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1 Introduction

We begin by considering three well-known results. The first two give equiv-
alent ways of stating the positive answer to the restricted Burnside problem
[24],[25], in the general case and for nilpotent groups.

Theorem A. Let n be a positive integer.

(1) For each positive integer r there exists a largest finite r-generator group
of exponent n.

(2) Every finitely generated residually finite group of exponent n is finite.
(3) The class of locally finite groups of exponent n is a variety.

Theorem B. Let n be a positive integer.

(1) For each positive integer r there exists a largest r-generator nilpotent
group of exponent n.

(2) Every finitely generated residually nilpotent group of exponent n is
nilpotent.

(3) The class of locally nilpotent groups of exponent n is a variety.

The third result on the other hand is a consequence from [23] of Zel’manov’s
global nilpotence theorem for n-Engel Lie algebras over a field of character-
istic zero [22].

Theorem C. Every torsion-free locally nilpotent n-Engel group is nilpo-
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tent.

Other authors have proved similar results for other varieties, also using
the solution to the restricted Burnside problem. A theorem of Wilson [21]
shows that Theorem B remains true if the Burnside variety is replaced by
the variety of n-Engel groups. A short proof of this result can be found in
[3]. Shalev [19] has also shown that an analog of Theorem A is true if one
replaces the Burnside variety by any variety satisfying a positive law; here
‘finite’ is replaced by ‘nilpotent-by-finite’. The question of characterizing the
varieties for which analogs of Theorems A, B and C hold has been studied
in [2] ,[4], [6]-[9]. In [4], [7] one has a characterization for varieties of type
A, in [7], [8] for varieties of type B and in [6] varieties of type C.

The aim of this paper is to develop a theory unifying and generalizing the
results discussed above. We will work in a more general setting than that of
varieties. For each varietyM of metabelian groups then let CM be the class
of groups all of whose metabelian sections belong to M. The main results
of this paper, Theorems 3.23, 4.5 and 4.9, characterize those classes CM
that are of type A, B or C. Replacing CM by a variety V whose metabelian
groups form the varietyM, we obtain a characterization for varieties. These
results, Theorem 3.24, 4.6 and 4.10, are different from those found in [4],
[6], [7], [8] and stronger in that all bounds depend only on the metabelian
groups in V.

In order to prove our theorems we will introduce a class of generalized Engel
groups. For each polynomial f over the integers we will introduce a class
of f -Milnor groups. Our choice of name comes from a paper of F. Point
[16], who introduced the notion of Milnor identities. She singled out from
a paper of Milnor [15] a property for a group G, namely that the normal
closure of a in 〈a, b〉 is finitely generated for all a, b ∈ G. Groups with this
property have been called restrained by other authors.

In Section 2 we give a general introduction to Milnor groups. We will prove
the main results for classes of type A in Section 3 and for classes of type B
and C in Section 4.

In our generalized setting we are often able to use methods and arguments
of other authors and this will be clearly indicated when it happens.



Milnor groups 3

2 Milnor groups

Let G be any group. For a, t ∈ G we let

A(a, t) := 〈a〉〈t〉/(〈a〉〈t〉)′

where 〈a〉〈t〉 is the normal closure of 〈a〉 in 〈a, t〉. Then A(a, t) is an abelian
section of G. Let E(a, t) be the ring of all endomorphisms of A(a, t). Notice
that t induces an endomorphism on A(a, t) by conjugation.

Definition 2.1 Let f(x) ∈ Z[x]. We say that a group G is f -Milnor if
af(t) = 1 in A(a, t) for all a, t ∈ G.

More generally let F be any set of non-zero polynomials of Z[x]. We say
that a group G is F-Milnor if for all a, t ∈ G there exists an f ∈ F such
that af(t) = 1 in A(a, t).

Notice that if F is finite, say F = {f1, . . . , fn} then every F-Milnor group
is a (f1 · · · fn)-Milnor group.

Example. Let G be an n-Engel group. Calculating in A(a, t), we get

1 = [a,n t] = a(−1+t)
n
,

so G is an e-Milnor group for e = (x − 1)n. Notice also that every Engel
group is an E-Milnor group where E = {(x− 1)n : n ≥ 0}.

Let Mf be the class of all f -Milnor groups. Notice that Mf is closed
under taking subgroups and quotients.

Some classical results on Engel groups generalize easily to E-Milnor groups.
In particular, every E-Milnor group that is either finite or finitely gener-
ated soluble is nilpotent. These statements generalize well-known theorems
of Gruenberg [10] and Zorn [26] and we omit the easy proofs. However,
whereas all Engel groups satisfying the maximal condition are nilpotent,
this is not true for E-Milnor groups, since any Tarsky monster is a (x− 1)-
Milnor group that satisfies the maximal condition.

3 Virtual nilpotence

Example. Let C be the infinite cyclic group and Cp be the cyclic group
of order p for some prime p. The standard wreath product Cp wrC is an
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f(x − 1)-Milnor group for all polynomials f divisible by p. Notice that
Cp wr C is residually a finite p-group but it is not nilpotent-by-(finite expo-
nent).

We are interested in criteria for an f -Milnor group to be nilpotent-by-(finite
exponent). In view of the example above we will assume in the rest of this
section that the coefficients of f have no common prime divisor. Our aim
is to show that there exist positive integers e(f) and c(f) such that every
finite f -Milnor group G satisfies

γc(f)+1(G
e(f)) = 1.

We will in fact show that the same conclusion holds for all virtually soluble
f -Milnor groups. We deal with finite soluble groups in Sections 3.1 and
3.2. In Section 3.3, 3.4 we extend the result to all virtually soluble f -Milnor
groups. In Section 3.5 we will use this result to obtain the main characteri-
zation result, Theorem 3.23.

Our approach in Sections 3.1-3.3 follows in outline Shalev [19]. For the
reduction from finite groups to finite soluble groups in Section 3.3 we can-
not, like Shalev, use directly a result of Jones [12] that any proper subvariety
of the variety of all groups, contains only finitely many finite non-abelian
simple groups. Instead we describe a variant argument appropriate for our
situation.

3.1 Finite soluble groups in Mf

Our first aim is to prove that there exists constants c(f) and e4(f) such that
any finite soluble f -Milnor group is an extension of a nilpotent group of class
at most c(f) by a group of exponent dividing e4(f). In this section we reduce
this problem to the class of nilpotent f -Milnor groups. Our approach follows
closely that of [19]. We let f be a fixed polynomial in Z[x] of degree m whose
coefficients have greatest common divisor 1. Let

I = Z[x]f(x) + Z[x]f(x2) + . . .+ Z[x]f(xm+1).

and let Ip be the natural image of I in GF(p)[x]. Notice that Ip 6= 0 as the
coefficients of f have no common prime divisor.

Lemma 3.1 [x(xm! − 1)]m ∈ Ip.
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Proof Let f̄(x), . . . , f̄(xm+1) be the images of f(x), . . . , f(xm+1) in Ip. The
greatest common divisor g of f̄(x), . . . , f̄(xm+1) has degree at most m and
Ip = GF(p)[x]g. Suppose that g has prime factorization g = pα1

1 · · · pαr
r for

distinct prime polynomials p1, . . . , pr. Let Ji = GF(p)[x]pi then J1, . . . , Jr
are maximal ideals of GF(p)[x] with intersection J = GF(p)[x]p1 · · · pr.
Clearly Jm ≤ Ip. It thus suffices to show that (xm! − 1)x ∈ Ji for all i.
So we work in the field Fi = GF(p)[x]/Ji. Let u be the image of x in Fi.
Then

f(u) = f(u2) = . . . = f(um+1) = 0.

But as f has degree m, two of these powers of u must be equal. If us = ut

with s < t then either u = 0 or ut−s = 1. Hence (um! − 1)u = 0. 2

Corollary 3.2 Suppose G = 〈V, t〉 where V is an elementary abelian normal
p-subgroup of G. If G is an f -Milnor group then (tm!− 1)m = 0 in End(V ).

Proof As G ∈ Mf , we have that f(t) = 0, f(t2) = 0, . . . , f(tm+1) = 0 in
End(V ). By Lemma 3.1 we have then that (tm! − 1)mtm = 0. But as t is
invertible we conclude that (tm! − 1)m = 0. 2

Lemma 3.3 Let G be a finite soluble f -Milnor group and let N be a minimal
normal subgroup of G. Then there exist an integer e1 = e1(m) such that
te1 = 1 in End(N) for all t ∈ G.

Proof Since N is an elementary abelian p-group for some prime p we can
apply Corollary 3.2 to deduce that (tm!− 1)m = 0 in End(N). Suppose that
t has order s. If s is coprime to p then, as 〈N, tm!〉 is nilpotent, tm! must
centralize N and thus tm! = 1 in End(N).

Next consider the case when s = pr. Then H = G/CG(N) is a soluble
linear group over the finite field of order p. Let R/CG(N) be a normal p-
subgroup of H. Then R = PCG(N) where P is the Sylow p-subgroup of R.
Now [N,R] = [N,NP ] is a proper subgroup of N because NP is nilpotent.
As N is a minimal normal subgroup in G it follows that [N,R] = 1 and
R ≤ CG(N). Thus H has no non-trivial normal p-subgroups. It now follows
from Theorem B of Hall and Higman [11] that the minimal polynomial of t
in End(V ) has degree at least pr−1(p−1). Hence m ·m! ≥ (p−1)pr−1 ≥ s/2
and thus s ≤ 2m ·m!. This shows that in this case t(2m!m)! = 1 in End(N).

In the general case s = apr for some integer a coprime to p. By the discus-
sion above, both tp

r
and ta have order dividing e1(m) = (2m ·m!)! and thus

so has t. 2



Milnor groups 6

Proposition 3.4 Let G be a finite soluble f -Milnor group. Then Ge1(m) is
nilpotent where e1(m) = (2m! ·m)!.

Proof By Lemma 3.3 the subgroup Ge1(m) centralizes all chief factors of G
and so lies in the Fitting subgroup. 2

Remark Notice that e1(m) only depended on the degree of f .

3.2 Finite nilpotent groups in Mf

For a prime p we let r = r(p,m) be the integer satisfying

pr−1 < m ≤ pr.

Recall that m is the degree of f .

Lemma 3.5 Let G be a finite f -Milnor p-group. Then Gp
r(p,m)

centralizes
every normal elementary abelian section V = H/K with H,K normal in G.

Proof Suppose that f(x) = en(x− 1)n + · · ·+ em(x− 1)m with en 6= 0. Let
s be the smallest integer such that p does not divide es. Then (t− 1)s = 0
in End(V ) for all t ∈ G as G is nilpotent. Hence, as s ≤ pr(p,m),

tp
r(p,m) − 1 = (t− 1)p

r(p,m)
= 0

in End(V ). 2

Corollary 3.6 Let G be a finite f -Milnor p-group. Then Gp
r(p,m)

is power-
ful if p is odd and Gp

r(p,m)+1
is powerful if p = 2.

Proof This follows directly from Lemma 3.5 and a lemma of [18]. 2

We refer to [14] for the definition and properties of powerful p-groups. For
our next lemma we will need a proposition of Shalev ([19], Proposition D)
that is a consequence of Zel’manov’s work on the restricted Burnside prob-
lem.

Proposition 3.7 (Shalev) Let G be a d-generated nilpotent group, and let
H �G. Suppose that

[h,k g] = 1

for all h ∈ H and g ∈ G. Then

[H,bG] = 1

for some b = b(k, d) depending only on k and d.
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Lemma 3.8 Suppose that G is a d-generator nilpotent (x − 1)k-Milnor
group. Then G is nilpotent of (k, d)-bounded class.

Proof Suppose that G has class c. Then the [(c + 2)/2]-th term A of the
lower central series is abelian. As G is a (x − 1)k-Milnor group, [a,k g] = 1
for all a ∈ A and all g ∈ G. By Proposition 3.7 we can conclude that G has
class at most (c + 2)/2 + b(k, d). Hence c ≤ (c + 2)/2 + b(k, d) which gives
that c ≤ 2 + 2b(k, d). 2

It follows from this that any finitely generated residually nilpotent (x− 1)k-
Milnor group is nilpotent. This generalizes Wilson’s result on k-Engel
groups. Next we need the following immediate corollary of Theorem C.

Lemma 3.9 (Zel’manov) For each integer r there exist a constant l1(r)
such that any finite r-Engel p-group is nilpotent of r-bounded class if p >
l1(r).

The following proposition holds for any non-zero polynomial f ∈ Z[x]; we do
not need the assumption that the coefficients have greatest common divisor
1.

Proposition 3.10 There exists an integer l(f) such that any finite f -Milnor
p-group with p > l(f) is nilpotent of m-bounded class.

Proof Recall that f = en(x− 1)n + · · ·+ em(x− 1)m where en 6= 0. Choose
a prime p that does not divide en. Let G be a finite p-group in Mf . Then
G is a (x − 1)n-Milnor group. By Lemma 3.8 we have that G is b-Engel
where b is n-bounded. By Lemma 3.9, G is nilpotent of n-bounded class if
p is greater than l(f) := max{en, l1(b(n))}. 2

Now let e2(f) be the product of 2r(2,m)+1 and all prime powers pr(p,m) with
3 ≤ p ≤ l(f). It follows from Corollary 3.6 and Proposition 3.10 that for
any finite nilpotent f -Milnor group G the subgroup Ge2(f) is a direct prod-
uct of p-groups where the factors with p > l(f) are nilpotent of m-bounded
class and the rest of the factors are powerful. We can therefore concentrate
on powerful p-groups. We first need a lemma similar to lemma 3.1. Its
statement and proof closely resemble those of [17, Lemma 3.3].

Lemma 3.11 Let I be the ideal in Z[x] generated by f(x), f(x2), . . . , f(xm+1).
Then qxm(xm! − 1)m ∈ I for some positive integer q = q(f).
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Proof Let g be the greatest common divisor of f(x), . . . , f(xm+1) in Q[x].
Then g has degree at most m and QI = Q[x]g. As in the proof of Lemma
3.1 we see that (xm! − 1)mxm is in QI and thus q(xm! − 1)mxm is in I for
some positive integer q. 2

Lemma 3.12 Let G be a powerful f -Milnor p-group. Then Gm! is nilpotent
of f -bounded class.

Proof Let ps be the largest power of p that divides q from Lemma 3.11.
Then G is a ps(xm! − 1)m-Milnor group. Let H = 〈A, t〉 be a section of G
with A an abelian normal subgroup of H. Consider the quotients

A/pA, pA/p2A, . . . , ps−1A/psA.

By Lemma 3.5 the polynomial (t−1)p
r(p,m)

maps all these quotients to zero.

Hence (t − 1)sp
r(p,m)

maps A/psA to 0. But (tm! − 1)m maps psA to zero,

and so G is a k-Milnor group where k = (x− 1)sp
r(p,m)

(xm! − 1)m.

We use this to show that N = Gm! is nilpotent of f -bounded class. As
G is powerful we have N = {gm! : g ∈ G}. From the previous paragraph,

N is a (x− 1)sp
r(p,m)+m-Milnor group. It follows from Lemma 3.8 that N is

an b(f, p)-Engel group for some integer b(f, p). Now N is powerful and so
nilpotent of (f, p)-bounded class by [1, Proposition 2.2]. But by Proposition
3.10 we only need to consider finitely many primes p and thus N is nilpotent
of f -bounded class, as required. 2

As we remarked before almost all Sylow p-subgroups of Ge2(f) are nilpotent
of f -bounded class and the remaining ones are powerful. Let e3(m) = m!. It
follows from Lemma 3.12 that Ge3(m)e2(f) is nilpotent of f -bounded class for
each finite nilpotent f -Milnor group. But by Proposition 3.4 the subgroup
Ge1(m) is nilpotent for each finite soluble f -Milnor group G. Hence writing
e4(f) = e1(m)e2(f)e3(m) where m = deg f , we obtain

Proposition 3.13 There exists a positive integer c(f) such that

γc(f)+1(G
e4(f)) = 1

for all finite soluble f -Milnor groups.
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3.3 Finite f-Milnor groups

We shall extend the result of the previous section to include all finite f -
Milnor groups. We first show that there are only finitely many non-abelian
finite simple f -Milnor groups. Our approach is based on G. Jones [12].

Lemma 3.14 There are finitely many alternating groups in Mf .

Proof Otherwise Mf contains all alternating groups, as Mf is closed
under taking subgroups. But as any finite group can be embedded into an
alternating group, Mf then contains all finite groups. However, if p is any
prime not dividing f and n > degf then Cp wr Cn is not in Mf . 2

Lemma 3.15 PSL(2, q) ∈Mf for only finitely many prime powers q.

Proof Let A be the subgroup of SL(2, q) consisting of the matrices

a(α) =

[
1 α
0 1

]
, α ∈ GF(q)

and let t =

[
x 0
0 x−1

]
, where x is a primitive (q − 1)-th root of unity in

GF(q). Let G = 〈A, t〉. Now

[a(α), tr] = a(αx−2r − α),

and so [a(α), tr] ∈ Z(SL(2, q)) if and only if x2r = 1. Let Ḡ, Ā and 〈̄t〉 be
the images of G,A and 〈t〉 in PSL(2, q). We have |Ā| = q and |t̄| divides
q − 1, and so |Ā|,|t̄| are coprime. It follows that 〈Ā, t̄r〉 is nilpotent if and
only if t̄r centralizes Ā which happens if and only if x2r = 1. This shows
that Ḡ/Fit(Ḡ) has exponent (q−1)/2 if q is odd and q−1 if q is even. But if
Ḡ ∈Mf then, as Ḡ is soluble, the exponent of Ḡ/Fit(Ḡ) must divide e4(f).
Hence PSL(2, q) ∈Mf for finitely many q. 2

Lemma 3.16 There are only finitely many Suzuki groups Sz(q) in Mf .

Proof Let q = 22n+1 and let θ be the field automorphism of GF(q) that
maps x to x2

n+1
. According to [20] the group Sz(q) can be described as the

subgroup of GL(4, q) generated by the matrices

a(α, β) =


1 0 0 0
α 1 0 0
α1+θ + β αθ 1 0
α2+θ + αβ + βθ β α 1

 ,
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t(γ) =


γ1+θ 0 0 0
0 γ 0 0
0 0 γ−1 0
0 0 0 γ−1−θ


and

x =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,
with α, β, γ ∈ GF(q) where γ 6= 0. The set A = {a(α, β)| α, β ∈ GF(q)} is
a subgroup. Let t = t(γ) where γ is a primitive (q− 1)-th root of unity and
let G = 〈A, t〉. This is a semidirect product of A by 〈t〉. As t−ra(α, β)tr =
a(αγr, βγr(1+θ)), the elements tr, a(α, β) commute if and only if γr = 1. As
|A| = q2 and |t| = q−1 are coprime, 〈A, tr〉 is nilpotent if and only if tr = 1.
Hence the exponent of G/Fit(G) is q − 1. But if G ∈ Mf , the exponent
of G/Fit(G) must divide e4(f). Hence there are only finitely many groups
Sz(q) in Mf . 2

Proposition 3.17 There are finitely many finite non-abelian simple groups
in Mf .

Proof According to the classification of the finite simple groups there are,
apart from the alternating groups and the 26 sporadic simple groups, 16
infinite families of simple groups of Lie type. We have already dealt with
the alternating groups and the Suzuki groups. The remaining 15 families
are the Chevalley groups

Al(q), Bl(q), Cl(q), Dl(q), G2(q), F4(q), E6(q), E7(q), E8(q)

and six families of twisted simple groups of Lie type. The Steinberg groups
2Al(q),

2Dl(q),
2E6(q),

3D4(q) and the Ree groups 2F4(2
2m+1),2G2(3

2m+1).
We refer to [5] for details. To deal with these 15 remaining families we apply
the work of Jones [12]. From [12, Lemma 2], each group Xl(q) contains an
alternating group Al′ as a section where l′ →∞ as l→∞. By Lemma 3.14
the rank l is therefore be bounded for groups in Mf . But [12, Lemma 4]
demonstrates that for each Xl the group Xl(q) has PSL(2, q′) as a section,
where q′ →∞ as q →∞. It follows from Lemma 3.15 that Xl(q) is in Mf

for only finitely many q. This finishes the proof. 2

Proposition 3.18 Let G be a finite f -Milnor group. There exists a positive
integer e5(f) such that Ge5(f) is soluble.
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Proof Suppose f = cnX
n+· · ·+cmXm. Let b(f) be the least common mul-

tiple of the exponents of the automorphism groups of all finite non-abelian
simple groups inMf and let e5(f) = b(f) ·m!. We want to show that Ge5(f)

is soluble. We argue by contradiction and assume that M is a non-abelian
G-invariant section of Ge5(f) that is a chief factor of G. Then M is a direct
product of isomorphic simple groups S1, . . . , Sk. Fix x ∈ G. The action of x
on M permutes the direct factors Si. Consider some orbit Si, S

x
i , . . . , S

xN−1

i

with Sx
N

i = Si. We show that xe5(f) centralises Si; it then follows that
Ge5(f) centralizes M and we get the contradiction that M is abelian.

Let H = 〈Si, x〉. Let P be some Sylow subgroup of Si. By Sylow’s Theorem

P x
N

= P s
−1

for some s ∈ Si. Then

(xs)N = xNsx
N−1 · · · sxs = xNs(sx

N−1 · · · sx)

normalises P . Let a ∈ P and let Q = 〈a〉〈(xs)N 〉. We have

〈a〉〈xs〉 = Q×Qxs × · · · ×Q(xs)N−1

= Q×Qx × · · · ×QxN−1

Then
A(a, xs) = Q/Q′ ×Qx/(Qx)′ × · · · ×QxN−1

/(QX
k−1

)′.

Now as gcd(cn, cn+1, . . . , cm) = 1, we must have that N ≤ m. Otherwise
af(x) = acnx

n
acn+1xn+1 · · · acmxm 6= 0 in A(a, xs). So N divides m! and xm!

normalises Si. Then xe5(f) = xm!b(f) centralises Si as we wanted to show.
(Notice that Q/Q′ 6= 1 as Q is nilpotent.) 2

Taking e(f) = e4(f)e5(f) and applying Propositions 3.13 and 3.18 we get
our first main result on f -Milnor groups.

Theorem 3.19 There exist positive integers e(f) and c(f) such that

γc(f)+1(G
e(f)) = 1

for all finite f -Milnor groups.

3.4 Finitely generated virtually soluble f-Milnor groups

In this section we extend the result from the previous section to all finitely
generated virtually soluble f -Milnor groups, using an elegant idea from [3].
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We let G be a fixed group with these properties. Suppose that Gm is soluble
of derived length l. It suffices to show that G is residually finite. By a well
known result of P. Hall, every finitely generated abelian-by-nilpotent group
is residually finite. Let e = e(f) be as in Theorem 3.19 and consider the
chain

N0 = Gm, , Ni+1 = N e
i .

Then each Ni is finitely generated (by the solution to the restricted Burnside
problem). As

Ni/[γc(f)+1(Ni), γc(f)+1(Ni)]

is abelian-by-nilpotent, it is residually finite by Hall’s result and so from
Theorem 3.19 the image Ni+1 of Ni+1 in this quotient is nilpotent of class
at most c(f). So we get

γc(f)+1(Ni+1) ≤ [γc(f)+1(Ni), γc(f)+1(Ni)].

It follows by induction that γc(f)+1(Nl) is in the lth term of the derived
series of Gm and thus trivial. As G/Nl is of finite exponent it is finite. So G
is nilpotent-by- finite and thus residually finite. This together with Theorem
3.19 gives the result we wanted.

Theorem 3.20 Let f be a polynomial in Z[x] whose coefficients have no
common prime factor. Then there exists a constant e(f) such that for any
finitely generated virtually soluble group G in Mf the subgroup Ge(f) is
nilpotent of f -bounded class.

Theorem 3.19 has also the following generalization.

Theorem 3.21 Let f be any polynomial in Z[x] and let π be the set of all
primes that divide f . There exists a constant e(f) such that for any finite
π’-group G in Mf the subgroup Ge(f) is nilpotent of f -bounded class.

Proof Suppose that f = mq where m is the greatest common divisor of the
coefficients of f . As all sections of G are of m-prime order we see that G is
q-Milnor. The result now follows from Theorem 3.19. 2

3.5 Criteria for virtual nilpotence

Lemma 3.22 The variety ApA is generated by Cp wrC.
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Proof Suppose that the law w = 1 is satisfied by Cp wr C. We want to show
that it is then satisfied by all groups in ApA. Let V be the variety defined
by the law w = 1. We need to show that V contains ApA. But if this were
not the case then [9] would yield that every soluble group in V is nilpotent-
by-(finite exponent). But this is absurd as Cp wr C is a metabelian group
in V that is not nilpotent-by-(finite exponent). 2

Before stating the main result of this section we need some more nota-
tion. Let M be a variety of metabelian groups. Denote by CM the class of
all groups G all of whose metabelian sections belong to M. It is clear that
CM is closed under taking subgroups and quotients. The connection with
f -Milnor groups is as follows. Every metabelian f -Milnor group satisfies the
law [y, x]f(x) = 1. LetM the variety of all metabelian groups satisfying this
law. Then Mf ≤ CM ≤M(x−1)f .

Theorem 3.23 Let M be a variety of metabelian groups and suppose that
C is a class that is closed under taking subgroups and quotients such that
M≤ C ≤ CM. The following are equivalent:

(1) the groups in C are f -Milnor for some polynomial f ∈ Z[x] whose coeff-
icients have greatest common divisor 1;

(2) there exist constants c and e, depending only on M, such that

γc+1(G
e) = 1

for all finitely generated virtually soluble groups G in C;
(3) every finitely generated residually finite group in C is nilpotent-by-finite;
(4) Cp wr C 6∈ M for each prime p;
(5) M does not contain ApA for any prime p.

Proof (1)⇒(2): As C is f -Milnor if and only if the subclass of the metabelian
groups is f -Milnor, this follows immediately from Theorem 3.20.

(2)⇒(3): It follows from the solution to the restricted Burnside problem
that the locally finite groups of exponent e form a variety B∗e (as the class is
residually closed and closed under taking quotients). Now take any finitely
generated residually finite group G in C. It follows from (2) that G is resid-
ually (nilpotent of class at most c)-by-B∗e and thus G itself is (nilpotent of
class at most c)-by-B∗e . As G is finitely generated is therefore nilpotent-by-
finite.
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(3)⇒(4): This is clear as Cp wr C is residually finite but not nilpotent-
by-finite.

(4)⇔(5): This is lemma 3.22.

(5)⇒(1): As M is a soluble variety, the main result of [9] tells us that
M is nilpotent-by-(finite exponent). Thus M satisfies a law of the form
[y,a x

b] = 1 for some integers a, b > 0 and the groups in C are (xb − 1)a-
Milnor groups. 2

In particular we can ofcourse take C = CM. Another interesting special
case is if C = V is a variety whose subvariety of metabelian groups is M.
Let LvV be the subclass of all groups in V that are locally nilpotent-by-finite.
For varieties, the result can be rewritten as follows; cf. [7, Theorem 2].

Theorem 3.24 Let V be a variety. The following are equivalent:

(1) every finitely generated residually finite group in V is nilpotent-by-finite;
(2) Cp wr C 6∈ V for any prime p;
(3) V does not contain ApA for any prime p
(4) there exist constants c and e that depend only on the metabelian groups

of V such that
γc+1(G

e) = 1

for all finitely generated virtually soluble groups in V.
(5) LvV is a subvariety.

Proof Statements (1) to (4) are just restatements of (2)-(5) from Theorem
3.23. It remains to show that (1) and (5) are equivalent.

(1)⇒(5): To show that LvV is a variety it suffices to show that this class
is closed under taking quotients and that it is residually closed. It is clear
that the first condition holds. Suppose that G is residually in LvV. As V
is a variety we have G ∈ V. Furthermore G is residually a group that is lo-
cally nilpotent-by-finite. Let H be a finitely generated subgroup of G. Since
H ∈ V and every finitely generated nilpotent-by-finite group is residually
finite, H is residually finite, and hence nilpotent-by-finite by (1). Thus G is
locally nilpotent-by-finite and so in LvV.
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(5)⇒(1): Suppose that (5) holds. Then every r-generator nilpotent-by-finite
group in V is the image of the relatively free one. Thus all finite r-generator
groups satisfy the same law of the form

[xe1, . . . , x
e
c+1] = 1.

Then the same is true for any residually finite r-generator group. By the
solution to the restricted Burnside problem, such a group is an extension of
a group that is nilpotent of class c by a finite group. 2

Let M be a metabelian variety and let C be a class that is closed under
taking subgroups and quotients such that M ≤ C ≤ CM. We will say that
such a class is a weak Milnor class if every finitely generated residually finite
group in C is nilpotent-by-finite. We also say that an identity w = 1 is a
weak Milnor identity if the corresponding variety is a weak Milnor variety.
Theorem 3.23 gives a simple criterion for deciding whether C is a weak Mil-
nor class: we only need to check that no group Cp wr C satisfies the laws of
M. This is quite straightforward if we know the laws of M. For example,
as no group Cp wr C is periodic or Engel it follows that for any n > 0 the
Burnside variety of groups of exponent n and the variety of n-Engel groups
are weak Milnor varieties. Thus Theorem 3.24 includes Wilson’s theorem
on Engel groups and the solution to the restricted Burnside problem. (Of
course the latter was used to prove Theorem 3.24).

4 Nilpotence

For virtual nilpotence we needed to exclude the wreath products Cp wr C.
Here we need to exclude some more groups.

Example Consider C wrCp, the standard wreath product of the cyclic
groups C and Cp. This group is an f(x − 1)-Milnor group for all poly-
nomials f divisible by xp − 1. Notice that Cp wr C is residually a finite
p-group but that it is not nilpotent.

We are interested in criteria for a finitely generated residually nilpotent
f -Milnor group to be nilpotent. For this reason and in view of the example
above we will assume in the rest of the section that the polynomial f is
neither divisible by p nor xp − 1 for any prime p. Our aim is to show that
for each r there exists a a positive integer c(r, f) such that any r-generator
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nilpotent f -Milnor group has class at most c(r, f). This problem will be
dealt with in section 4.1. In that section, we will also prove an analogous re-
sult for global nilpotence of locally nilpotent groups that are torsion free. In
section 4.2 we will then use these results to obtain our main characterisation
results.

4.1 Milnor groups and nilpotence

Let f be a polynomial that is not divisible by p and xp − 1 for all primes
p. We want to show first that there is a constant c(r, f) such that any r-
generated f -Milnor group that is residually nilpotent must be nilpotent of
class at most c. In the first lemma our setting is slightly more general.

Lemma 4.1 Let g and h be polynomials with the property that g is not
divisible by p and h is not divisible by xp − 1 for any prime p. There exist
positive integers m and l such that every metabelian group that is both g-
Milnor and h-Milnor satisfies the law [y,m x]l = 1.

Proof Let M be the variety of all metabelian groups satisfying the law
[y, x]g(x) = 1 and [y, x]h(x) = 1. It is clear that M contains all metabelian
groups that are both g-Milnor and h-Milnor. We want to prove that there
exists integers m and l so that all groups in M satisfy the law [y,m x]l = 1.
Let F be the free group inM on two generators x, y and let T be the torsion
subgroup of F ′. It suffices to show that (x− 1)m acts trivially on F ′/T for
some positive integer m. We argue by contradiction and assume that this
is not the case. We obtain a contradiction by showing that the polynomial
(X − 1)h is divisible by (X − 1)(Xp− 1) for some prime p or in other words
that is divisible by (X − 1)2 and Xp − 1.

Consider the vector space V = C ⊗C
F ′

T over the complex numbers. As
F is metabelian and g-Milnor, it follows from Theorem 3.20 that it is nilpo-
tent by finite and thus satisfies max. Hence F ′/T is finitely generated and
V is a finite dimensional vector space. The conjugation by x on F ′/T ex-
tends to a linear automorphism Φ on V . Let α be the minimal polynomial
of Φ. If he only eigenvalue is 1 then the minimal polynomial is a power of
(X − 1) which contradicts our assumptions. So we can assume that there
is an eigenvalue λ 6= 1 for α. Then λ is a root of (X − 1)h(X). As we can
replace x in the law [y, x]h(x) by any power of x, we have that λr is a root
of (X − 1)h(X) for all r ≥ 0. But as there are only finitely many roots it
follows that λ must be an n-th root of unity for some n ≥ 2 and Xn − 1
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divides (X − 1)h(X).

It remains to show that (X − 1)2 divides (X − 1)h(X). But if that was
not the case then (X − 1)h(X) is of the form

l1(X − 1) + · · ·+ ln(X − 1)n.

Replacing x, y by [y, x] and x respectively in the law [y, x]h(x) = 1 we get
the law [y, x, x]l1 = 1 which implies thatM satisfies the 2-Engel law. Again
this gives a contradiction to our assumptions. 2

Theorem 4.2 Let g and h be polynomials as above. A nilpotent r-generator
group that is both g-Milnor and h-Milnor is nilpotent of (r, g, h)-bounded
class.

Proof Let l and m be the integers from Lemma 4.1 and suppose that
l = pk11 · · · pkss for some distinct primes p1, . . . , ps. By Lemma 4.1 we can
w.l.o.g. assume that

h = l(X − 1)m.

Suppose
g = lm′(X − 1)m

′
+ · · ·+ ln(X − 1)n

where lm′ , . . . , ln are coprime integers. By multiplying one of g and h by a
power of (X−1) if necessary we can assume thatm = m′. Let c be the largest
number of pk11 , . . . p

ks
s . Now any finitely generated nilpotent group is residu-

ally finite so it suffices to deal with finite p-groups. We will prove that any
finite metabelian p-group that is both g-Milnor and h-Milnor is a (cn+ 1)-
Engel group. Then by Lemma 3.8 we have that any r-generator nilpotent
group that is both g-Milnor and h-Milnor is nilpotent of (r, cn+1)-bounded
class and therefore (r, g, h)-bounded class. We therefore assume that G is a
finite metabelian p-group that is both g-Milnor and h-Milnor. We consider
two cases.

First suppose that p does not divide l or lm. As G is both g-Milnor and
h-Milnor it then follows that G satisfies [y,m x] = 1 and thus [y,cn+1 x] = 1.

Then suppose that p divides both l and lm. Suppose further that l = pkl′

where p does not divide l′. Let r be the smallest integer in {m,m+1, . . . , n}
such that p does not divide lr. Working in the polynomial ring Z[X] we
have

lm(X − 1)m + · · ·+ ln(X − 1)n = p(X − 1)mP (X) + (X − 1)r(lr +Q(X))
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for some polynomials P (X) and Q(X) where Q(X) is divisible by (X − 1).
Now raising the right hand side to the power pk we obtain

pk(X − 1)mP ′(X) + (X − 1)p
kr(lp

k

r +Q′(X))

for some polynomials P ′(X) and Q′(X) where X−1 divides Q′(X). Now as

G is g-Milnor and pk(X − 1)m-Milnor it follows that G is (X − 1)rp
k
(lp

k

r +
Q′(X))-Milnor. But p does not divide lr and thus it follows that G is

(X − 1)rp
k
-Milnor and thus it satisfies [y,cn+1 x] = 1. 2

By Theorem C, every locally nilpotent n-Engel group that is torison-free
is nilpotent of n-bounded class. We next consider this question for f -Milnor
groups.

Theorem 4.3 Let f 6= 0 be a polynomial in Z[x]. There exists a positive
integer c(f) such that any f -Milnor group that is residually a finite p-group
for all primes p is nilpotent of class at most c(f).

Proof This follows from Proposition 3.10. 2

Remark. Let f be a nonzero polynomial. It follows from the theorem
above that any locally nilpotent torsion-free f -Milnor group is nilpotent of
f -bounded class.

4.2 Criteria for nilpotence

Proposition 4.4 The variety AAp is the variety generated by the group
C wrCp.

Proof Let w = 1 be some law satisfied by C wrCp and let V be the variety
defined by this law. If V does not contain AAp, every soluble group in V is
finite exponent by nilpotent [9]. But C wrCp belongs to V and is not finite
exponent by nilpotent. This contradiction shows that w = 1 must be a law
in AAp. 2

We are now ready for the main result of this section.

Theorem 4.5 Let M be a metabelian variety and suppose that C is a class
that is closed under taking subgroups and quotients such that M≤ C ≤ CM.
The following are equivalent.
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(1) The groups in C are g-Milnor and h-Milnor where the polynomials g, h
are as in Lemma 4.1.

(2) For each r there exists a constant c(r,M) depending only on the metabelian
groups in C so that all r-generator nilpotent groups in C are nilpotent of
class at most c(r,M).

(3) Every finitely generated group in C that is residually nilpotent is nilpo-
tent
(4) The groups Cp wr C and C wrCp do not belong to M for any prime p.
(5) The variety M contains neither AAp nor ApA as a subvariety for any

prime p.

Proof (1)⇒(2): As C is f -Milnor if and only ifM is f -Milnor, this follows
immediately from Theorem 4.2.

(2)⇒(3): Let G be a residually nilpotent group in C generated by r ele-
ments. It follows from (2) that G is nilpotent of class at most c(r,M).

(3)⇒(4): This is clear as both these wreath products are residually nilpotent
but neither is nilpotent.

(4)⇔(5): This follows immediately from Proposition 4.4 and Lemma 3.22.

(5)⇒(1): As M is a soluble variety, we can apply the main result of [9]
to deduce that M is both nilpotent by finite exponent and finite exponent
by nilpotent. Thus we have that the groups in M satisfy laws of the form
[y,a x

b] = 1 and [y,c x]d = 1. It follows that the groups in C are both (xb−1)a-
Milnor and d(x− 1)c-Milnor. 2

In particular we can take C = CM. Another interesting case is when C = V
is a variety whose subvariety of metabelian groups is M. Let LV be the
subclass of all groups in V that are locally nilpotent. For varieties, the re-
sult can be rewritten as follows. This result is stronger than the analogous
result from [8] in that the bound for the nilpotency class depends only on
the metabelian groups of V.

Theorem 4.6 Let V be a variety. The following are equivalent.

(1) Every finitely generated group in V that is residually nilpotent is
nilpotent.

(2) The groups Cp wr C and C wrCp do not belong to V for any prime p.
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(3) The variety V contains neither the variety ApA nor the variety AAp as
subvarietes for any prime p.

(4) For each positive integer r there exists a coefficient c depending only on
the metabelian groups of V such that every r-generator nilpotent group
in V is nilpotent of class at most c.

(5) The subclass LV is a subvariety.

Proof The statements (1) to (4) are just rewritings of the statements (2)
to (5) from Theorem 4.5. It remains to show that (1) and (5) are equivalent.

(1)⇒(5): To show that LV is a variety it suffices to show that this class
is closed under taking quotients and that it is residually closed. It is clear
that the first condition holds. Suppose then that G is residually in LV. Then
G is V and G is residually a locally nilpotent group. Let H be a finitely
generated subgroup of G then H is also in V and is residually nilpotent. By
(1) we have that H is nilpotent. This shows that G is locally nilpotent and
thus in LV.

(5)⇒(1): Suppose that (5) holds. Then all r-generator nilpotent groups of
V are the images of the freeest one. So there is a bound for the class. This
implies that all r-generator residually nilpotent groups in V are nilpotent. 2

Let M be a metabelian variety and let C be a class that is closed under
taking subgroups and quotients such that M ≤ C ≤ CM. We will say that
such a class is a strong Milnor class if every finitely generated group in C
that is residually nilpotent, is nilpotent. We also say that an identity w = 1
is a strong Milnor identity if the corresponding identity is a strong Milnor
variety. Therorem 4.5 gives a nice critera for deciding whether C is a strong
Milnor class. We only need to check that none of the groups Cp wr C or
C wrCp satisfies all the laws ofM. As the structure of these groups is simple
this is quite straightforward if we know the laws ofM. Let us look at some
examples.

Example 1. As none of these wreath products are periodic or Engel it
follows that the Burnside variety of groups of exponent n and the variety of
n-Engel groups are strong Milnor varieties. One can in both cases replace
this by the class CM where M is the subvariety of the metabelian groups.

Example 2. In [7] Endimioni proves that in a variety in which every poly-
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cyclic group is nilpotent each finitely generated residually finite group is
nilpotent. Our next result can be seen as a generalization of this.

Theorem 4.7 Let M be a metabelian variety of which all finite groups are
nilpotent. Then every finitely generated residually finite group in CM is
nilpotent.

Proof Notice first that all finite groups in CM are nilpotent. This can be
proved as follows. We argue by contradiction and let G be a counterexample
in CM of minimal order. Thus every proper subgroup of G is nilpotent and
we know from a well known result of Schmidt that G is an extension of a
p-group P by a cyclic q-group Q where p and q are some different primes.
By the minimality of G we also know that its centre must be trivial. It
follows that Z(P ) is not centralised by Q and thus G = 〈Z(P ), Q〉, again
by minimality of G. It follows that G is metabelian and thus in M. But
then it follows from our assumption that G is nilpotent. This contradiction
shows that all finite groups in CM are nilpotent and thus all residually finite
groups in CM are residually nilpotent.

We can now easily prove the theorem using Theorem 4.5. We argue by
contradiction. Otherwise,by Theorem 4.5, M contains some wreath prod-
uct C wr Cp or Cp wr C. But in both cases it then follows thatM contains
some finite quotient Cp wr Cq for some primes p 6= q. But this group must
then be nilpotent which is absurd. 2

Remark. We could have replaced CM here by a variety V in which all
the finite groups are nilpotent. The result we obtain in this case is also
implicit in [7].

We end this section by considering the global nilpotence question for locally
nilpotent torsion-free groups. In Theorem 4.3 we dealt with this question
for f -Milnor groups. For the main characterisation we need the following
example.

Example Consider C wr C, the standard wreath product of the infinite
cyclic group with itself. This is a torsion-free group and residually finite
p-group for any prime p. But it is not nilpotent.

Lemma 4.8 The variety AA of all metabelian groups is generated by C wrC.
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Proof Otherwise there would be some law w = 1 that is satisfied by C wr C
but not by all groups in AA. Modulo the laws of AA it is not difficult to see
that w = 1 would imply a law of the form [x, y]P (x,y) = 1 where P is a non-
trivial polynomial in two variables. Replacing x and y by some xi and xj [y, x]
it would follow that C wr C satisfies a law of the form [x, [y, x]]Q(x) = 1 for
some non-trivial polynomial Q in one variable. But C wr C satisfies no such
law. 2

Theorem 4.9 Let M be a variety of metabelian groups and suppose that
C is a class that is closed under taking subgroups and quotients such that
M≤ C ≤ CM. The following are equivalent.

(1) The groups in C are f -Milnor for some non-zero polynomial f ∈ Z[x].
(2) There exists a constant c = c(M) such that every group in C that is

residually a finite p-group for all primes p is nilpotent of class at most
c.
(3) The group C wr C doesn’t belong to M.
(4) M 6= AA.

Proof (1)⇒(2): As C is f -Milnor if and only if the subclass of metabelian
groups is f -Milnor, this follows from Theorem 4.3.

(2)⇒(3): This is clear as C wr C is residually finite p-group for all primes
p but it is not nilpotent.

(3)⇔(4): This is Lemma 4.8.

(4)⇒(1): By a result of Kargapolov and C̆urkin [13] we know thatM 6= AA
implies thatM is torsion-by-nilpotent-by-torsion and thus satisfies a law of
the form [y,a x

b]c = 1 and (1) follows. 2

In particular we can take C = CM or we can take C = V a variety whose
subvariety of metabelian groups is M. In the latter case the result can be
written as follows.

Theorem 4.10 Let V be a variety of groups. The following are equivalent.

(1) There exists a constant c depending only on the metabelian groups of
V such that every group G in V that is residually a finite p-group for all
primes p is nilpotent of class at most c.
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(2) The variety V does not contain the variety of all metabelian groups as a
subvariety.

(3) The variety V does not contain the group C wr C.

A weaker version can be deduced from a result of G. Endimioni [6] (see his
Theorem 1). As a consequence of Theorem 4.10 it is quite straightforward
to check if the variety defined by a given law satisfies (1). We just have to
check if C wr C satisfies this law.
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