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1 Introduction

A group is called a Baer group if every cyclic subgroup is subnormal. If every
cyclic subgroup in G is subnormal of defect at most n then we say that G is
an n-Baer group or more shortly a B, group. It is not difficult to see that
every B, group is an (n+ 1)-Engel group. In this paper we will study 3-Baer
groups. Our main results can be summarised into two theorems.

Theorem 1 Let G be a 3-Baer group. Then G is an extension of a nilpotent
group of class at most 2 by a 3-Engel group. Furthermore if G has no element
of order 2 then G is abelian by 3-Engel.

If G is a non-torsion group, that is a group that contains an element of in-
finite order, then we have the stronger result that G is a 3-Engel group [5].
Theorem 1 is thus essentially a theorem about 3-Baer p-groups.

In [1], Garrison and Kappe give a detailed analysis of metabelian 3-Baer
groups. One of their main results is the following: if G is a 3-Baer group
without elements of order 2 or 3 then G/Z(G) is 3-Engel and nilpotent of
class at most 4. They also give examples of 3-Baer 2 groups and 3-groups
which are not centre by 3-Engel and which are nilpotent of class 5. There are
non-nilpotent metabelian 3-Engel groups of exponent 4. However, we have
that metabelian 3-Baer groups without involutions are nilpotent and by next
result the best upper bound for the nilpotency class in that case is 5.
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Theorem 2 Let G be a metabelian 3-Baer 3-group, then G is nilpotent of
class at most 5.

2 Connection with 3-Engel groups

By a theorem of L.-C. Kappe and W. Kappe [4], we have that if G is a 3-Engel
group then the normal closure of an element is always nilpotent of class at
most 2. So it follows that if z € G then every subgroup of 2 is subnormal
of defect at most 2. It follows in particular that (x) is subnormal of defect
at most 3 in GG. Hence every 3-Engel group is a 3-Baer group. In this section
we will show that every 3-Baer group is an extension of a nilpotent group of
class at most 2 by a 3-Engel group.

Lemma 1 Let H be a 3-Baer group and suppose x € H is an element in
H satisfying x”?l = 1 for some integer v+ > 0. Then if (xpl)’”H s abelian it
follows that (zP") is abelian.

Proof Let b € H. We then have that 2° € 2 and since H is a 3-Baer group
we have

[, 2% 2] € (")) = (a)
which implies that [a:pi, 2%, 2% 2% = 1. Using the fact that (:cpi)”*’H is abelian,
we get

[xpi’ b_lxpib] — [xpi7 l,b]pi [xpi’ 2, 2] (%)
= [xpi(p;)’xbj xb],
Suppose that [z7*, 27"%] # 1. From the equality above we have [z, z°, 2] (%) +
1. Therefore we must have that p = 2, that x has order (exactly) 2% and that

[z, 2%, 2] has order 2/. But since [z%, 2, 2] € (%) and since this element
has order 2° and z° has order 2%, we have

[:EQi,l‘b,l‘b] _ (xb)zir’
where 7 is odd. It follows that (:L‘b)2i = [in, 2%, 2%]* for some s. But then
[z b7 '2%b] = [o, [z, 2%, 2] = 1,

T

since [22', 2%, 2%)* € (22)*", and we have a contradiction. Hence [2?', 27" =
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Corollary 1 Let G be a 3-Baer group and v € G be an element satisfying
27" =1 for some integer i > 0. Then (z7")C is abelian.

Proof Since G is a 3-Baer group we have that 2(%% = (2). We now apply
Lemma 1 three times, letting H be first (%2 then (@1 and (0. O

Before proceeding further we make a remark which is going to be useful

in later. Suppose G is a nilpotent group and that g is an element in G satis-

fying g € [(g), G]. It then follows by induction that (g) < [{(g),G,...,G] for
——

all positive integers. Since G is nilpotent it then follows that g = 1.
Lemma 2 Let G be a By group of exponent 4. Then G is a 3-Engel group.

Proof Let B(3,4) be the relatively free group with 3 generators and of
exponent 4. One can see from a power-commutator presentation of B(3,4),
(see p. 144 in [8] for example) that all groups of exponent 4 satisfy

[a, 2%, 7] = [a, z, 2, z].

We want to show that [a,z,z,z] = 1 for all a,x € G. Since G is a 3-
Baer group we have that [a,z,z,z] € (z). If [a,z,z,x] is equal to either
2 or 7! then it follows from the remark made before the statement of the

lemma, that x = 1. We can thus assume that [a, 7,7, 2] = z°. But then

z? = [a, 2%, x| € [(z?), G] and we have z*> = 1 by the same remark.0

The following lemma which we state without a proof will also be useful.
(see [7]).

Lemma 3 If G is a 4-Engel group and x € G is of finite order then (x, z°)
is milpotent of class at most 4 for all b € G.

We said in the introduction that every n-Baer group is a (n + 1)-Engel
group. That is every element is a left (n + 1)-Engel element. If an ele-
ment is either of infinite order or of prime order more can be said. Let
[a,’m l‘] g [ .. [[a’l‘]’]’ “ .. ,l‘].

—_——
Lemma 4 Let G be a n-Baer group. If v € G is an element which is of
infinite order then x is a left n-Engel element. If x is a p-element for some
prime p then [a,, x] € (xP). In particular if x has order p we have that x is
a left n-Engel element.



Proof Suppose first that a,x € G where x is of infinite order. Since G is
a n-Baer group, we have that [a,, ] = 2® for some integer s. Being a Baer
group we have that G is locally nilpotent and thus we have

s'r+1
= [[amfl SL’], T [[a’mfl I], [CL,n SL’H o ] =1

T

for some integer » > 1. But since z is of infinite order we must have s = 0.
Hence [a,, ] = 1. Now suppose that z is a p-element for some prime p. Since
G is a n-Baer group we have that [a,, | = 2™ for some integer m. We want
to show that 2™ € («P). If this is not the case we must have z = [a,, x]° for
some integer s. Thus (x) < [(x), H] and by the remark before Lemma 2 we
have that = 1 which is a contradiction.O)

Theorem 1 Let G be a 3-Baer group. Then G is an extension of a nilpotent
group of class at most 2 by a 3-Engel group. Furthermore if G does not
contain an involution then G is abelian by 3-Engel.

Proof It follows from Lemma 4 that [a, x, x, 2] = 1 when z is of infinite order.
For each prime p let H, = ([a,z,z,2] : a,x € G and z is a p — element). Let
H = (la,z,z,z] : a,z € G). G is locally nilpotent and thus we have that the
torsion elements in G form a subgroup which is a direct product of p-groups.
Since [a,x,x, 2] = 1 when x is of infinite order we have that H is a torsion
group and that H = [], H,. It is now clearly sufficient to show that H, is
abelian when p # 2 and that H, is nilpotent of class at most 2. Suppose first
that p # 2. Let a,b,z,y € G such that x and y are p-elements. Suppose
that [a,z,z, 2] = 2™ and that [b,y,y,y] = y" where m = pr, n = p’s and
(r,p) = (s,p) = 1. By Lemma 4 we have that ¢ and j are greater than 0. By
Lemma 3 we have that (x,z®) is nilpotent of class at most 4. Hence

m?2

1 =a,z,z],|a,z,z,2]]| =«

By corollary to Lemma 1, we have that ()€ is abelian. Similarly y™* = 1
and (y")% is abelian. We can without loss of generality assume that i < j.
We now have

@™yt = [y e,y y) B, gy, 9] 6) (1)
= ™y y. 90,



If [™,y"] # 1 we thus must have p = 3 and i = j. We also must have
that o has order 3% and [2™,y,y, y] has order 3. Since G is a 3-Baer group,
[z™ y,y,y] € (y). We thus must have

2™y, y,y] =y
for some ¢ which is coprime to 3, and thus

y'=[2"y, .yl

for some [. But then [z™, y"] = [2™, [z™, y,y,y]] = 1, since (z™)¢ is abelian,
which is a contradiction. We have thus proved that H,, is abelian when p # 2.
We now show that Hs is nilpotent of class at most 2. Let a,b,c,z,y,2 € G
such that x,y and z are 2-elements. Let u = [[a, z, z, z], [b,y, y, y]]. We want
to show that u commutes with [c, z, z, z]. From equation like equation (2) we
see that u has order either 1 or 2. We consider two cases. Suppose first that

[c, 2, 2,2] = 2*™

Hy

for some integer m. We know that u"? is abelian. Therefore

4am 4m

]4m[u, Z,Z]( 2 )[u, Z, 2z, Z]< 3) = 1.

[u, [, z, 2, 2]] = [u, 2
By Lemma 4 we have that [, 2, 2, 2] € (2%), we can thus assume that
[c, 2,2, 2] = 2*™

where m is odd. By similar argument as before we have that z* = 1 and
(22)2 is abelian. By Lemma 2 we have that [a,z,z,2] € G* Therefore
u € G*. Suppose that u = uf---u}. But

2m 4] 2m 2

(25 u

y Wi | = [Z 7ui]4[z2m7ui7ui]6[z mauiauiaui]4 =1

So again [u,[c, z,2,2]] = 1. O
From our knowledge on 3-Engel groups we get the following corollary.

Corollary 2 Let G be a 3-Baer group which is b-torsion free. Then G is
soluble of derived length at most 5. Furthermore if G does not have an
inwvolution then G has derived length at most 4.

bt



Remarks (1) What are the best upper bounds in Corollary 27 We know it
must be 3,4 or 5 in the general case and 3 or 4 when G is also 2-torsion free.
If G is a torsion 4-Engel group that is {2, 3, 5} —torsion free it is known [6,7]
that G is nilpotent of class at most 7 so in that case the derived length is at
most 3.

(2) Is it possible to strengthen Theorem 1 so that every 3-Baer group is
abelian by 3-Engel?

3 Metabelian 3-Baer groups

It is well known that there are metabelian 3-Engel groups of exponent 4 that
are non-nilpotent. Take for example the standard wreath product of a cyclic
group of order 2 with a countably infinite elementary abelian 2-group. So
metabelian 3-Baer groups need not be nilpotent. However if a metabelian
3-Baer group is without an involution then it is nilpotent. Garrison and
Kappe [1] have shown the best upper bound for the nilpotency class is 4 if
one furthermore assumes that there are no elements of order 3. They also
give an example of a metabelian 3-Baer 3-group which is nilpotent of class
5. In this section we will prove that 5 is in fact the best upper bound for
the nilpotency class of 3-Baer 3-groups. We will first need the following
elementary lemma.

Lemma 5 Let G = (x,y) be a metabelian 3-Baer 3-group. Let H <G then
[H,G*] < [H,G*[H,G,G)* .
Furthermore, if H < vo(G) then
[H,G*) < [H,G]""
Proof Let h € H and g € G. Since G is a metabelian 4-Engel group, we
have

3t 3t
3

09" = [h, 91" [, 9,912 1, 9, 9, 9](5) (2)
which is in [H, G]* [H, G, G, G]*"". (We will not need this slightly stronger
version). This proves the first part of the lemma. Now suppose furthermore
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that h € 12(G). If g € 2(G) then [h,g] = 1. So let g € G\ 12(G); we may
assume that G = (g, f) for some f € G. Then h € (g)¢ and since G is a

3-Baer group we have [h,g,g] € (g) so [h,g,9,9] = 1. It follows now from
(3) that [h, %] < [H,g]*. D

We are now ready to prove the main result of this section.

Proposition 1 Let G be a metabelian 3-Baer group and suppose t € G is a
3-element. Then [x,t t, t,y,z] =1 for all x,y,z € G.

Proof From [2] we have that a metabelian n-Engel group satisfies [z, y, z,,_1 u] =
1 (this follows from [z,, u[z,y]] = 1). Since G is a metabelian 4-Engel group,
it follows that

1=t [z,y],t,t, 2] = [t,z,y, 1, t, 2| [t, y, z, t, t, 2]

and thus
[z, t,t, t,y, 2] = [y, t,t,t,x,2] forall z,y,z € G. (3)

Suppose for some given x,y, z,t € G we have [z,t,t,t,y,z] # 1. Since G is
a metabelian Bs group we have that [x,¢,t,t], [z,t,t,t,y] = [z, t,y,t,t] and
[z,t,t,t, 2] are in (t). Furthermore suppose

<[l‘,t,t,t]> = <t3i>’ ([t?’i,yb _ <t3i+u>, <[t3i,Z]> _ <t3i+e>.

Assume that z is chosen so that i is minimal and then that y and z are
chosen so that v and e are minimal. We then have u = e and we can assume
that y = z. We also have ([z,t,¢,¢,y,y]) = (t*") and thus t* # 1. Now
suppose further that

(ly.t.t.8)) = (¢*) and ([, 2]) = (¢*).

Since x was chosen such that ¢ is minimal we must have ¢ < j. It follows
now from identity (4) that j + h =i + u and therefore h < u. We thus have
37" £ 1 and therefore [z, t,t,t, 2, 2] # 1. We will now show that this leads
to a contradiction.

Suppose first that x is of infinite order. Let w = [z,¢,t,t,2]. Since G is
a 3-Baer group we have that [z,u] = 2™ for some integer m. Since G is



locally nilpotent the argument that was used in the proof of Lemma 4 gives
that m = 0 and thus [z,¢,t,¢t, 2z, 2] = 1. We can thus assume that x is of
finite order. Since G is locally nilpotent we have that x commutes with ¢ if
x has order coprime to 3. We can thus assume that x is also a 3-element.
From [2] we have that a metabelian n-Engel group G satisfies the identi-
ties Y41 (G)FD (D21l —  and Ay, o (G (D = 1. Since G is a
metabelian 4-Engel group we have then that 75(G)%4° = ~4(G)3* = 1. Thus
[x,t,t,t,2]° = [x,t,t,t,z,2]> = 1. We therefore have that 3" = 1 and
3 # 1 which implies that we must have h = 1. Since i > 1 we have that
|t| > 3%. Similarly we have |z| > 3% Now ([, t,t,t]) = (t*'). Suppose further
that ([t,z, 2, z]) = @¥). If ([z%,1]) = (@¥"") then by the same argument as
before we have k = 1. From what we have already shown we have

[ ¥ )

t3i+3 _ x3j+3 [t32+2 ] _ -
= ] (¥ 1) = 1. (5)

[ 2] = [, 2, 8) = [
Let H = (z,t) and suppose further that t is chosen in H \ ®(G) such that
it has minimal order. Notice that we still have [z, t,¢,¢,2, 2] # 1 for some
other generator z for H. Since ¢ has minimal order we have that ¢ < j. We
now have ([z,t,t,t,z,z]) = (t37) = (z%"") . Suppose that

3it+2 —3i+2,

t =z
for some r not divisible by 3. Let u = tz¥ 7. We get a contradiction by
showing that u*"" =1 (since then ¢ is not of minimal order in H \ ®(G)).
Let y = 2% " and n = 32, We will show that (ty)” = t"y". Since t" =y ™"
it follows then that " = 1.
We let H = (t,y) and for each integer m > 1 we let H,, = vo(H)* " ~v3(H)*""
We show by induction on m that

(ty)*" =t*"y*" (modulo H,,). (6)

Modulo y3(H) we have (yt)* = y3t3[t,y]® and (6) is therefore true for
m = 1. Suppose now that (6) is true for some m > 1. Then (yt)*" = " t3"h
for some h € H,,. It follows from Lemma 5 that y*", t3" and h commute
modulo H,,.;. Also h* € H,,.;. Therefore we have modulo H,,,; that
(yt)3m+1 = y3m+1t3m+l. This finishes the proof of our inductive hypothesis.
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i+2 i+2 142
3R _ 438

From (5) we have that H; ;o = {1} and thus (6) gives us (ty)
as we wanted. O

It is well known [3] that metabelian 3-Engel groups without involutions are
nilpotent of class at most 3. Therefore we have as a corollary the following
result.

Theorem 2 Let G be a metabelian 3-Baer 3-group. Then G is nilpotent of
class at most 5.

Remarks. (1) As we mentioned in the introduction, there are examples of
metabelian 3-Baer groups which have class 5 so this is the best upper bound.
(2) The following result of P. Hall is well known: If G is a group with normal
subgroup H such that G/[H, H] and H are nilpotent then G is nilpotent. One
also gets a bound for the nilpotency class of G in terms of the nilpotency
classes of the quotient and the subgroup. Using this result, Corollary 2 and
what we know about metabelian groups one can show that 3-Baer 3-groups
are nilpotent of class at most 965. When G is {2, 3, 5}-torsion free we however
have a much better upper bound since, as we mentioned in section 2, 4-Engel
{2, 3, 5}-torsion free groups are nilpotent of class at most 7.

References

[1] D. J. Garrison and L.-C. Kappe. Metabelian groups with all cyclic sub-
groups subnormal of bounded defect, in Infinite groups 94, edited by
F.de Giovanni and M. Newell, de Gruyter, Berlin/New York (1995),
73-85.

[2] N. D. Gupta and M. F. Newman. On metabelian groups. J. Austral.
Math. Soc. 6 (1966), 362-368.

[3] H. Heineken. Engelsche Elemente der Lange drei. [llinois J. Math. 5
(1961), 681-707.

[4] L.-C. Kappe and W. P. Kappe. On three-Engel groups. Bull. Austral.
Math. Soc. 7 (1972), 391-405.

[5] L.-C. Kappe and G. Traustason. Subnormality conditions in non-torsion
groups. Bull. Austral. Math. Soc. 59 (1999), 461-467.

9



[6] G. Traustason. Engel Lie-algebras. Quart. J. Math. Ozford Ser. (2) 44
(1993), 355-384.

[7] G. Traustason. On 4-Engel Groups. J. Algebra 178 (1995), 414-429.

[8] M. Vaughan-Lee. The Restricted Burnside Problem (2nd edition),
Clarendon Press Oxford (1993).

10



