[x, c, cx, [x, c], [x, c]]

= [[x, c, x][x, c, c]x, [x, c], [x, c]]

= [[x, c, c]x, [x, c], [x, c]].

But this element is in 〈c, cx, cx2

〉 and by our choice of c it follows that

d = [[y, c, c]y, [y, c], [y, c]] = [yc, cy, (cy)−1yc, (cy)−1yc]

and d commutes with xc, cx, yc and cy. Thus

dx = dy = dc−1

and dx−1

= dy−1

= dc.

Then also
dx2

= dc−1x = dxc−x

= dyc−y

= dc−1y = dy2

.
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As 〈d〉〈x〉 and 〈d〉〈y〉 are generated by 〈dx−1

, d, dx, dx2

〉 and 〈dy−1

, d, dy, dy2

〉
respectively, it follows that

dxi

= dyi

for all i ∈ Z. In particular [d, z1, z2, z3, z4] = [d, x, x, x, x] = 1 for all
z1, z2, z3, z4 ∈ 〈x, y〉 and d is in the 4-th center of G. Hence d = 1. As
in the proof of Lemma 2.1, we use the fact that every commutator in the
conjugates xc and cx with 3 occurrences of either xc or cx is trivial. It
follows that

1 = d = [xc, cx, (cx)−1, xc][xc, cx, xc, (cx)−1] = [xc, cx, cx, xc]−2,

and as there are no elements of order 2 we conclude that 〈xc, cx〉 and likewise
〈yc, cy〉 are nilpotent of class at most 3. Next consider the element

e = [xc, cx, (cx)−1xc]

= [x, c, cx, [c, x]]

= [[x, c, x][x, c, c]x, [c, x]]

= [[x, c, c]x, [c, x]]

= [[y, c, c]y, [c, y]]

= [yc, cy, (cy)−1yc].

By what we have just seen, this element commutes with xc, cx, yc, cy and the
same argument as we used previously shows that e = 1. So [x, c] commutes
with [x, c, c]x, that is to say [x, c]−x[x, c]cx and by Lemma 2.1, [x, c] commutes
then with [x, c]cx or equivalently [x, c]c commutes with [x, c]x

−1

. Replacing
c by c−1 it follows that [x, c−1]c

−1

commutes with [x, c−1]x
−1

or equivalently
[c, x]c

−2

commutes with [c, x]c
−1x−1

. Conjugating by cx we get that [c, x]c
−1x

commutes with [c, x][c,x] = [c, x] and [x, c]x
−1

commutes with [x, c]c
−1

. From
this and Lemma 2.1 we now know that [x, c]x

−1

commutes with [x, c], [x, c]c

and [x, c]c
−1

. Let u = [c, x]c
−1

and v = [c, x]x
−1

. Then v commutes with u,
[u, c] and [u, c, c] and thus

1 = [u, vc, vc, vc, vc]

= [u, c, vc, vc, vc]

= [u, c, c, vc, vc]

= [u, c, c, c, vc]

= [u, c, c, c, v]c.
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As 〈[x, c]〉〈c〉 is generated by u, uc, uc2 and uc3, this concludes the proof of
the Lemma. 2

Lemma 2.3 If u ∈ Z(〈c, cx, cx2

〉) then u = 1.

First notice that

1 = [c, ux, ux, ux, ux] = [c, x, ux, ux, ux] = [c, x, x, ux, ux]

= [c, x, x, x, ux] = [c, x, x, x, u]x

and u commutes with cx3

and as c〈x〉 is generated by c, cx, cx2

and cx3

, it
follows that u commutes with cxi

for all i ∈ Z. As cx = cy and cx2

= cy2

it
follows from the symmetry of the role of x and y that u commutes with cyi

for all i ∈ Z. We next show by induction on r that uz1···zn commutes with
all elements in 〈c〉〈x〉 and 〈c〉〈y〉, where z1, . . . , zn ∈ {x, y, x−1, y−1}. We have
already dealt with the case n = 0. Suppose now that n ≥ 1 and that the
result holds for all smaller integers. Let v = [u, z1, . . . , zn−1]. Then using the
induction hypothesis we have

[v, x]c = [v, x[x, c]]

= [v, x][x,c]

= [v, x[x, [x, c]]]

= [v, x][x,[x,c]]

...

= [v, x][x,[x,[x,[x,c]]]]

= [v, x].

So [v, x] commutes in particular with c, cx, cx2

which, as we have seen, im-
plies that [v, x] commutes with all elements in 〈c〉〈x〉 and 〈c〉〈y〉. As [v, x] =
uz1···zn−1x modulo conjugates of lower weights, it follows that our hypothesis
holds for zn = x. The proof for zn = x−1, y or y−1 is similar and the induc-
tion hypothesis holds.

In particular we have that u commutes with cz1...zn for all z1, . . . , zn ∈ {x, y, x−1, y−1}
and thus u is in the centre of 〈c〉〈x,y〉. Hence the normal closure of u in G is
abelian and thus u = 1, as G has no proper normal soluble subgroup. 2
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Lemma 2.4 The subgroup 〈c, cx〉 is nilpotent of class at most 3. Further-
more [x, c, c, c] = 1.

Proof By Lemma 2.3 we have that [x, c, c, c]x commutes with [x, c] and thus

[x, c, c, c]xc = [x, c, c, c]cx[x,c] = [x, c, c, c]x[x,c] = [x, c, c, c]x

and c commutes with [x, c, c, c]x = [c−x2

, cx, cx]. Replacing c by c−1 we see
that c commutes also with [cx2

, cx, cx]. As

[c−x2

, cx, cx] = [cx2

, cx, cx]−1[cx2

, cx, cx2

, cx],

it follows that [cx2

, cx, cx2

, cx] commutes with c. As this element commutes
also with cx and cx2

, it follows from Lemma 2.3 that [cx2

, cx, cx, cx2

] = 1.
Hence the subgroup 〈cx, cx2

〉 is nilpotent of class at most 3 and then of
course the same is true for the subgroup 〈c, cx〉. We have therefore seen that
the element [cx2

, cx, cx] commutes with c and cx and cx2

and again Lemma
2.3 implies that [cx2

, cx, cx] = 1 and conjugation by x−1 gives the second
statement of the Lemma. 2

Lemma 2.5 The element c is trivial.

Proof From Lemma 2.3 and Lemma 2.4 we know that [x, c, c] commutes
with c and that [x, c, c]x commutes with [x, c]. Thus

[x, c, c]xc = [x, c, c]cx[x,c] = [x, c, c]x[x,c] = [x, c, c]x,

and c commutes with

[x, c, c]x = [c−x2

cx, cx] = [c−x2

, cx][c−x2

, cx, cx] = [c−x2

, cx].

Replacing c by c−1 we see that c commutes with [cx2

, cx]−1. As

[c−x2

, cx] = [cx2

, cx]−1[cx2

, cx, cx2

]

it follows that [cx2

, cx, cx2

] commutes with c and by Lemma 2.4 it commutes
also with cx and cx2

. By Lemma 2.3 this element is then trivial. Thus
[cx2

, cx] commutes with cx2

and c but by the second part of Lemma 2.4 it
also commutes with cx. It follows again from Lemma 2.3 that [cx2

, cx] = 1
and conjugation by x−1 gives that [x, c, c] = 1. From Lemma 2.1 we have
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also that [c, x] commutes with [c, x, x]. So [c, x] commutes with c, cx and cx2

and Lemma 2.3 implies that [c, x] = 1. As [c, x] = [c, y] this implies that c is
in the centre of G and thus trivial. 2

Proof of theorem 1.3 From the previous lemmas we have seen that the
centre of 〈xy−1, y−1x〉 is trivial. But this group is nilpotent because it is
generated by two conjugates. It follows that it must also be trivial. Thus
x = y and G is cyclic and thus trivial as the Hirsch-Plotkin radical of G is
trivial. 2
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