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1 Introduction

A group is called a Baer group if every cyclic subgroup is subnormal. If every
cyclic subgroup in G is subnormal of defect at most n then we say that G is
an n-Baer group or more shortly a Bn group. It is not difficult to see that
every Bn group is an (n+1)-Engel group. In this paper we will study 3-Baer
groups. Our main results can be summarised into two theorems.

Theorem 1 Let G be a 3-Baer group. Then G is an extension of a nilpotent
group of class at most 2 by a 3-Engel group. Furthermore if G has no element
of order 2 then G is abelian by 3-Engel.

If G is a non-torsion group, that is a group that contains an element of in-
finite order, then we have the stronger result that G is a 3-Engel group [5].
Theorem 1 is thus essentially a theorem about 3-Baer p-groups.

In [1], Garrison and Kappe give a detailed analysis of metabelian 3-Baer
groups. One of their main results is the following: if G is a 3-Baer group
without elements of order 2 or 3 then G/Z(G) is 3-Engel and nilpotent of
class at most 4. They also give examples of 3-Baer 2 groups and 3-groups
which are not centre by 3-Engel and which are nilpotent of class 5. There are
non-nilpotent metabelian 3-Engel groups of exponent 4. However, we have
that metabelian 3-Baer groups without involutions are nilpotent and by next
result the best upper bound for the nilpotency class in that case is 5.
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Theorem 2 Let G be a metabelian 3-Baer 3-group, then G is nilpotent of
class at most 5.

2 Connection with 3-Engel groups

By a theorem of L.-C. Kappe and W. Kappe [4], we have that if G is a 3-Engel
group then the normal closure of an element is always nilpotent of class at
most 2. So it follows that if x ∈ G then every subgroup of xG is subnormal
of defect at most 2. It follows in particular that 〈x〉 is subnormal of defect
at most 3 in G. Hence every 3-Engel group is a 3-Baer group. In this section
we will show that every 3-Baer group is an extension of a nilpotent group of
class at most 2 by a 3-Engel group.

Lemma 1 Let H be a 3-Baer group and suppose x ∈ H is an element in
H satisfying xp2i

= 1 for some integer i ≥ 0. Then if (xpi

)xH

is abelian it
follows that (xpi

)H is abelian.

Proof Let b ∈ H . We then have that xb ∈ xH and since H is a 3-Baer group
we have

[xpi

, xb, xb] ∈ 〈xb〉(H,3) = 〈xb〉

which implies that [xpi

, xb, xb, xb] = 1. Using the fact that (xpi

)xH

is abelian,
we get

[xpi

, b−1xpi

b] = [xpi

, xb]p
i

[xpi

, xb, xb](
pi

2 )

= [xpi(pi

2 ), xb, xb].

Suppose that [xpi

, xpib] 6= 1. From the equality above we have [xpi

, xb, xb](
pi

2 ) 6=
1. Therefore we must have that p = 2, that x has order (exactly) 22i and that
[x2i

, xb, xb] has order 2i. But since [x2i

, xb, xb] ∈ 〈xb〉 and since this element
has order 2i and xb has order 22i, we have

[x2i

, xb, xb] = (xb)2ir,

where r is odd. It follows that (xb)2i

= [x2i

, xb, xb]s for some s. But then

[x2i

, b−1x2i

b] = [x2i

, [x2i

, xb, xb]s] = 1,

since [x2i

, xb, xb]s ∈ (x2i

)xH

, and we have a contradiction. Hence [xpi

, xpib] =
1. 2
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Corollary 1 Let G be a 3-Baer group and x ∈ G be an element satisfying
xp2i

= 1 for some integer i ≥ 0. Then (xpi

)G is abelian.

Proof Since G is a 3-Baer group we have that x(G,3) = 〈x〉. We now apply
Lemma 1 three times, letting H be first x(G,2) then x(G,1) and x(G,0). 2

Before proceeding further we make a remark which is going to be useful
in later. Suppose G is a nilpotent group and that g is an element in G satis-
fying g ∈ [〈g〉, G]. It then follows by induction that 〈g〉 ≤ [〈g〉, G, . . . , G

︸ ︷︷ ︸

r

] for

all positive integers. Since G is nilpotent it then follows that g = 1.

Lemma 2 Let G be a B3 group of exponent 4. Then G is a 3-Engel group.

Proof Let B(3, 4) be the relatively free group with 3 generators and of
exponent 4. One can see from a power-commutator presentation of B(3, 4),
(see p. 144 in [8] for example) that all groups of exponent 4 satisfy

[a, x2, x] = [a, x, x, x].

We want to show that [a, x, x, x] = 1 for all a, x ∈ G. Since G is a 3-
Baer group we have that [a, x, x, x] ∈ 〈x〉. If [a, x, x, x] is equal to either
x or x−1 then it follows from the remark made before the statement of the
lemma, that x = 1. We can thus assume that [a, x, x, x] = x2. But then
x2 = [a, x2, x] ∈ [〈x2〉, G] and we have x2 = 1 by the same remark.2

The following lemma which we state without a proof will also be useful.
(see [7]).

Lemma 3 If G is a 4-Engel group and x ∈ G is of finite order then 〈x, xb〉
is nilpotent of class at most 4 for all b ∈ G.

We said in the introduction that every n-Baer group is a (n + 1)-Engel
group. That is every element is a left (n + 1)-Engel element. If an ele-
ment is either of infinite order or of prime order more can be said. Let
[a,m x] = [· · · [[a, x], ], · · · , x

︸ ︷︷ ︸

m

].

Lemma 4 Let G be a n-Baer group. If x ∈ G is an element which is of
infinite order then x is a left n-Engel element. If x is a p-element for some
prime p then [a,n x] ∈ 〈xp〉. In particular if x has order p we have that x is
a left n-Engel element.
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Proof Suppose first that a, x ∈ G where x is of infinite order. Since G is
a n-Baer group, we have that [a,n x] = xs for some integer s. Being a Baer
group we have that G is locally nilpotent and thus we have

xsr+1

= [[a,n−1 x], · · · , [[a,n−1 x]
︸ ︷︷ ︸

r

, [a,n x]] · · ·] = 1

for some integer r ≥ 1. But since x is of infinite order we must have s = 0.
Hence [a,n x] = 1. Now suppose that x is a p-element for some prime p. Since
G is a n-Baer group we have that [a,n x] = xm for some integer m. We want
to show that xm ∈ 〈xp〉. If this is not the case we must have x = [a,n x]s for
some integer s. Thus 〈x〉 ≤ [〈x〉, H ] and by the remark before Lemma 2 we
have that x = 1 which is a contradiction.2

Theorem 1 Let G be a 3-Baer group. Then G is an extension of a nilpotent
group of class at most 2 by a 3-Engel group. Furthermore if G does not
contain an involution then G is abelian by 3-Engel.

Proof It follows from Lemma 4 that [a, x, x, x] = 1 when x is of infinite order.
For each prime p let Hp = 〈[a, x, x, x] : a, x ∈ G and x is a p− element〉. Let
H = 〈[a, x, x, x] : a, x ∈ G〉. G is locally nilpotent and thus we have that the
torsion elements in G form a subgroup which is a direct product of p-groups.
Since [a, x, x, x] = 1 when x is of infinite order we have that H is a torsion
group and that H =

∏

p Hp. It is now clearly sufficient to show that Hp is
abelian when p 6= 2 and that H2 is nilpotent of class at most 2. Suppose first
that p 6= 2. Let a, b, x, y ∈ G such that x and y are p-elements. Suppose
that [a, x, x, x] = xm and that [b, y, y, y] = yn where m = pir, n = pjs and
(r, p) = (s, p) = 1. By Lemma 4 we have that i and j are greater than 0. By
Lemma 3 we have that 〈x, xa〉 is nilpotent of class at most 4. Hence

1 = [[a, x, x], [a, x, x, x]] = xm2

.

By corollary to Lemma 1, we have that (xm)G is abelian. Similarly yn2

= 1
and (yn)G is abelian. We can without loss of generality assume that i ≤ j.
We now have

[xm, yn] = [xm, y]n[xm, y, y](
n

2)[xm, y, y, y](
n

3) (1)

= [xm, y, y, y](
n

3).
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If [xm, yn] 6= 1 we thus must have p = 3 and i = j. We also must have
that x has order 32i and [xm, y, y, y] has order 3i. Since G is a 3-Baer group,
[xm, y, y, y] ∈ 〈y〉. We thus must have

[xm, y, y, y] = y3it

for some t which is coprime to 3, and thus

yn = [xm, y, y, y]l

for some l. But then [xm, yn] = [xm, [xm, y, y, y]l] = 1, since (xm)G is abelian,
which is a contradiction. We have thus proved that Hp is abelian when p 6= 2.
We now show that H2 is nilpotent of class at most 2. Let a, b, c, x, y, z ∈ G
such that x, y and z are 2-elements. Let u = [[a, x, x, x], [b, y, y, y]]. We want
to show that u commutes with [c, z, z, z]. From equation like equation (2) we
see that u has order either 1 or 2. We consider two cases. Suppose first that

[c, z, z, z] = z4m

for some integer m. We know that uH2 is abelian. Therefore

[u, [c, z, z, z]] = [u, z]4m[u, z, z](
4m

2 )[u, z, z, z](
4m

3 ) = 1.

By Lemma 4 we have that [c, z, z, z] ∈ 〈z2〉, we can thus assume that

[c, z, z, z] = z2m

where m is odd. By similar argument as before we have that z4 = 1 and
(z2)H2 is abelian. By Lemma 2 we have that [a, x, x, x] ∈ G4. Therefore
u ∈ G4. Suppose that u = u4

1 · · ·u
4
l . But

[z2m, u4
i ] = [z2m, ui]

4[z2m, ui, ui]
6[z2m, ui, ui, ui]

4 = 1.

So again [u, [c, z, z, z]] = 1. 2

From our knowledge on 3-Engel groups we get the following corollary.

Corollary 2 Let G be a 3-Baer group which is 5-torsion free. Then G is
soluble of derived length at most 5. Furthermore if G does not have an
involution then G has derived length at most 4.
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Remarks (1) What are the best upper bounds in Corollary 2? We know it
must be 3, 4 or 5 in the general case and 3 or 4 when G is also 2-torsion free.
If G is a torsion 4-Engel group that is {2, 3, 5}−torsion free it is known [6,7]
that G is nilpotent of class at most 7 so in that case the derived length is at
most 3.

(2) Is it possible to strengthen Theorem 1 so that every 3-Baer group is
abelian by 3-Engel?

3 Metabelian 3-Baer groups

It is well known that there are metabelian 3-Engel groups of exponent 4 that
are non-nilpotent. Take for example the standard wreath product of a cyclic
group of order 2 with a countably infinite elementary abelian 2-group. So
metabelian 3-Baer groups need not be nilpotent. However if a metabelian
3-Baer group is without an involution then it is nilpotent. Garrison and
Kappe [1] have shown the best upper bound for the nilpotency class is 4 if
one furthermore assumes that there are no elements of order 3. They also
give an example of a metabelian 3-Baer 3-group which is nilpotent of class
5. In this section we will prove that 5 is in fact the best upper bound for
the nilpotency class of 3-Baer 3-groups. We will first need the following
elementary lemma.

Lemma 5 Let G = 〈x, y〉 be a metabelian 3-Baer 3-group. Let H � G then

[H, G3i

] ≤ [H, G]3
i

[H, G, G]3
i−1

.

Furthermore, if H ≤ γ2(G) then

[H, G3i

] ≤ [H, G]3
i

.

Proof Let h ∈ H and g ∈ G. Since G is a metabelian 4-Engel group, we
have

[h, g3i

] = [h, g]3
i

[h, g, g](
3
i

2 )[h, g, g, g](
3
i

3 ) (2)

which is in [H, G]3
i

[H, G, G, G]3
i−1

. (We will not need this slightly stronger
version). This proves the first part of the lemma. Now suppose furthermore
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that h ∈ γ2(G). If g ∈ γ2(G) then [h, g] = 1. So let g ∈ G \ γ2(G); we may
assume that G = 〈g, f〉 for some f ∈ G. Then h ∈ 〈g〉G and since G is a
3-Baer group we have [h, g, g] ∈ 〈g〉 so [h, g, g, g] = 1. It follows now from
(3) that [h, g3i

] ≤ [H, g]3
i

. 2

We are now ready to prove the main result of this section.

Proposition 1 Let G be a metabelian 3-Baer group and suppose t ∈ G is a
3-element. Then [x, t, t, t, y, z] = 1 for all x, y, z ∈ G.

Proof From [2] we have that a metabelian n-Engel group satisfies [x, y, z,n−1 u] =
1 (this follows from [z,n u[x, y]] = 1). Since G is a metabelian 4-Engel group,
it follows that

1 = [t, [x, y], t, t, z] = [t, x, y, t, t, z][t, y, x, t, t, z]−1

and thus
[x, t, t, t, y, z] = [y, t, t, t, x, z] for all x, y, z ∈ G. (3)

Suppose for some given x, y, z, t ∈ G we have [x, t, t, t, y, z] 6= 1. Since G is
a metabelian B3 group we have that [x, t, t, t], [x, t, t, t, y] = [x, t, y, t, t] and
[x, t, t, t, z] are in 〈t〉. Furthermore suppose

〈[x, t, t, t]〉 = 〈t3
i

〉, 〈[t3
i

, y]〉 = 〈t3
i+u

〉, 〈[t3
i

, z]〉 = 〈t3
i+e

〉.

Assume that x is chosen so that i is minimal and then that y and z are
chosen so that u and e are minimal. We then have u = e and we can assume
that y = z. We also have 〈[x, t, t, t, y, y]〉 = 〈t3

i+2u

〉 and thus t3
i+2u

6= 1. Now
suppose further that

〈[y, t, t, t]〉 = 〈t3
j

〉 and 〈[t3
i

, x]〉 = 〈t3
i+h

〉.

Since x was chosen such that i is minimal we must have i ≤ j. It follows
now from identity (4) that j + h = i + u and therefore h ≤ u. We thus have
t3

i+2h

6= 1 and therefore [x, t, t, t, x, x] 6= 1. We will now show that this leads
to a contradiction.

Suppose first that x is of infinite order. Let u = [x, t, t, t, x]. Since G is
a 3-Baer group we have that [x, u] = xm for some integer m. Since G is
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locally nilpotent the argument that was used in the proof of Lemma 4 gives
that m = 0 and thus [x, t, t, t, x, x] = 1. We can thus assume that x is of
finite order. Since G is locally nilpotent we have that x commutes with t if
x has order coprime to 3. We can thus assume that x is also a 3-element.
From [2] we have that a metabelian n-Engel group G satisfies the identi-
ties γn+1(G)(n+1)·(n−1)!·1!·2!···(n−1)! = 1 and γn+2(G)1!···(n−1)! = 1. Since G is a
metabelian 4-Engel group we have then that γ5(G)9·40 = γ6(G)3·4 = 1. Thus
[x, t, t, t, x]9 = [x, t, t, t, x, x]3 = 1. We therefore have that t3

i+h+2

= 1 and
t3

i+2h

6= 1 which implies that we must have h = 1. Since i ≥ 1 we have that
|t| ≥ 34. Similarly we have |x| ≥ 34. Now 〈[x, t, t, t]〉 = 〈t3

i

〉. Suppose further
that 〈[t, x, x, x]〉 = 〈x3j

〉. If 〈[x3j

, t]〉 = 〈x3j+k

〉 then by the same argument as
before we have k = 1. From what we have already shown we have

t3
i+3

= x3j+3

= [t3
i+2

, x] = [x3j+2

, t] =

[t3
i+1

, x, x] = [t3
i

, x, t] = [x3j

, t, x] = [x3j+1

, t, t] = 1. (5)

Let H = 〈x, t〉 and suppose further that t is chosen in H \ Φ(G) such that
it has minimal order. Notice that we still have [x, t, t, t, x, x] 6= 1 for some
other generator x for H . Since t has minimal order we have that i ≤ j. We
now have 〈[x, t, t, t, x, x]〉 = 〈t3

i+2

〉 = 〈x3j+2

〉 . Suppose that

t3
i+2

= x−3j+2r

for some r not divisible by 3. Let u = tx3j−ir. We get a contradiction by
showing that u3i+2

= 1 (since then t is not of minimal order in H \ Φ(G)).
Let y = x3j−ir and n = 3i+2. We will show that (ty)n = tnyn. Since tn = y−n

it follows then that un = 1.

We let H = 〈t, y〉 and for each integer m ≥ 1 we let Hm = γ2(H)3m

γ3(H)3m−1

.
We show by induction on m that

(ty)3m

= t3
m

y3m

(modulo Hm). (6)

Modulo γ3(H) we have (yt)3 = y3t3[t, y]3 and (6) is therefore true for
m = 1. Suppose now that (6) is true for some m ≥ 1. Then (yt)3m

= y3m

t3
m

h
for some h ∈ Hm. It follows from Lemma 5 that y3m

, t3
m

and h commute
modulo Hm+1. Also h3 ∈ Hm+1. Therefore we have modulo Hm+1 that
(yt)3m+1

= y3m+1

t3
m+1

. This finishes the proof of our inductive hypothesis.
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From (5) we have that Hi+2 = {1} and thus (6) gives us (ty)3i+2

= t3
i+2

y3i+2

as we wanted. 2

It is well known [3] that metabelian 3-Engel groups without involutions are
nilpotent of class at most 3. Therefore we have as a corollary the following
result.

Theorem 2 Let G be a metabelian 3-Baer 3-group. Then G is nilpotent of
class at most 5.

Remarks. (1) As we mentioned in the introduction, there are examples of
metabelian 3-Baer groups which have class 5 so this is the best upper bound.
(2) The following result of P. Hall is well known: If G is a group with normal
subgroup H such that G/[H, H ] and H are nilpotent then G is nilpotent. One
also gets a bound for the nilpotency class of G in terms of the nilpotency
classes of the quotient and the subgroup. Using this result, Corollary 2 and
what we know about metabelian groups one can show that 3-Baer 3-groups
are nilpotent of class at most 965. When G is {2, 3, 5}-torsion free we however
have a much better upper bound since, as we mentioned in section 2, 4-Engel
{2, 3, 5}-torsion free groups are nilpotent of class at most 7.
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