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Using known results on 4-Engel groups one can see that a 4-Engel
group is locally nilpotent if and only if all its 3-generator subgroups
are nilpotent. As a step towards settling the question whether all 4-
Engel groups are locally nilpotent we show that all 2-generator 4-Engel
groups are nilpotent.
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1 Introduction

In this paper we continue our study on 4-Engel groups. Before we discuss the
contents of the paper we give a short overview on what is known on 4-Engel
groups. The main open question concerning their structure is whether they
need to be locally nilpotent. This was proved to be the case for 3-Engel
groups by Heineken in 1961 [5]. For 4-Engel groups, some partial results
have been obtained. We know that in a 4-Engel group the torsion elements
form a subgroup which is modulo its centre a direct product of p-groups [12].
Furthermore we have that in any 4-Engel p-group G, G/R is of exponent di-
visible by p where R is the Hirsch-Plotkin radical of G. These results reduce
the local nilpotence question for 4-Engel groups to groups that are either
torsion-free or of prime exponent. All groups of exponent 2 and 3 are locally
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finite and Vaughan-Lee [15] has shown that 4-Engel groups of exponent 5 are
also locally finite (see also [9] for further structure results). It follows from
this and the structure results mentioned above that every 4-Engel {2,3,5}-
group is locally nilpotent. A crucial fact for these results is the fact that any
two conjugates in a 4-Engel group generate a nilpotent subgroup of class at
most 4 [13]. That result also implies that 4-Engel groups satisfy a semigroup
identity (see also [8]).

Whereas the local nilpotency problem still remains to be fully solved, we
now have quite a good understanding of the structure of locally nilpotent
4-Engel groups. Every 4-Engel group that is locally nilpotent and without
elements of order 2, 3 or 5 is nilpotent of class at most 7 [12]. If only the
primes 2 and 5 are excluded the groups are not in general nilpotent but
they are still soluble [1]. On the other hand there are examples of locally
nilpotent 4-Engel 2-groups and 5-groups that are not soluble [2,11]. In [6]
L. C. Kappe and W. K. Kappe proved that a group is 3-Engel if and only
if the normal closure of any element is nilpotent of class at most 2. N. D.
Gupta and F. Levin [4] have on the other hand constructed examples that
show that the analogue for 4-Engel groups does not hold and that there is
a locally nilpotent 4-Engel group with an element whose normal closure has
class larger than 3. They also showed that a locally nilpotent n-Engel group
does not need to be a Fitting group if n > 5. In [14] we proved however that
all locally nilpotent 4-Engel groups are Fitting groups and furthermore that
the normal closure of any element is nilpotent of class at most 4. It follows in
particular that any nilpotent r-generated 4-Engel group is nilpotent of class
at most 4r.

So our picture of the structure of locally nilpotent 4-Engel groups is get-
ting quite clear. Coming back to the local nilpotence question one can easily
see using known results that a 4-Engel group is locally nilpotent if and only
if all its 3-generator subgroups are nilpotent. Let us see why this is the case.
We recall that a group H is said to be restrained [7] if

(a) (b)

is finitely generated for all a,b € H. It is not difficult to show that in a
finitely generated restrained group all the terms of the derived series are
finitely generated (see [7, Corollary 4]). Notice that in every 4-Engel group
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(a)® is generated by a,a’, a® and a¥’, so every 4-Engel group is restrained.

We first prove an elementary lemma that we will also need in the next section.

Lemma 1.1 Let G be a 4-FEngel group and let R be the Hirsch-Plotkin radical
of G. Then the Hirsch-Plotkin radical of G/R is trivial.

Proof Let S/R be the Hirsch-Plotkin radical of G/R. It suffices to show
that S is locally nilpotent. Let H be a finitely generated subgroup of S.
Then H/(HNR) is nilpotent and thus soluble of derived length, say n. As H
is restrained we have that H™ is a finitely generated subgroup of H N R and
thus nilpotent. Therefore H is soluble and then nilpotent by a well known
theorem of Gruenberg [3]. O

In fact the same proof works for n-Engel groups where n is an arbitrary
positive integer.

Corollary 1.2 A 4-Engel group G is locally nilpotent if and only if all its
3-generator subgroups are nilpotent.

Proof Let a,b,c € G. As H = (a, b, ¢) is nilpotent, it follows from [14] that
the normal closure of b in H is nilpotent of class at most 4 (this can also be
read from a polycyclic presentation of the free nilpotent 3-generator 4-Engel
group). Hence [[a, b, b, b], [a, b, b,b]°] = 1. This holds for all a,b,c € G and it
follows that ([a,b,b,b])¢ is abelian for all a,b € G. Hence G/R is 3-Engel
where R is the Hirsch-Plotkin radical. But 3-Engel groups are locally nilpo-
tent [5] and thus G/R is locally nilpotent. But by Lemma 1.1 we then have
that G/R is trivial. Hence G = R and thus locally nilpotent. O

As a step towards solving the local nilpotence problem we prove in the next
section.

Theorem 1.3 All 2-generator 4-Engel groups are nilpotent.

Using this result one also gets some sharpening of known structure results.
The first is an immediate corollary.

Corollary 1.4 Let G be a 4-Engel group then the torsion elements form a
subgroup which is a direct product of p-groups.
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Most of this was proved in [12] but then we could only conclude that the
torsion subgroup is a product of p-groups modulo its centre.

Corollary 1.5 Any two conjugates in a 4-Engel group generate a nilpotent
subgroup that is nilpotent of class at most 3.

Using Theorem 1.3 this can be read from a polycyclic presentation of the free
nilpotent 4-Engel group on two generators [10]. This sharpens the bound 4
for the nilpotency class that was obtained in [13].

2 Two generator 4-Engel groups

Let G = (z,y) be a 2-generator 4-Engel group. We want to show that G is
nilpotent. If R is the Hirsch-Plotkin radical of GG this is the same as proving
that G/R is trivial. By Lemma 1.1 we know that the Hirsh-Plotkin radical of
G/ R is trivial. By replacing G by G/ R we can thus without loss of generality
assume that G has a trivial Hirsch-Plotkin radical. It follows by Gruenbergs
Theorem that there are no normal locally-soluble subgroups. We prove in a
few steps that G must then be trivial.

From [12] we know that the torsion elements of G form a subgroup that
is a direct product of p-groups modulo the centre. As the locally nilpotent
radical of G is trivial we conclude that this centre is trivial and thus the
torsion group is a direct product of p-groups. As we mentioned in the intro-
duction, all {2, 3, 5}-subgroups of G are locally nilpotent. As a result, we can
assume that G has no element of order 2, 3 or 5. In fact we will only need
to assume that G' has no element of order 2. We make use of the fact that
in every 4-Engel group, a subgroup generated by two conjugates is nilpotent
[13]. In particular the subgroup (zy~!,y'z) of G is nilpotent. The aim
is to show that this subgroup is trivial. It suffices to show that the centre
is trivial. Let a be an arbitrary element of the centre. Then a* = a and

1 1 —1 2 2
a®* =a¥ . Hweletc=a* thenc®=c¥=aand & ="

Lemma 2.1 The subgroups (x,x¢) and (y,y°) are nilpotent of class at most
3 and furthermore [[c, z, 2], [c,z]] = [[e,y,y], [e,y]] = 1.

Proof From [13] we know that the subgroups (z, ) and (y, y©) are nilpotent
of class at most 4. We also know that any commutator in  and x¢ with three
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occurrences of either x or ¢ must be trivial. From this and the choice of the
element ¢ we have that [[c, x, x|, [c, z], [e, z]] = [[c,y,y], [¢,y], [¢,y]] and that
this element commutes with x and y and is thus in the centre of G. But then
it must be the identity. Expanding we get

1 = [z %, z,2 ‘e, 2 “x]

[27¢ x, 27 x][x

—C

) x? x? l‘_c]

= [:L’C,:L’,xc,x]2.

As G has no element of order 2 it follows that (z,x¢) and likewise (y,y°)
are nilpotent of class at most 3. Next consider the element [[c, z, x], [¢, z]] =
[[e,y,y], [¢,y]]. From what we have just proved this element commutes with
both x and y and is thus in the centre of G and must therefore be the identity.
O

Lemma 2.2 The subgroups {(cx,zc) and {(cy,yc) are nilpotent of class at
most 3. Furthermore [x,c]* commutes with all elements in ([, c])%).

Proof Let d = [zc, cz, (cx)Lze, (cx)twc]. As the conjugates xc, cx generate
a subgroup that is nilpotent of class at most 4 we know that this element
commutes with xc and cx. By Lemma 2.1 we know that [z, ¢, z] commutes

with [z, ¢]. Thus

[calz, c], cx, [, d], [z, d]]

[z, ¢, ca, [z, ], [z, ]]

[z, ¢, x][x, ¢, ], [z, c], [z, ]
[l

x, ¢ cl [z, ], [z, c]].

But this element is in (¢, ¢*, c“*’Q) and by our choice of ¢ it follows that

d=1ly,c,d’ [y, d, [y, cl] = lye, ey, (cy)'ye, (cy) ™~ yd]

and d commutes with xc, cx,yc and cy. Thus

1

d*=d=d " and d* =d¥ = d-.

Then also
2 —1 _z

& =d = = =d =
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As (d) and (d)® are generated by (d* ', d,d”, d*’) and (d¥ ', d,d¥,d¥")
respectively, it follows that , .

4" =ad”
for all ¢ € Z. In particular [d, 21,29, 23,24] = [d,x,z,z,2] = 1 for all
21,22, 23,24 € (r,y) and d is in the 4-th center of G. Hence d = 1. As
in the proof of Lemma 2.1, we use the fact that every commutator in the
conjugates xc and cx with 3 occurrences of either zc or cx is trivial. It
follows that

-1 2

1 =d = [zc,cx, (cx) ™t wd][xe, cx, xc, (cx) Y] = [we, cx, cx, vc] 2,

and as there are no elements of order 2 we conclude that (zc, cz) and likewise
(yc, cy) are nilpotent of class at most 3. Next consider the element

e we, cx, (cx) tad]

x, ¢, cx, e, )]

[z, ¢, x][x, ¢, ], [c, z]]
[z, ¢, c]*, [e, x]]

[y, c. ]’ [e,y]

ye, ey, (ey)ycl.

[
[
[
[
[
= |

By what we have just seen, this element commutes with xc, cx, yc, cy and the
same argument as we used previously shows that e = 1. So [z, ¢] commutes
with [z, ¢, c]*, that is to say [z, ¢| [z, ¢|** and by Lemma 2.1, [z, ¢] commutes
then with [z, ] or equivalently [z, ] commutes with [z,¢]* . Replacing
¢ by ¢! it follows that [z,¢ '] commutes with [x,¢™']* " or equivalently
[, z]” commutes with [¢, 2]¢ ' * . Conjugating by cz we get that [c, 2] '
commutes with [¢, 2]l = [¢, 2] and [z,¢]* " commutes with [z, ¢]* . From
this and Lemma 2.1 we now know that [z,¢]* ' commutes with [z, ], [z, ]
and [z,c]°". Let u = [¢,2]¢ " and v = [¢,2]* . Then v commutes with w,
[u, c] and [u, ¢, c] and thus

u, ve, ve, ve, vl

u, ¢, ve, ve, vl

[

[

[u, ¢, ¢, ve, vd]
[u, ¢, ¢, ¢, vc]
[

u, ¢, ¢, c,v|°
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As ([z,c])' is generated by u, u°, u® and v, this concludes the proof of
the Lemma. O

Lemma 2.3 Ifu € Z({c,c*,¢")) then u = 1.
First notice that
1 = [c,ux, uz, uz, uzr| = [¢, x,ux, ux, ux] = [c, z, r, ur, ur]
= [e,x, 2, x,uz] = [c,x, z, T, u]”

and u commutes with ¢*° and as ¢ is generated by ¢, ¢, ¢ and ¢*, it
follows that u commutes with ¢ for all i € Z. As ¢ = ¢¥ and ¢ = ¢’ it
follows from the symmetry of the role of x and y that u commutes with ¢¥'
for all i« € Z. We next show by induction on r that v*'"*» commutes with

all elements in (c)® and (c)™, where zy,...,2, € {z,y, 27", y~'}. We have
already dealt with the case n = 0. Suppose now that n > 1 and that the
result holds for all smaller integers. Let v = [u, 21, ..., 2,_1]. Then using the

induction hypothesis we have

[0, 2]°

— v, g] el

= [v,z].

So [v,x] commutes in particular with ¢, ¢®, s which, as we have seen, im-
plies that [v, 2] commutes with all elements in {(c)® and (c)™. As [v,2] =
u®#=1% modulo conjugates of lower weights, it follows that our hypothesis
holds for z, = x. The proof for z, = 7!, y or y~! is similar and the induc-
tion hypothesis holds.

In particular we have that u commutes with ¢** for all zy, ..., 2, € {z,y,z~ 1,y '}
and thus u is in the centre of (c)*¥). Hence the normal closure of u in G is
abelian and thus v = 1, as G has no proper normal soluble subgroup. O
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Lemma 2.4 The subgroup {(c,c”) is nilpotent of class at most 3. Further-
more [z, ¢, ¢, c] = 1.

Proof By Lemma 2.3 we have that [z, ¢, ¢, ¢|* commutes with [z, ¢] and thus

[z, ¢, ¢,d" = [z, ¢, ¢, ™) = [z, ¢, ¢, ") = [z, ¢, ¢, ]"

2

and ¢ commutes with [z,c, ¢, c]* = [¢™®, %, ¢*]. Replacing ¢ by ¢! we see
that ¢ commutes also with [¢*, ¢*, ¢*]. As

it follows that [C"”Q, e ¢*] commutes with ¢. As this element commutes
also with ¢* and ¢, it follows from Lemma 2.3 that [¢"",¢*, ¢%, ¢"] = 1.
Hence the subgroup (cx,ch) is nilpotent of class at most 3 and then of
course the same is true for the subgroup (¢, ¢*). We have therefore seen that
the element [0332, ¢, ¢*] commutes with ¢ and ¢* and ¢ and again Lemma
2.3 implies that [cmz,cm,cm] = 1 and conjugation by z~! gives the second
statement of the Lemma. O

Lemma 2.5 The element c is trivial.

Proof From Lemma 2.3 and Lemma 2.4 we know that [z,c,c| commutes
with ¢ and that [z, ¢, c]* commutes with [z, ¢|. Thus

[z, ¢, c]™ = [z, c, c]cm[m’c} = [z, ¢, c]m[m’c} = [z, ¢, c]",
and ¢ commutes with
x __.—x2 x x _ 1.—22 x\[.—22 x x _ [.—12 =«
[SL’,C,C] _[C C,C]—[C 76][0 7670]_[0 76]'

it follows that [¢**, ¢*, ¢*"] commutes with ¢ and by Lemma 2.4 it commutes
also with ¢* and ¢**. By Lemma 2.3 this element is then trivial. Thus
[¢**, ¢*] commutes with ¢** and ¢ but by the second part of Lemma 2.4 it
also commutes with ¢*. It follows again from Lemma 2.3 that [¢**,¢"] = 1
and conjugation by z7! gives that [z,c,c] = 1. From Lemma 2.1 we have
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also that [c, z] commutes with [¢, z, z]. So [¢, ] commutes with ¢, ¢* and ¢’
and Lemma 2.3 implies that [c, 2] = 1. As [¢, 2] = [¢, y] this implies that ¢ is
in the centre of G and thus trivial. O

Proof of theorem 1.3 From the previous lemmas we have seen that the
centre of (xy~1 y~lx) is trivial. But this group is nilpotent because it is
generated by two conjugates. It follows that it must also be trivial. Thus
x =y and G is cyclic and thus trivial as the Hirsch-Plotkin radical of G is
trivial. O
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