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Abstract

Let G be a locally nilpotent 4-Engel group. We show that the

normal closure of any element from G is nilpotent of class at most 4.

When G has no element of order 2 or 5, the normal closure has class

at most 3. These bounds are sharp.
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1 Introduction

We define [y,n x] inductively by [y,1 x] = [y, x] = y−1x−1yx and [y,n+1 x] =
[[y,n x], x]. A group G is an n-Engel group if it satisfies the law [y,n x] = 1. In
this paper we will be looking at 4-Engel groups. Whereas 2-Engel groups and
3-Engel groups are quite well understood (see for example [2,4,6,8,11,13]), rel-
atively little is known about the structure of 4-Engel groups. In particular
it is still an open question whether all 4-Engel groups are locally nilpotent.
In [18] this problem was reduced to the case where the group is either of
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2 4-Engel groups

prime exponent or torsion-free. In [20] it was shown that 4-Engel groups of
exponent 5 are locally finite. It follows that all 4-Engel {2, 3, 5}-groups are
locally nilpotent. To this one could add that 4-Engel groups satisfy a semi-
group identity [19]. Whether all n-Engel groups satisfy a semigroup identity
is an open question.

We want to investigate further the structure of 4-Engel groups that are lo-
cally nilpotent. We will see that they satisfy a strong generalised nilpotence
property. Before we describe our results, we list some known properties. If
G is a locally nilpotent 4-Engel group without elements of order 2, 3 or 5 it
is nilpotent of class at most 7 [18] (see also [3,17]). If only the primes 2 and
5 are excluded the group is not in general nilpotent but it is still soluble [1].
On the other hand there are examples of 4-Engel 2-groups and 5-groups that
are not soluble [2,16].

The starting point for our investigation is a result of L. C. Kappe and W. P.
Kappe [11]. They proved that a group is 3-Engel if and only if the normal
closure of every element is nilpotent of class at most 2. It is easily seen that
the analogous result holds for 2-Engel group. Thus a group is 2-Engel if and
only if the normal closure of every element is abelian. N. D. Gupta and F.
Levin [5] have on the other hand constructed an example of a 4-Engel 5-group
with an element x such that the normal closure of x has class 4 and thus
greater than 3. Thus the analogous result does not hold for 4-Engel groups.
We will however see that something close to this is true.

We recall that a group is a Fitting group if it is the product of its normal
nilpotent subgroups. Equivalently a group is a Fitting group if the normal
closure of any element is nilpotent. If there is a bound on the nilpotency
classes of the normal closures and n is the maximal value then we say that
the group has Fitting degree n. Thus 2-Engel groups and 3-Engel groups
have Fitting degrees 1 and 2 respectively. N. D. Gupta and F. Levin [5] have
constructed examples that show that an n-Engel group does not have to be
Fitting if n ≥ 5 and they asked whether 4-Engel groups are Fitting groups.
In this paper we will show that every locally nilpotent 4-Engel group is a
Fitting group of Fitting degree at most 4. More precisely

Theorem. Let G be a locally nilpotent 4-Engel group. Then G is a Fit-
ting group of degree at most 4. If G has no element of order 2 or 5 then G
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has Fitting degree at most 3.

As there are examples of a 4-Engel 2-group and 5-group with Fitting de-
gree 4 [5, 15], the bounds in the theorem are sharp.

We mention one corollary to this. First we introduce another generalised
nilpotence property that is weaker then the Fitting property. A group is
said to be a Baer group if every cyclic subgroup is subnormal. If there is a
bound on the subnormal defect and n is the maximal value of the defects,
then we say that the group is an n-Baer group. We also say that a group
is non-torsion if it has an element of infinite order. According to a result
of H. Heineken [9], a non-torsion group is a 2-Baer group if and only if it is
2-Engel. In [12] it is shown that the analogous result holds for the integer 3.
Thus a non-torsion group is 3-Engel if and only if it is a 3-Baer group. In
that paper it is also shown that in general every non-torsion n-Baer group is
an n-Engel group. It is easy to see that as a corollary of the theorem above,
we have that the converse holds for n = 4 if the group is locally nilpotent.

Corollary . A locally nilpotent non-torsion group G is 4-Engel if and only
if it is 4-Baer.

Proof Suppose that G is a locally nilpotent 4-Engel group. Let x ∈ G.
We want to show that 〈x〉 is subnormal of defect at most 4. This is true
if and only if [G, 〈x〉, 〈x〉, 〈x〉, 〈x〉] is contained in 〈x〉. But as the normal
closure of x has class at most 4, we have

[G, 〈x〉, 〈x〉, 〈x〉, 〈x〉] = 〈[g, x, x, x, x] : g ∈ G〉

= 1.

Hence the result. 2

2 A general reduction to Lie algebras

Let F be a free group of countably infinite rank, freely generated by {f0, f1, f2, . . .},
and let L likewise be a free Lie algebra of countably infinite rank, freely gen-
erated by {x0, x1, x2, . . .}. Consider the set N

∞
0 of all sequences of natural
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numbers with almost all entries zero. We give this set a partial ordering as
follows: (di) ≤ (ei) if di ≤ ei for all i. We will sometimes use the short hand
notation (r, 1s) for the element (r, d1, . . . , ds, 0, . . .) where d1 = . . . = ds = 1.
Take some fixed element D = (d0, d1, . . . , dr, 0, . . .) of N

∞
0 . For each left

normed commutator
w = [fi1 , fi2 , . . . , fin ]

of multiweight D we associate the left normed Lie product

l(w) = xi1xi2 . . . xin.

Let V be some variety of groups and consider any multiweight D. We denote
by RD the normal closure in F of the set of all commutators of multiweight
higher than D. Then let HD

V be the subgroup of F that is generated by RD

and all w ∈ F that are laws in V of the form

w = w1 · · ·wmu

with w1, . . . , wm commutators of multiweight D and u ∈ RD. To this we
naturally associate the submodule MD

V of L consisting of all

l(w) = l(w1) + · · · + l(wm)

where for some u ∈ RD, w = w1 · · ·wmu ∈ HD
V with w1, . . . , wm commuta-

tors of multiweight D. An element l that lies in MD
V for some multiweight

D ∈ N
∞
0 will be called a strong Lie relator for V. Notice that any strong Lie

relator is a multihomogenous element of L.

Suppose that we want to show that any locally nilpotent group G in V is
Fitting of Fitting degree d. As any commutator involves only a finite num-
ber of elements from G, we can without loss of generality assume that G is
finitely generated and thus nilpotent. But then it is well known that G is
residually a finite p-group. We can thus assume that G is a finite p-group.
As G is nilpotent it suffices to show that for any non-negative integer e and
arbitrary elements g0, g1, . . . , ge, any commutator of multiweight (d + 1, 1e)
in g0, g1, . . . , ge is in the normal closure of commutators in g0, g1, . . . , ge that
are of higher multiweight. Let D = (d + 1, 1e). From what we have said
above, it follows that in order to show that any locally nilpotent group in V
has Fitting degree d, it suffices to show that any commutator of weight D
in F lies in HD

V . This is equivalent to saying that any Lie product in L of



Traustason 5

multiweight D is in MD
V .

Now take the ideal IV in L generated by all ω(x0, l1, . . . , le), where l1, . . . , le ∈
L, w(x0, x1, . . . , xe) ∈ MD

V and where D runs over all multiweights of the form
(r, 1s) with r, s non-negative integers. (Notice that x0 is kept fixed in ω). We
make two simple observations. Firstly if l is a strong Lie relator then lxi

is also a strong Lie relator for i = 0, 1, . . .. Secondly, if ω(x0, x1, . . . , xn) is
in MD

V for some D = (r, 1n) and if l1, . . . , ln ∈ L then ω(x0, l1, . . . , ln) is a
linear combination of elements of the form ω(x0, c1, . . . , cn) where c1, . . . , cn

are Lie products of the generators x0, x1, . . ., and furthermore the elements
ω(x0, c1, . . . , cn) are all strong Lie relators. From these two observations,
it follows easily that the elements of IV are linear combinations of elements
ω(x0, xi1 , . . . , xie) where i1, . . . , ie ≥ 1 and ω(x0, x1, . . . , xe) ∈ M

(r,1e)
V for some

non-negative integers r, e. We see from this that IV is multigraded and as L
is also multigrated it follows that a Lie product in L of weight D0 is in IV if
and only if it lies in MD

V . We thus obtain:

Proposition 2.1 If the ideal in L/IV generated by x0 + IV is nilpotent of
class at most d then any locally nilpotent group in V has Fitting degree d.

Our problem has thus been reduced to a problem on Lie algebras. We want
to reduce the problem further. It will be convenient to deal separately with
finite p-groups in V for each prime p. So for the rest of this section we work
with a fixed prime p and finite p-groups of V.

Consider the subvariety V(ph) of all groups in V that are of exponent ph.

As f ph

1 ∈ H
(1)

V(ph)
we have that phx1 ∈ M

(1)

V(ph)
and thus phL ≤ IV(ph). It thus

follows that L/IV(ph) is a quotient of L/(phL + IV). To prove that any finite
group in V of exponent ph has Fitting degree d it suffices then to show that
the ideal in L/(phL + IV) generated by x0 + phL + IV is nilpotent of class at
most d. We will next show that ph can be replaced by p.

Lemma 2.2 Suppose the ideal generated by x0 + pL + IV of L/(pL + IV) is
nilpotent of class d then the same is true of the ideal generated by x0+phL+IV
of L/(phL + IV).

Proof Let Q = L/(phL + IV) and let yi = xi + phL + IV . Let u = yi1 · · · yin

be any left normed Lie product in Q with d + 1 occurrences of y0. By our
assumption, we have that

u = pu1



6 4-Engel groups

for some u1 ∈ Q. As Q is multigraded it follows that we can assume that
u1 has the same multidegree as u in y0, y1, . . .. Similarly we get elements
u2, . . . , uh of same multidegree as u such that ui = pui+1 for i = 1, . . . , h− 1.
Thus u = pu1 = p2u2 = . . . = phuh = 0 in Q. 2

The final reduction uses an argument of G. Higman [10] (see also [7,14]).
It allows us to add the assumption that the elements x1, x2, . . . commute.
Let Iab be the ideal of L generated by xixj , i, j ≥ 1. Let Lp

V = L/I
where I = Iab + pL + IV . For the next lemma we will need the following
property of IV , which follows directly from the definition of this ideal. If
w(x0, x1, x2, . . . , xn) ∈ IV then we have that w(x0, l1, . . . , ln) ∈ IV for all
l1, . . . , ln ∈ L.

Lemma 2.3 If in Lp
V we have that the ideal generated by x0 + I is nilpotent

of class at most d then the same holds for the ideal generated by x0 +pL+ IV
in L/(pL + IV).

Proof Let M be the subalgebra of L generated by {x1, x2, . . .}. Let e1, . . . , et

be any elements of M . We prove by induction on t that all products of weight
(d + 1, 1t) in x0, e1, . . . , et are in pL + IV . We first deal with the case r = 1.

The product x1x
d+1
0 is in I by the assumption. As M

(d+1,1)
V ∩ Iab = {0}, we

have that M
(d+1,1)
V ∩ I ⊆ pL + IV . As I/(pL + IV) is multigraded it then

follows that x1x
d+1
0 ∈ pL + IV . But then lxd+1

0 ∈ pL + IV for all l ∈ L by the
remark made just before the statement of the lemma.

Now suppose we know that our hypothesis is true for some t. Let e1, . . . , et+1

be any elements of M and take any product u of weight (d + 1, 1t+1) in
x0, e1, . . . , et+1. By our assumption we know that u is in I and as I is multi-
graded we furthermore have that u is modulo pL + IV in the linear span of
products in I of the form

eieju1 · · ·ut−1

where the sum of the degrees of ei, ej, u1, . . . , ut−1 is (d+1, 1t+1) in x0, e1, . . . , et+1.
But such a product is a product of weight (d + 1, 1t) in x0, f1, . . . , ft where
f1 = eiej , f2, . . . , ft are elements of M . By the induction hypothesis, u must
be in pL + IV . 2

It is time to summarise. Let x = x0 + I and ai = xi + I for i ≥ 1. The Lie
algebra Lp

V is a Lie algebra over the field GF (p) in which the elements ai,
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i ≥ 1, commute. For any given word w of weight D = (r, 1s) in MD
V we have

that Lp
V satisfies the identity

w(x, l1, · · · , ls) = 0

for all l1, . . . , ls ∈ Lp
V . We have also proved the following.

Theorem 2.4 If the ideal generated by x in Lp
V is nilpotent of class at most

d then every finite p-group in V has Fitting degree at most d.

For a given variety V we are thus faced with two problems. The first is to
calculate (partly or fully) the multigraded Lie algebra Lp

V for each prime and
the second is to show that the ideal generated by x in Lp

V is nilpotent and to
determine its class. For the first problem we can apply the general approach
of G. Wall [21] to generate the multilinear identities of IV . This we shall do
in the next section for the variety of 4-Engel groups.

3 Multilinear identities for 4-Engel groups

Let E be the variety of 4-Engel groups. In this section we investigate the
ideal IE in L. In particular we will calculate explicitly some of these identi-
ties that we will need later for the main result of this paper.

We next give some notation. Let r be an arbitrary positive integer and
let F1, F2, . . . , Fl be a list of all the non-empty subsets of {f0, . . . , fr} ordered
in such a way that ‖Fi| ≤ ‖Fj‖ whenever i ≤ j, where ‖Fi‖ is the size of
the set Fi. In particular we have that Fl = {f0, . . . , fr}. The following two
elementary lemmas will be useful.

Lemma 3.1 Suppose that the group G satisfies a law

w1 · · ·wl = u1 · · ·ul,

where wi and ui are products of simple commutators involving all the elements
of Fi and only these. Then G satisfies the laws

wi = ui

for i = 1, . . . l.
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Proof Putting all the variables in Fl\F1 equal to 1 we obtain w1 = u1. Then
we have that G satisfies w2 · · ·wl = u2 · · ·ul. Continuing in this manner we
get the result. 2

Lemma 3.2 Let w1, . . . , wl be as in Lemma 3.1 with the extra hypothesis
that wl is a product of simple commutators of weight (d, 1r). Suppose that G
satisfies a law

w1 · · ·wl = u

where u is a product of simple commutators with at least d + 1 occurrences
of f0. Then G satisfies a law of the form

wl = ul

where ul is a product of simple commutators of weight at least (d + 1, 1r).

Proof Using Hall’s collection process we can write

u = u1 · · ·ul.

Where u1, . . . , ul are like in Lemma 3.1 with the further property that all the
simple commutators that occur as factors in ui have at least d+1 occurrences
of f0. By Lemma 3.1 we have that G satisfies the law wl = ul. But all the
factors of ul involve all the elements f1, . . . , fr so they are of multidegree at
least (d + 1, 1r). 2

We need some more notations. Let b, a1, . . . , an be arbitrary group elements.
For a subset S = {s1, . . . , sm} ⊆ {1, . . . , n} with s1 < s2 < · · · sm, we let

[b, aS ] = [b, as1
, . . . , asm

].

The following identity is well known and easily proved by induction.

[b, a1 · · ·am] =
∏

∅6=S⊆{1,...,r}

[b, aS ], (1)

where the factors on the right hand side come in a certain order. From the
next lemma we will deduce the identities in IE that we will need.

Lemma 3.3 For each positive integer r we have that the variety E satisfies
a law of the form

[f1, f0, f2, . . . , fr, f0, f0, f0] = u,

where u is a product of commutators of multiweight at least (5, 1r).
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Proof Using the identity [f1, f0, f0, f0, f0] = 1 and calculating modulo R(5)

we have:

1 = [f1 · · ·fr, f0, f0, f0, f0]

= [[f2 · · · fr, f0][f1, f0][f1, f0, f2 · · ·fr], f0, f0, f0]

= [f2 · · ·fr, f0, f0, f0, f0][f1, f0, f0, f0, f0][f1, f0, f2 · · · fr, f0, f0, f0]

= [f1, f0, f2 · · · fr, f0, f0, f0].

Using identity (1) this gives

1 =
∏

∅6=S⊆{2,...,r}

[f1, f0, fS, f0, f0, f0]

= w1 · · ·wl−1[f1, f0, f2, . . . , fr, f0, f0, f0].

Where w1, . . . , wl−1 are like in Lemma 3.1. But then it follows from Lemma
3.2 that E satisfies a law of the form

[f1, f0, f2, . . . , fr, f0, f0, f0] = u,

with u a product of simple commutators of weight at least (5, 1r). 2

From this we immediately derive the following law in Lp
E

l1xl2 · · · lrxxx = 0, (2)

for all r ≥ 1 and l1, . . . , lr ∈ Lp
E .

We will next calculate identities in M
(0,1m)
E for m ≥ 1. We follow the general

approach of G. Wall [21] and adopt some of his notations. The general idea
is simple. For each pair of integers (r, s) with r ≥ 1 and s ≥ 4 we expand
the identity

1 = [f1 · · · fr, fr+1 · · · fr+s, fr+1 · · ·fr+s, fr+1 · · ·fr+s, fr+1 · · · fr+s],

and use the Hall’s collection process to rewrite this as a law of the form

w1 · · ·wl = 1.

Where w1, . . . , wl are like in Lemma 3.1. From this we deduce the law

wl = 1.
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But we can write wl = wu where w is a product of simple commutators of
weight (0, 1r+s) and u is a product of simple commutators of higher multi-
weight. From this we obtain the associated multilinear Lie identity

t(r,s)(x1, . . . , xr; xr+1, . . . , xr+s) = 0, (3)

where t(r,s) = l(w). Now for the details: first we deal with the case r = 1. In
this case we start with

1 = [f1, f2 · · · f1+s, f2 · · ·f1+s, f2 · · · f1+s, f2 · · · f1+s]

and using the identity (1) it is not difficult to see that we obtain

t(1,s)(x1; x2, . . . , x1+s) =
∑

(S(1),S(2),S(3),S(4))

x1xS(1)xS(2)xS(3)xS(4), (4)

where the sum is taken over all partitions of {2, . . . , 1 + s} into non-empty
pairwise disjoint sets. In particular we have that

t(1,4)(x1; x2, . . . , x5) =
∑

σ∈Sym{2,3,4,5}

x1xσ(2)xσ(3)xσ(4)xσ(5),

and the identity t(1,4) = 0 is the linearised 4-Engel identity.

Now we deal with the case when r ≥ 2. We can here make use of Lemma
3.3. Replacing f0 by fr+1 · · · fr+s in Lemma 3.3 leads to an identity of the
form ∑

(S(1),S(2),S(3),S(4))

x1xS(1)x2 · · ·xrxS(2)xS(3)xS(4) = y.

Where the sum is taken over all partitions of {r+1, . . . r+s} into non-empty
pairwise disjoint sets S(1), . . . , S(4) and y is the Lie word associated to the
linearisation of u from Lemma 3.3. In case s = 4 we must have y = 0 as u
is a product of simple commutators with a least 5 occurrences of f0. This
namely implies that after replacing f0 by fr+1fr+2fr+3fr+4 and expanding no
commutator will have multiweight (0, 1r+4). So for s = 4 we obtain

t(r,4) =
∑

σ∈Sym{r+1,r+2,r+3,r+4}

x1xσ(r+1)x2 · · ·xrxσ(r+2)xσ(r+3)xσ(r+4). (5)

In fact we will only use identities (2), (4) and (5).
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4 The algebra Lp
E for p 6= 2, 3

Let p be a fixed prime and L = Lp
E . In the following we will also be working

within A = Ap
E where Ap

E is the associative subalgebra of End (L), the algebra
of linear maps from L to L, generated by {ad (u) : u ∈ L}. To distinguish
between elements from L and A we will use small letters for elements in L
and capital letters for elements in A.

Let

A∗ =

∞⋃

i=4

A × · · · × A
︸ ︷︷ ︸

i

.

We let E : A∗ → A be the function given by

E(Y1, Y2, . . . , Ym) =
∑

(S(1),...,S(4))

YS(1)YS(2)YS(3)YS(4)

where the sum is taken over all partitions (S(1), . . . , S(4)) of {1, 2, . . . , m}
into non-empty subsets. It follows from section 3 that Lp

E satisfies

uE(Y1, Y2, . . . , Ym) = 0

for all u ∈ L and Y1, . . . , Ym ∈ ad (L) when m ≥ 4.

We want to show that the ideal generated by x in Lp
E is nilpotent. For

the primes p ≥ 5 this can be dealt with quickly using known results. We
have seen that Lp

V satisfies the linearised 4-Engel identity which is equivalent
to the 4-Engel identity when p ≥ 5. But in [17] it is shown that all prin-
cipal ideals in a 4-Engel Lie algebra are nilpotent of class at most 3 if the
underlying field has characteristic greater than 5. It follows that any locally
nilpotent 4-Engel group without elements of order 2, 3 or 5 is Fitting with
Fitting degree at most 3 which is clearly the best possible bound.

Dealing with L5
V requires more work. In [14, Lemma 6] the authors prove

that this Lie algebra is nilpotent of class 6 and that the ideal generated by x
is nilpotent of class 4 (although the statement there is given in the context
of 4-Engel groups of exponent 5, the only Lie identities used come from IE).
The result was obtained with the aid of a computer. The calculations can
also be done by hand using a similar approach as for the case p = 3 in Sec-
tion 6. It follows that 4-Engel 5-groups have Fitting degree at most 4. By
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the example of Gupta and Levin that we mentioned in the introduction, this
bound is sharp.

This leaves the primes 2 and 3 to be dealt with. These two cases differ
from the others in that the Lie algebras L3

E and L2
E are not nilpotent. The

approach will be quite different for the two primes, the case p = 2 being
considerably harder. We will give the proofs in sections 5 and 6.

5 The algebra L2
E

In this section we deal with the case when p = 2. We let L = L2
E and A = A2

E .
We will work with the function E : A∗ → A that was described in section 4.
The aim is show that Id (x)5 = 0. The following consequence of the Engel
identities is very special for the prime 2 case and we will make much use of
it later.

Lemma 5.1 Let U1, . . . , Ur ∈ A and 1 ≤ i ≤ r − 1. If for all σ ∈ Sym(r),
the product Uσ(1) · · ·Uσ(r) is symmetric in Ui, Ui+1, then

E(U1, . . . , Ui, Ui+1, . . . Ur) = E(U1, . . . , Ui−1, UiUi+1, Ui+2, . . . Ur).

Proof We have E(U1, . . . , Ui, Ui+1, . . . , Ur) is a sum

V1 + V2 + · · ·+ Vs,

where V1, . . . , Vs are all the products of the form US(1)US(2)US(3)US(4), where
(S(1), S(2), S(3), S(4)) is a partition of {1, 2, . . . , r} into non-empty sets.
Suppose that for each product Vk, i ∈ S(α(k)) and i + 1 ∈ S(β(k)). Let

∑

1

be the sum of all Vk where α(k) < β(k). Let
∑

2 be the sum of all Vk where
α(k) > β(k). Finally let

∑

3 be the sum of all Vk where α(k) = β(k). As every
product is symmetric in Ui, Ui+1 by assumption, we have that

∑

1 =
∑

2.
Hence

E(U1, . . . , Ui, Ui+1, . . . Us) =
∑

1

+
∑

2

+
∑

3

=
∑

3

= E(U1, . . . , Ui−1, UiUi+1, Ui+2, . . . , Us). 2
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As we have seen, it follows from the Engel identities that L satisfies the
linearised 4-Engel identity. When the characteristic is 2, more is true. The
next lemma shows that modulo the centre we have that L satisfies the lin-
earised 3-Engel identity.

Lemma 5.2 Let w, u1, u2, u3 ∈ L and let W = ad(w) and Vi = ad(ui) then

∑

σ∈Sym(3)

Uσ(1)Uσ(2)Uσ(3)W = 0.

Proof From the linearised 4-Engel identity we have.

0 =
∑

σ∈sym(4)

wuσ(1)uσ(2)uσ(3)uσ(4)

=
∑

σ∈sym(3)

wu4uσ(1)uσ(2)uσ(3) +
∑

σ∈sym(4)

wuσ(1)u4uσ(2)uσ(3) +

∑

σ∈sym(4)

wuσ(1)uσ(2)u4uσ(3) +
∑

σ∈sym(4)

wuσ(1)uσ(2)uσ(3)u4

=
∑

σ∈sym(3)

u4wuσ(1)uσ(2)uσ(3) +
∑

σ∈sym(4)

u4(wuσ(1))uσ(2)uσ(3) +

∑

σ∈sym(4)

u4(wuσ(1)uσ(2))uσ(3) +
∑

σ∈sym(4)

u4(wuσ(1)uσ(2)uσ(3))

= 4
∑

σ∈sym(4)

u4wuσ(1)uσ(2)uσ(3) + 6
∑

σ∈sym(4)

u4uσ(1)wuσ(2)uσ(3) +

4
∑

σ∈sym(4)

u4uσ(1)uσ(2)wuσ(3) +
∑

σ∈sym(4)

u4uσ(1)uσ(2)uσ(3)w

=
∑

σ∈sym(4)

u4uσ(1)uσ(2)uσ(3)w 2

We will next see that the previous lemma still holds if V1 is replaced by X2.

Lemma 5.3 Let V1 = X2 and V2 = ad(v2), V3 = ad(v3), W = ad(w) ∈
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ad(L). Then

0 =
∑

σ∈Sym(3)

Vσ(1)Vσ(2)Vσ(3)W.

Proof Let V4 = ad(v4) ∈ ad(L). Using Lemma 5.1, we have

0 = wE(X, X, V2, V3, V4)

= wE(X2, V2, V3, V4)

=
∑

σ∈Sym(4)

wVσ(1)Vσ(2)Vσ(3)Vσ(4).

Now u(vX2) = u(vxx) = uvx2 + ux2v = uvX2 + uX2v as we are working
over a field of characteristic 2. We can thus finish the proof just as in the
proof of Lemma 5.2. 2

The following lemma is a useful application of the previous lemmas.

Lemma 5.4 Let W ∈ ad(L). Then

AiXAjW = AjXAiW

AiX
2AjW = AjX

2AiW

XAiX
2W = X2AiXW.

Proof From Lemma 5.2 we have

0 = AiAjXW + AjAiXW + XAiAjW +

XAjAiW + AiXAjW + AjXAiW

= AiXAjW + AjXAiW.

This proves the first part. The other parts are proved in a similar way using
Lemma 5.3. 2

Our aim is to prove that all Lie products with 5 occurrences of x are triv-
ial. The next two propositions are steps towards this. The first one is an
immediate corollary from the first two parts of the lemma above.

Proposition 5.5 The Lie product

xa1 · · ·arxar+1 · · ·asxas+1 · · ·atxat+1 · · ·akx

is symmetric in a1, . . . , ak for all 0 ≤ r ≤ s ≤ t ≤ k.
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Proposition 5.6 Let u1, . . . , ur, w1, . . . , ws ∈ {x, a1, a2, . . .} where s ≥ 1
and let u = u1 · · ·ur. Suppose all products with the same multidegree as
uaiajxakw1 · · ·ws are symmetric in the ai’s that occur. Then

uaiajxakw1 · · ·ws = uakxaiajw1 · · ·ws.

Similarly if all products of the same multidegree as uaiajx
2akw1 · · ·ws are

symmetric in the ai’s, then

uaiajx
2akw1 · · ·ws = uakx

2aiajw1 · · ·ws.

Proof Let V1 = AiAj, V2 = Ak, V3 = X and V4 = ad(u). Also let Wi =
ad(wi) and W = W2 · · ·Ws. Using Lemma 5.1, we have

0 = w1E(Ai, Aj , Ak, X, V4)W (6)

= w1E(AiAj , Ak, X, V4)W

=
∑

σ∈Sym(4)

w1Vσ(1)Vσ(2)Vσ(3)Vσ(4)W.

Before finishing the proof we make one observation. Suppose that the sum
of the multidegrees of the elements z, v, ai, aj , z1, . . . , zl is the multidegree of
uaiajxakw1 · · ·ws. Then

z(vV1)z1 · · · zl = z(vaiaj)z1 · · · zl

= zvaiajz1 · · · zl + zajaivz1 · · · zl +

zaivajz1 · · · zl + zajvaiz1 · · · zl

= zvV1z1 · · · zl + zV1vz1 · · · zl

where for the second last identity we made use of the symmetry hypothesis.
Because of this we can, just as in the proof of Lemma 5.2, deduce from (6)
that

0 =
∑

σ∈Sym(3)

uVσ(1)Vσ(2)Vσ(3)W1W.

But
∑

σ∈Sym(3)

Vσ(1)Vσ(2)Vσ(3) = (AiAj)AkX + Ak(AiAj)X + X(AiAj)Ak +

XAk(AiAj) + AkX(AiAj) + (AiAj)XAk
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and by the symmetry hypothesis the first part of the lemma follows.

The second part is proved similarly. First we apply the Engel identities.

0 = w1E(Ai, Aj, Ak, X, X, U)

= w1E(Ai, Aj, Ak, X
2, U)

= w1E(AiAj, Ak, X
2, U).

As before this gives

0 =
∑

σ∈Sym(3)

uVσ(1)Vσ(2)Vσ(3)W1W

where (V1, V2, V3) = (AiAj , Ak, X
2). The rest of the proof follows just as for

the first part. 2

We are now ready for the main result of this section.

Proposition 5.7 The ideal generated by x in L2
E is nilpotent of class at most

4.

Proof We use the propositions above to show that the product

xa1 · · ·arxar+1 · · ·asxas+1 · · ·atxat+1 · · ·amx

is zero. We use induction on m. This is clear from identity (2) when m = 1.
Now suppose that m ≥ 2 and that we know that all products of the type
above with shorter length are 0. Then all products of the same multidegree
not ending in x are 0 by induction hypothesis. By Proposition 5.5, we have
that all products of this multidegree are symmetric. Now all the propositions
above are available to us. Because of Proposition 5.6 and identity (2) all
products are equal to either 0 or one of the following.

xa1xa2xa3xa4 · · ·amx;
xa1xa2xa3 · · ·amx2;
xa1xa2x

2a3 · · ·amx;
xa1x

2a2xa3 · · ·amx;
xa1x

2a2 · · ·amx2.

(7)
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Suppose we take one of these products of the form xa1xa2xu1 · · ·um+1. By
the Jacobi identity, we have

0 = [(xa1)(xa2)x + (xa2x)(xa1) + x(xa1)(xa2)]u1 · · ·um+1

= [(xa1)(xa2)x + (xa2x)(xa1) − (xa1x)(xa2)]u1 · · ·um+1

= (xa1)(xa2)xu1 · · ·um+1,

by the symmetry hypothesis. It follows that

xa1xa2xu1 · · ·um+1 = xa1a2x
2u1 · · ·um+1.

So we only need to consider the last two products in (7). Now using Lemma
5.4 and Proposition 5.6 we have

xa1x
2a2xa3 · · ·amx = xa1xa2x

2a3 · · ·amx

= a1x
2a2xxa3 · · ·amx

= a1xa2x
2xa3 · · ·amx

= 0

by identity (2) and also

xa1x
2a2 · · ·amx2 = xa1 · · ·am−1x

2amxx

= xa1 · · ·am−1xamx2x

= 0.

We thus see that all the products are 0. 2

From this result and Theorem 2.4 we have that any locally finite 4-Engel
2-group is Fitting with Fitting degree at most 4. One can give an explicit
example that shows that this bound is sharp. We have however chosen to
omit this as the referee has pointed out that this can also be derived from
[15]. In this paper Nickel has computed the largest nilpotent quotient of the
free 3-generator 4-Engel group. From this one can see that [z, y, y, y, x, y] has
order 10 modulo the 7-th term of the lower central series. Hence there are
finite 3-generator 2-groups and 5-groups of class 6 which have Fitting degree
4.
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6 The algebra L3
E

Let L = L3
E . We let V be the subspace of L generated by {a1, a2, . . .}.

Lemma 6.1 Let a, b ∈ V . Then

xbxa = −xaxb + 2xabx (8)

xbx2a = xabx2 (9)

xax2b = xabx2. (10)

We also have that every product of weight (3, 1, 1) in x, a and b is in the
linear span of xaxbx and xabx2. Every product of weight (4, 1, 1) is trivial.

Proof The first identity follows from xb(xa) = −xa(xb). The Jacobi identity
then gives us

0 = xa(xb)x + xbx(xa) + x(xa)(xb)

= 2xaxbx − xbxax − xabx2 − xax2b + xbx2a

= xbx2a − xax2b

where we used (8) in the last equality. Also the Engel identities give

0 = t(1,4)(x; a, b, x, x)

= 2xabx2 + xaxbx + xbxax + xax2b + xbx2a

= xabx2 − xax2b

and we have (9) and (10).

We next turn to products of weight (4, 1, 1). As xax3 = 0 by (2), we only
need to consider products ending in x. As xax2bx = xabx3 = 0 it follows
from (8)-(10) that all products are multiples of xaxbx2 and all products not
ending in xx are trivial. Now we apply the Engel identities and see that

0 = t(1,4)(x; bx, a, x, x)

= x(bx)ax2 + x(bx)xax + x(bx)x2a

+xa(bx)x2 + xax(bx)x + xax2(bx)

= xbxax2 − xaxbx2 + xaxbx2

= xbxax2.

Thus all products of weight (4, 1, 1) are trivial. 2
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Lemma 6.2 Let a, b, c ∈ V then all products of weight (2, 1, 1, 1) in x, a, b
and c are multiples of xaxbc and symmetric in a, b and c. Furthermore

xabxc = xabcx = xaxbc (11)

Proof The Engel identities and Lemma 6.1 give us

0 = t(1,4)(b; x, x, a, a)

= bx2a2 + bxaxa + bxaax

= −xbxa2 − xabxa − xa2bx

= xaxba − 3xabxa − xa2bx

and

xa2bx = xaxab = xa2xb. (12)

Also

0 = t(1,4)(x; b, x, a, a)

= xbxa2 + 2xaxab + 2xabxa + xaaxb + 3xaabx

= 3xaxab + xbxa2 + 2xabxa.

Using this and Lemma 6.1 we have xbxa2 = xabxa = −xaxba − xbxaa =
−xa2xb − xbxa2 and thus

xbxa2 = xa2xb = xa2bx. (13)

Now replace a by a + c in (13) and we have (11). As xabcx is symmetric in
a b and c the lemma follows. 2

Lemma 6.3 Let a, b, c ∈ V then any product of weight (3, 1, 1, 1) in x, a, b
and c is a multiple of xaxbxc and symmetric in a, b and c. Furthermore we
have

xabcx2 = xaxbcx = xabxcx = xabx2c = xax2bc = xaxbxc (14)

Proof The proof is on the same line as the proof of the previous lemma.
First we consider products of weight (3, 2, 1) in x, a and b. We know from the
previous lemmas that all such products are in the span of xa2xbx, xa2x2b,
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xaxbxa and xabx2a. Using the Jacobi identity and Lemmas 6.1 and 6.2. We
have

0 = xaa(xb)x + xbx(xaa) + x(xaa)(xb)

= xa2xbx − xa2bx2 + xbx2a2 + xbxaxa

+xbxa2x − xa2x2b + xa2xbx

= 2xa2xbx − xa2x2b + xabx2a − xaxbxa + 2xabx2a

and thus
xa2xbx + xa2x2b + xaxbxa = 0. (15)

Also

0 = xab(xa)x + xax(xab) + x(xab)(xa)

= xabxax − xabax2 + xax2ab − xaxaxb

−xaxbxa + xaxabx − xabx2a + xabxax

= 2xa2xbx − xaxbxa − xabx2a

which gives together with (15)

xabx2a = xa2xbx. (16)

We get the third identity by applying the Engel identities. Now

0 = t(1,4)(xb; a, a, x, x)

= xba2x2 + xbaxax + xbxa2x + xbx2a2 + xbxaxa + xbax2a

= xabx2a − xaxbxa + 2xabx2a + xabx2a

and therefore
xabx2a = xaxbxa. (17)

It follows by these equations and the previous lemmas that all non-zero prod-
ucts of this multiweight and beginning in x are equal. In particular

xa2xbx = xbxa2x = xa2xbx = xbx2a2 = xa2bx2.

Replacing a by a + c gives then

xacx2b = xbxacx = xacxbx = xcx2ab = xabcx2.
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All these products are in particular symmetric in a, b and c. Notice that
these are all the left normed products of this multiweight where we have
somewhere in the product two adjacent elements from V . Next we apply

xaxaxc = xa2cx = xcxaxa.

This gives

xaxbxc + xbxaxc = 2xabcx2

xcxaxb + xcxbxa = 2xabcx2.

Hence xaxbxc = −xbxaxc − xabcx2 = xbxcxa and thus

xaxbxc = xbxcxa = xcxaxb. (18)

We thus have that all products are in the linear span of xaxbxc and xbxaxc.
Now the last application of the Engel identities. We have

0 = a(xb)cx2 + a(xb)xcx + a(xb)x2c

+ax(xb)cx + ax(xb)xc + axc(xb)x

+axx(xb)c + ax2c(xb) + axcx(xb)

= 3(xabcx2 + 0 + (xabx2c − xaxbxc) + 0

+(xaxbxc − xax2bc) + (xaxcbx − xaxcxb) + 0

= xabcx2 − xaxcxb.

The lemma now follows. 2

Lemma 6.4 Let a, b, c ∈ V . All products of weight (4, 1, 1, 1) in x, a, b and
c are trivial.

Proof If such a product ends in an element of V it is trivial by Lemma 6.1
and if it ends in x it is a multiple of xabcx3 = 0 by (2) and Lemma 6.3. 2

We are now ready for more general results.

Proposition 6.5 Let n ≥ 3. All products of multiweight (2, 1n) in x, a1, . . . , an

are symmetric in the ai’s and multiples of xa1xa2 · · ·an.
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Proof We use induction on n. By Lemma 6.2 this is true when n = 3. Now
suppose this is true for n and let c be a product of multiweight (2, 1n+1) in
x, a1, . . . , an+1. By the induction hypothesis we have that c is symmetric and
a multiple of xa1xa2 · · ·an+1 if c ends in some ai. So we only need to consider
c = xa1 . . . an+1x. This is clearly symmetric and thus all products are sym-
metric. It remains to show that c is a multiple of xa1xa2 · · ·an+1. We consider
two cases. Firstly suppose n is odd. Modulo multiples of xa1xa2 · · ·an+1, we
have

xa1 · · ·an+1x = xa1 · · ·an−1(xan+1an)

= −xan+1an(xa1 · · ·an−1)

= (−1)nxa1 · · ·an+1x

= −xa1 · · ·an+1x

and thus c is a multiple of xa1xa2 · · ·an+1. Now suppose that n is even. We
now apply the Engel identities. Modulo multiples of xa1xa2 · · ·an+1, we have

0 = 2an+1(xa1 · · ·an−2)an−1anx + 2an+1xan−1an(xa1 · · ·an−2)

= xa1 · · ·an+1x + (−1)n−2xa1 · · ·an+1x

= 2c

and c is again a multiple of xa1xa2 · · ·an+1. 2

Proposition 6.6 Let n ≥ 3. All products of weight (3, 1n) in x, a1, . . . , an

are symmetric in the ai’s and multiples of xa1xa2xa3 · · ·an.

Proof When n = 3 this follows from Lemma 6.3. We now assume the lemma
is true for some n ≥ 3. By the induction hypothesis and Proposition 6.5 all
products of weight (3, 1n+1) in x, a1 · · · , an+1 are symmetric in the ai’s. It
remains to show that c = xa1xa2 · · ·an+1x is a multiple of xa1xa2xa3 · · ·an+1.
So we calculate modulo multiples of xa1xa2xa3 · · ·an+1. We use the Jacobi
and Engel identities. Now

0 = (xa1xa2 · · ·an−1)(xan+1an) + xan+1an(xa1xa2 · · ·an−1)

= xa1xa2 · · ·an+1x + (−1)n−2xan+1an · · ·a2(xa1x)

and

0 = 2an+1(xa1xa2 · · ·an−2)an−1anx + 2an+1xanan−1(xa1xa2 · · ·an−2)

= xa1xa2 · · ·an+1x + (−1)n−3xan+1an · · ·a2(xa1x).
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It follows from these two identities that c is a multiple of xa1xa2xa3 · · ·an+1.
2

Now we can prove the main result of this section.

Theorem 6.7 The ideal generated by x in L3
E is nilpotent of class at most

3.

Proof Let c be any product of multiweight (4, 1n) in x, a1, . . . , an. We prove
by induction on n ≥ 1 that c is trivial. It follows from Lemma 6.1 and 6.4
that this is true if n ≤ 3. Now suppose the result is true for some n ≥ 3. Let
c = xa1xa2xa3 · · ·an+1x. It follows from Proposition 6.6 and the induction
hypothesis that it suffices to show that c is trivial. We know that all products
ending in ai are trivial. We thus have

0 = (xa1xa2xa3 · · ·an−1)(xan+1an) + xan+1an(xa1xa2xa3 · · ·an−1)

= xa1xa2xa3 · · ·an+1x + (−1)n−3xan+1an · · ·a2(xa1xa2x)

and

0 = 2an+1(xa1xa2xa3 · · ·an−2)an−1anx + 2an+1xanan−1(xa1xa2xa3 · · ·an−2)

= xa1xa2xa3 · · ·an+1x + (−1)n−4xan+1an · · ·a3(xa1xa2x).

It follows from these identities that c is trivial. 2

As a corollary to Theorem 2.4 and the work in sections 4-6, we get now
the main result of this paper.

Theorem 6.8 Let G be a locally nilpotent 4-Engel group. Then G is a Fit-
ting group of degree at most 4. If G has no elements of order 2 or 5 then G
has Fitting degree at most 3.
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