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According to results of Heineken and Stadelmann, a non-torsion

group is a 2-Baer group if and only if it is 2-Engel, and it has all sub-

groups 2-subnormal if and only if it is nilpotent of class 2. We extend

some of these results to values of n greater than 2. Any non-torsion

group which is an n-Baer group is an n-Engel group. The converse

holds for n = 3, and for all n in case of metabelian groups. A non-

torsion group without involutions having all subgroups 3-subnormal

has nilpotency class 4, and this bound is sharp.
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1 Introduction

Let G be a group. A subgroup H in G is said to be subnormal, if there exists
a finite series H = H0, H1, . . . , Hk−1, Hk = G, such that

H = H0 � H1 � · · · � Hk = G.

If n is the length of the shortest such series, we say H is subnormal of defect
n, or n-subnormal, denoted by H ⊳n G.

In a group of nilpotency class n, all subgroups are subnormal of defect
at most n. Conversely, Roseblade in [8] has shown that a group G with
all subgroups n-subnormal is nilpotent of class µ(n). However, µ(n) is not
explicitly given in [8] and the exact values are only known for n = 1 and 2.
So far, the function µ(n) seems to be not well understood. On the one hand,
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using direct methods following Roseblade’s approach, it appears that µ(n) is
growing very rapidly with n. On the other hand, it can be easily seen that in
metabelian groups µ(n) grows linearly with n, provided the group does not
contain elements of small order.

A group with all cyclic subgroups n-subnormal is called an n-Baer group.
The class of n-Baer groups will be denoted by Bn. It can be easily seen that
any group in Bn is (n + 1)-Engel, i.e. [x,n+1 y] = 1 for all x, y in the group,
where [x,k y] = [[x,k−1 y], y] and [x,1 y] = [x, y] = x−1y−1xy. Denoting the
class of groups with all subgroups n-subnormal by Un, we obviously have that
every Un-group is a Bn-group. In case n = 1, the class of Dedekind groups
(see [1], [2] and Theorem 6.1.1 in [9] for easier reference), all subgroups being
n-subnormal is equivalent to all cyclic subgroups being n-subnormal. This
is no longer the case if n ≥ 2. For one thing, n-Baer groups, n ≥ 3, are not
necessarily nilpotent. However, for 2-Baer groups this is still true as follows
from results of Heineken [5] and Mahdavianary [7], which states that a group
with all cyclic subgroups 2-subnormal is nilpotent of class not exceeding 3.
As a corollary of this result, it follows that µ(2) ≤ 3. This bound is sharp.
However not all B2-groups are U2-groups.

In this article we will be interested in the groups in Un and Bn which are
non-torsion groups. There is some evidence that the structure of the non-
torsion groups is different. A non-torsion group is for example a Dedekind
group if and only if it is abelian. Heineken [5] has also shown that a non-
torsion group is a 2-Baer group if and only if it is 2-Engel, whereas a result
of Stadelmann [10] states that a non-torsion group is a U2-group if and only
if it is nilpotent of class at most 2. Furthermore, in [3] it was shown that for
metabelian non-torsion groups, n-Engel and n-Baer are equivalent, provided
n ≤ 5, or the group contains no elements of order ≤ n − 1 in case n ≥ 6. In
this article we will show that this result holds without restrictions on element
orders.

It is natural to ask whether one can extend these results. We will see that
one implication in Heineken’s result can be generalized. We will show that
every non-torsion n-Baer group is always an n-Engel group, and in fact, we
have that these conditions are equivalent when n = 3. One expects the non-
torsion groups in Un have a much simpler structure than the torsion groups in
this class. At this time we do not have an analogue of Stadelmann’s Theorem
for general n. However, we can say a few things about U3-groups. It follows
from a result in [11] that non-torsion groups in U3 without involution have

2



nilpotency class at most 4. This bound is sharp as can be seen from a family
of non-torsion groups in U3, having nilpotency class 4 and a torsion subgroup
of p-power order, p 6= 2. For non-torsion groups in U3 with involutions, the
class bound is at least 4 as we will see in another example. We do not know
at present if this bound is sharp.

2 Non-torsion groups with every cyclic sub-

group n-subnormal

In this section we prove our first main result, that every non-torsion n-Baer
group is an n-Engel group, extending Heineken’s result for n = 2 [5]. We
begin with an elementary lemma for nilpotent groups.

Lemma 2.1 Let G be a nilpotent group of class c in which the torsion sub-

group τ(G) has finite exponent r. Then [τ(G), Grc−1

] = 1.

Proof We show by induction that

[τ(G),c−i G, Gri−1

] = 1,

for i = 1, 2, . . . , c. Since G is nilpotent of class c this is clearly true for i = 1.
For the induction step we assume that this is true for i = 1, . . . , k for some
1 ≤ k < c. Let x ∈ [τ(G),c−(k+1) G] and let g ∈ G. From the induction
hypothesis we have that

[x, ugrk−1

] = [x, grk−1

][x, u][x, u, grk−1

]

= [x, grk−1

][x, u]

for all u ∈ G. Using this repeatedly we get

[x, grk

] = [x, g(rk−1)r] = [x, grk−1

]r = 1,

since τ(G)r = 1. This finishes the proof of the inductive hypothesis. In
particular we have [τ(G), Grc−1

] = 1. 2

Our aim is to show that every element in a non-torsion n-Baer group is
a left n-Engel element. In our next lemma we show this for the elements of
infinite order.
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Lemma 2.2 Let G be an n-Baer group. Then every element of infinite order

is a left n-Engel element.

Proof Suppose x, y ∈ G with |y| = ∞. Since G is an n-Baer group, we
have 〈y〉(G,n) = 〈y〉. It follows that [y, [x,n−1 y]] = yr for some r ∈ Z. Since
G ∈ Bn, we have that G is (n + 1)-Engel. Hence

1 = [y,n+1 [x,n−1 y]] = yrn+1

.

Since |y| = ∞, we must have r = 0. 2

Theorem 2.3 Let G be a non-torsion n-Baer group. Then G is an n-Engel

group.

Proof By the last lemma, every element of infinite order is a left n-Engel
element. We thus only have to show that every element of finite order is a
left n-Engel element. We first show that every element of infinite order is a
right n-Engel element. Let z, x ∈ G such that |z| = ∞ and |x| < ∞. Then
H = 〈z, x〉 is a finitely generated nilpotent group and thus τ(〈z, x〉) is finite.
By Lemma 2.1 we have that H/CH(τ(H)) is of finite exponent, say m. Then,
since |xzm| = ∞, we have that

1 = [z,n xzm]

= [[z, x][z, x, zm],n−1 xzm]

= [z, x,n−1 xzm]

= [z,n x].

So we have shown that every element of infinite order is a right n-Engel
element. In particular, if |y|, |x| < ∞ and |z| = ∞ then 1 = [yzm,n x]. Since
〈x, y, z〉 is nilpotent, we can apply Lemma 2.1 again to find another m such
that zm commutes with x and y. But then

1 = [yzm,n x] = [y,n x],

and we have proved the theorem. 2

Corollary 2.4 A non-torsion group is a 3-Engel group if and only if it is a

3-Baer group.

4



Proof By Theorem 2.3, a non-torsion group in B3 is 3-Engel. Conversely, by
[6] we have for any group G the conditions G being 3-Engel and the normal
closure xG of every element x in G having nilpotency class 2 are equivalent.
Hence 〈x〉 ⊳2 xG. Since xG ⊳ G, it follows that 〈x〉 ⊳3 G, the desired result. 2

The result for n = 2, corresponding to the above corollary, is due to
Heineken [5]. The result of the next corollary appears in [3] for n ≤ 5 and
for n ≥ 6, provided the group contains no elements of order ≤ n − 1.

Corollary 2.5 A metabelian non-torsion group is an n-Engel group if and

only if it is an n-Baer group.

Proof Since G is a non-torsion group in Bn, it follows by Theorem 2.3 that
G is n-Engel. By Lemma 2.6 in [3] we have that any metabelian n-Engel
group is an n-Baer group, the desired result. 2

3 Non-torsion groups with every subgroup

3-subnormal

As mentioned in the introduction, Stadelmann [10] has shown that a non-
torsion group is a U2-group if and only if it is nilpotent of class at most
2. The topic of this section is the investigation of bounds for the nilpotency
class of non-torsion groups in U3. A subgroup H of a group G is 3-subnormal
in G if and only if [G, H, H, H ] ≤ H . Thus any group of class 3 is in U3.
However, as we will see in the next theorem, the converse is not true, even
in the case of non-torsion groups.

Theorem 3.1 A non-torsion group in U3 without involutions has nilpotency

class at most four. There exist non-torsion groups without involutions in U3

having nilpotency class precisely four.

Proof Let G be a group as in the hypothesis. Then G is 3-Engel by
Theorem 2.3. Since G has no involutions, it follows by Theorem 1 in [11]
that the nilpotency class of G does not exceed four. Consider the groups of
Example 3.2. They have nilpotency class precisely four and are U3-groups
by Proposition 3.3. Thus the bound on the nilpotency class is sharp. 2

In the following, we construct a non-torsion group with a torsion subgroup
being a p-group, p an odd prime, which has the properties as claimed in
Theorem 3.1.
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Example 3.2 Let p be an arbitrary prime different from 2. Take the rela-
tively free group 〈x, y, z〉 in the variety of 3-Engel groups that are nilpotent
of class at most 4 and let G(p) be the quotient satisfying the extra relations:

yp2

= 1, [y, z] = y2p, [x, z, z] = 1, zp2

= [y, x, z, x],
[z, x]p = 1, [x, y, y] = 1, [y, x]p = [y, x, z].

Let a1 = x, a2 = z, a3 = y, a4 = xp, a5 = zp, a6 = yp, a7 = [z, x],
a8 = [y, x], a9 = [y, x]p, a10 = [z, x, x], a11 = [y, x, x] and a12 = [y, x, z, x].
We can deduce from these relations that G(p)/〈xp2

〉 has power-commutator
presentation with generators a1, . . . , a12 and the following relations:

ap
1 = a4, ap

2 = a5, ap
3 = a6, ap

4 = 1, ap
5 = a12, ap

6 = 1,
ap

7 = 1, ap
8 = a9, ap

9 = 1, ap
10 = 1, ap

11 = a12, ap
12 = 1,

[a2, a1] = a7, [a3, a1] = a8, [a3, a2] = a2
6, [a4, a1] = 1, [a4, a2] = 1,

[a4, a3] = ap−1
9 a

(p+1)/2
12 , [a5, ai] = 1, [a6, a1] = a9, [a6, ai] = 1 if i 6= 1,

[a7, a1] = a10, [a7, a2] = 1, [a7, a3] = ap−1
9 a4

12, [a7, ai] = 1 if i ≥ 4,
[a8, a1] = a11, [a8, a2] = a9, [a8, a3] = 1, [a8, a4] = a12, [a8, a5] = 1,
[a8, a6] = 1, [a8, a7] = a4

12, [a9, a1] = a12, [a9, ai] = 1 if i 6= 1,

[a10, a3] = a3
12, [a10, ai] = 1 if i 6= 3, [a11, a2] = ap−3

12 , [a11, ai] = 1 if i 6= 2,
[a12, ai] = 1.

We refer to [12] for a discussion of power-commutator presentations. One
can check that this power-commutator presentation is consistent. It follows
that G(p) has class 4.

This concludes the construction of the example. In the next proposition
we will establish that all subgroups of G(p) are 3-subnormal.

Proposition 3.3 For each prime p 6= 2 we have that G(p) is in U3.

Proof Let g, h1, h2, h3 ∈ G(p) and H = 〈h1, h2, h3〉. It is sufficient
to show that [g, h1, h2, h3] ∈ H . For ease of notation write G(p) = G. We
consider several cases. First assume that H contains an element of finite order
that is not contained in 〈x, y〉[G, G]Gp. Then H has an element of the form
zyru, where r is some integer and u ∈ 〈a6, a7, . . . , a12〉. From the presentation
above one sees that 〈a6, a9, a12〉�G and that 〈a2, a3, a6, . . . , a12〉/〈a6, a9, a12〉
is abelian. Since yp, up ∈ 〈a6, a9, a12〉, we thus have that

(zyru)p = zpv,
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with v ∈ 〈a6, a9, a12〉. The group 〈a5, a6, a9, a12〉 is abelian and ap
6 = ap

9 =
ap

12 = 1. Therefore

(zyru)p2

= (zpv)p = zp2

= [y, x, z, x],

and H contains γ4(G). In particular [G, H, H, H ] ≤ H .
We can thus assume that H has no torsion element outside 〈x, y〉[G, G]Gp.

Therefore dim(H [G, G]Gp/[G, G]Gp) is at most 2. Suppose first that the
dimension is 2. Then H contains elements of the form xmyrzsu, yv, where
m, r, s are integers with p not dividing m and u, v ∈ [G, G]Gp. From the
presentation we have that

[yv, xmyrzs, xmyrzs]p = [y, x, x]pm2

= [y, x, z, x]m
2

6= 1,

and H again contains [G, H, H, H ].
Finally we can assume that H is contained in 〈t〉[G, G]Gp for some t ∈ G.

From the presentation we see that G has nilpotency class 4 and that γ4(G)
is cyclic of order p. This together with the fact that G is 3-Engel implies
[G, H, H, H ] ≤ 〈[g, t, t, t] | g ∈ G〉 = 1, the desired result. 2

The result of the next proposition shows that the class bound for a group
in U3 with involutions is at least four.

Proposition 3.4 The relatively free 3-Engel group of rank 2 is a U3-group.

Proof Let G = 〈x, y〉 be the free 3-Engel group of rank 2. Let H be
an arbitrary subgroup of G. We want to show that [G, H, H, H ] ≤ H . First
suppose that H [G, G]G2 = G. Then H contains elements of the form xu,
yv with u, v ∈ [G, G]G2. From [4], we know that G has nilpotency class 4
and that γ4(G) = 〈[x, y, y, x]〉 is cyclic of order 2. But then [xu, yv, yv, xu] =
[x, y, y, x], and H therefore contains γ4(G). In particular, [G, H, H, H ] ≤ H .
We can thus assume that H ≤ 〈t〉[G, G]G2 for some t ∈ G \ [G, G]G2. Using
again the fact that γ5(G) = 1 and γ4(G)2 = 1, we have [G, H, H, H ] ≤
〈[g, t, t, t] | g ∈ G〉 = 1. 2
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