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1 Introduction

We say that a group G or a variety of groups V satisfies a semigroup law,
if it satisfies a nontrivial law of the form u(x1, . . . , xn) = v(x1, . . . xn), where
u and v are words in the free semigroup freely generated by x1, . . . , xn. It
follows from a result of J. Lewin and T. Lewin [2] that a variety V of groups
which satisfies a semigroup law can be characterised by its semigroups laws.
Furthermore, we have then a sufficient and necessary condition for a semi-
group to be embeddable in some group in V . A semigroup S is embeddable
in some group in V if and only if it is cancellative and it satisfies all the
semigroup laws that hold in V . In other words we have that S is embed-
dable in some group in V if and only if S is a cancellative semigroup in the
corresponding semigroup variety. In [4] B. H. Neumann and T. Taylor show
that nilpotent groups satisfy semigroup laws. We will be using their work
later on so we will now describe it in more details. Let F be a free group
that is freely generated by the variables x, y, z1, z2, . . .. We define a sequence
of words q1, q2, . . . in the variables x, y, z1, z2, . . . by induction as follows.

q1(x, y) = xy, qi+1(x, y, z1, . . . , zi) = qi(x, y, z1, . . . , zi−1)ziqi(y, x, z1, . . . , zi−1).

They show that a group is nilpotent of class at most c if and only if it satisfies
the semigroup law qc(x, y, z1, . . . , zc−1) = qc(y, x, z1, . . . , zc−1). It now follows
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easily that every group that is an extension of a nilpotent group by a group
of finite exponent satisfies a semigroup law. For some classes of groups the
converse is true. In the paper by J. Lewin and T. Lewin mentioned above
this is shown to be true for finitely generated soluble groups and A. Shalev[5]
has shown that every finitely generated residually finite group that satisfies
a semigroup law must also be nilpotent by finite.

In this paper we will be considering the corresponding question for Engel
groups. We remind the reader that a group G is an n-Engel group if it sat-
isfies the law [. . . [[x, y], y], . . . y

︸ ︷︷ ︸

n

] = 1. A. I. Shirshov [6] has shown that the

variety of n-Engel groups can be characterised with semigroup laws when n

is either 2 or 3. In the first case only one law is needed, xy2x = yx2y, but to
describe 3-Engel groups we need two semigroup laws

xy2xyx2y = yx2yxy2x and xy2xyxyx2y = yx2y2x2y2x.

Whether every n-Engel groups can be described in terms of semigroup laws
is an open question and stated as problem 2.82 in the Kourovka notebook
[8]. In this article we will extend Shirshov’s result to 4-Engel groups and
find two semigroup identities that describe the variety of 4-Engel groups. In
August 1997, P. Longobardi and M. Maj [3] gave a lecture at the conference
Groups St Andrews 97 in Bath in which they presented a partial solution.
They proved that there is a semigroup law that every torsion-free 4-Engel
group satisfies. Our generalisation is based on the following result.

Proposition 1 Let G be a 4-Engel group and let a, b ∈ G. The subgroup

〈a, ab〉 is metabelian and nilpotent of class at most 4.

In the special case when G is a torsion group this was proved by the author
a few years ago [7] and in the case when G is torsion-free this is also known
to be true [3]. M. Vaughan-Lee [9] has recently proved the proposition in the
general form using computer methods. We will give a different hand proof in
next section. We will use the remaining part of this section to see how we can
apply this proposition to show that the 4-Engel condition can be described
in terms of semigroup laws.

Let G be a 4-Engel group. For every a, b ∈ G we have that ab and ba are
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conjugate and the proposition therefore implies that the subgroup 〈ab, ba〉
is nilpotent of class at most 4. But from the result of B. H. Neumann and
T. Taylor we have that every group that is nilpotent of class at most 4 sat-
isfies the identity q4(x, y, 1, 1, 1) = q4(y, x, 1, 1, 1). Therefore G satisfies the
nontrivial identity

q4(xy, yx, 1, 1, 1) = q4(yx, xy, 1, 1, 1).

So 4-Engel groups satisfy a semigroup law. We mentioned earlier in the
introduction the result of J. Lewin and T. Taylor that a variety which satis-
fies a semigroup law can in fact be characterised by its semigroup laws. In
fact, given a nontrivial semigroup law xh(x, y) = yk(x, y), there is a simple
procedure that replaces each law in the variety by a semigroup law that is
equivalent modulo the law xh = yk. The idea is very simple. One uses
x−1y = hk−1 repeatedly to change an arbitrary word to a word of the form
uv−1 where u and v are semigroup words.

Example. The word x−1yt−1z is equivalent to h(x, y)k(x, y)−1t−1z which is
equivalent to h(x, y)h(tk(x, y), z)k(tk(x, y), z)−1. So, modulo the law xh(x, y) =
yk(x, y), we have that the law x−1yt−1z = 1 is equivalent to the semigroup
law h(x, y)h(tk(x, y), z) = k(tk(x, y), z).

We can thus use the semigroup law we have obtained to replace the 4-Engel
law by a semigroup law that is equivalent modulo the first semigroup law.

2 Subgroups generated by two conjugate el-

ements in 4-Engel groups

In this section we give a new proof of Vaughan-Lee’s recent result that every
subgroup in a 4-Engel group, that is generated by two conjugate elements,
is metabelian and nilpotent of class at most 4. As we mentioned in the
introduction, this has already been proved in the case when the group is
either a torsion group or a torsion-free group. Before we get into the proof
we make a short useful remark about 4-Engel groups. When we wrote up the
4-Engel identity in the introduction, we used bracketing from the left. But

[[[[y, x], x] · · ·], x]
︸ ︷︷ ︸

m

= [x−1, [· · · [x−1, [x−1

︸ ︷︷ ︸

m

, y]]]]x
m

.
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So it does not matter whether we use bracketing from the right or from the
left in the definition. We will use both in the following calculations. The
following two lemmas where proved in [7] but we include the proofs here for
the convenience of the reader, since they are not long. For the rest of this
section we assume that G is a 4-Engel group and that a and ab are some
fixed conjugate elements in G.

Lemma 1 We have that [a, ab] and [a, ab]aab

commute with [a, ab]a and [a, ab]a
b

.

Proof We have

1 = [a, [a, [a, [a, b]]]]

= [a, ([a, [a, b]]−a · [a, [a, b]])]

= [a, [a, b]]−a · [a, [a, b]]a
2

· [a, [a, b]]−a · [a, [a, b]]

= [a, b]−a[a, b]a
2

[a, b]−a3

[a, b]a
2

[a, b]−a[a, b]a
2

[a, b]−a[a, b]

which implies that

[a, [a, b]]a
2

=[a, [a, b]]a · [a, [a, b]]−1 · [a, [a, b]]a (1)

[a, b]a
3

=[a, b]a
2

[a, b]−a[a, b]a
2

[a, b]−a[a, b][a, b]−a[a, b]a
2

. (2)

Also

1 = [[[[b, a], a], a], a]

= [[a, b][a, b]−a, a, a]

= [[a, b]a[a, b]−1[a, b]a[a, b]−a2

, a]

= [a, b]a
2

[a, b]−a[a, b][a, b]−a[a, b]a
2

[a, b]−a[a, b]a
2

[a, b]−a3

and therefore

[a, b]a
3

= [a, b]a
2

[a, b]−a[a, b][a, b]−a[a, b]a
2

[a, b]−a[a, b]a
2

. (3)

From (2) and (3) we have

[a, b]a
2

[a, b]−a[a, b] = [a, b][a, b]−a[a, b]a
2

. (4)

But it is easy to see that this is equivalent to

[a, [a, b]]a · [a, [a, b]] = [a, [a, b]] · [a, [a, b]]a
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which can also be written

[a, ab]a · [a, ab] = [a, ab] · [a, ab]a. (5)

By symmetry we also have that [a, ab] commutes with [a, ab]a
b

. It follows
from this that [a, ab]a

b

commutes with [a, ab]aab

and that [a, ab]a commutes
with [a, ab]a

ba[a,ab] = [a, ab]aab

. 2

Lemma 2 〈a, ab〉′ is generated by [a, ab], [a, ab]a, [a, ab]a
b

and [a, ab]aab

.

Proof Since 〈a, ab〉′ is the normal closure of [a, ab] in 〈a, ab〉, it is sufficient
to show that the group generated by [a, ab], [a, ab]a, [a, ab]a

b

and [a, ab]aab

is normal in 〈a, ab〉. From (1) and (5) we have [a, ab]a
2

= [a, ab]2a[a, ab]−1

and then also [a, ab]a
−1

= [a, ab]−a+2. By symmetry have as well [a, ab]a
2b

=
[a, ab]2ab

and [a, ab]a
−b

= [a, ab]−ab+2. We also have the following relations.

[a, ab]aa−b

= [a, a−b]−1[a, ab]a
−ba[a, a−b]

= [a, ab]a
−b

[a, ab]−aba[a, ab]2a[a, ab]−a−b

= [a, ab]a
−b

[a, ab][a, ab]−aab

[a, ab]−1[a, ab]2a[a, ab]−a−b

,

[a, ab]a
ba = [a, ab][a, ab]aab

[a, ab]−1,

[a, ab]a
ba−1

= [a−1, ab][a, ab]a
−1ab

[a−1, ab]−1

= [a, ab]−a−1

[a, ab]−aab

[a, ab]2ab

[a, ab]a
−1

,

[a, ab]aaba = [a, ab][a, ab]a
2ab

[a, ab]−1

= [a, ab][a, ab]2aab

[a, ab]−ab

[a, ab]−1,

[a, ab]aaba−1

= [a−1, ab][a, ab]a
b

[a−1, ab]−1

= [a, ab]−a−1

[a, ab]a
b

[a, ab]a
−1

,

[a, ab]aabab

= [a, a2b]−1[a, ab]a
2ba[a, a2b]

= [a, ab]−ab
−1[a, ab]2aba[a, ab]−a[a, ab]1+ab

= [a, ab]−ab

[a, ab]2aab

[a, ab]−1[a, ab]−a[a, ab]1+ab

.
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From these equalities it is clear that 〈[a, ab], [a, ab]a, [a, ab]a
b

, [a, ab]aab

〉 is nor-
mal in 〈a, ab〉. 2

Let x = [a, ab] and u = [xa, xab

].

Lemma 3 We have that [xa, xab

] = [xaab

, x]. The group 〈a, ab〉′′ is cyclic

generated by u.

Proof It follows from lemmas 1 and 2 that every element in 〈a, ab〉′ can be
written in the form tz with t ∈ 〈xaab

, x〉 and z ∈ 〈xa, xab

〉, since it follows
from Lemma 1 that the elements in 〈xaab

, x〉 commute with the elements
in 〈xa, xab

〉. This fact will sometimes be used in the following calculations
without mention.

Let y = [a, [a, bx]]. From Lemma 1, we have that y commutes with ya.
It then follows from the 4-Engel law that

1 = [a, [a, y]] = ya2

y−ayy−a.

We next expand y.

y = [a, ([a, x][a, b][[a, b], x])]

= [a, (x−a+1[a, b]x−a−1ab+1)]

= x−axa−1aba[a, b]−ax−a+a2

x−a+1[a, b]x−a−1ab+1

= x−axab[a,ab]−1

[a, [a, b]]x(a−2)ab+1

= x−a+ab+1+aab
−2ab+1

= x−a+1+aab
−ab+1.

We then have

ya2

= x−a3+a2+aaba2
−aba2+a2

= x−a3+a2+(a−1)a2ab(a2
◦ab)−1+a2

= x−a3+a2+(a3
−a2)ab(a◦ab)−(a+1)+a2

= x2+(a−1)ab+a−2,

and

y−a = x−a+aba−aaba−a+a2

= x−a+1+aab
−a2ab

−1−a+a2

= x−a+1+(−a+1)ab+a−2.
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Therefore

1 = ya2
−a+1−a

= x2+aab
−ab+a−2x−a+1−aab+ab+a−2

x−a+1+aab
−ab+1x−a+1−aab+ab+a−2

= x2+aab
−2+1−aab

−2+1+aab+1+1−aab
−2

x−ab+a−a+ab+a−a−ab
−a+ab+a

= x2+aab
−1x−aab

−1+aab+1x−ab
−a+ab+ax1−aab

−2.

Conjugation with x2+aab
−1 gives

1 = [xaab

, x][xab

, xa].

Therefore [xa, xab

] = [xaab

, x] and by Lemma 1 and Lemma 2 we have that
〈a, ab〉′′ is the normal closure of u in 〈a, ab〉′. Since u = [xaab

, x] = [xab

, xa].
We have by Lemma 1 that u commutes with all elements in 〈a, ab〉′ and thus
〈a, ab〉′′ = 〈u〉. 2

By Lemma 3 we have that 〈a, ab〉 is soluble. By a theorem of Gruenberg [1],
every finitely generated soluble Engel group is nilpotent. It thus follows that
〈a, ab〉 is nilpotent. It is in fact easy to see that the nilpotency class is at most
5. We can see this as follows. By Lemma 1 we have that [a, ab] commutes
with [a, [a, ab]]. Since [[a, [a, ab]], a] = 1 by the 4-Engel identity, it follows
that 〈[a, ab], ab〉 is nilpotent of class at most 2. Thus [[a, ab], a, [a, ab]] = 1.
Modulo γ6(〈a, ab〉) this gives that

1 = [[a, ab], a, [a, ab]] = [ab, a, a, ab, a].

From 1 = [[a, ab], [a, ab], a] we then also have [ab, a, ab, a, a]. Hence, every
commutator of weight 5 with two occurances of a is trivial. By symme-
try this is also true for commutators of weight 5 with two occurances of ab

(and thus three occurances of a). Because of this and the 4-Engel law, it is
now clear that every commutator of weight 5 in a and ab is trivial modulo
γ6(〈a, ab〉). Therefore 〈a, ab〉 is nilpotent of class at most 4 and then also
metabelian. This finishes our proof of Proposition 1.

As we said in the introduction, it follows that 4-Engel groups can be de-
scribed in terms of two semigroup identities. We end by deriving an explicit
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description of two such semigroup identities. We have seen that 4-Engel
groups satisfy the identity q4(xy, yx, 1, 1, 1) = q4(yx, xy, 1, 1, 1) which when
expanded becomes

xy2xyx2y2x2yxy2xyx2yxy2x2y2xyx2y = yx2yxy2x2y2xyx2yxy2xyx2y2x2yxy2x.

(6)
We get the second identity by replacing the 4-Engel identity by a semigroup
identity which is equivalent modulo the identity (6). We have

[y, [y, [y, [y, x]]]] = [y, [y, [y, yx]]],

and therefore the 4-Engel identity is equivalent to

[y, [y, [y, yx]]] = 1. (7)

But (7) is equivalent to the identity

[xy, [xy, [xy, yx]]] = 1. (8)

The identity (8) follows from (7) since the words xy and yx are conjugate
and to see that (7) follows from (8) replace y with x−1y in (8). We want to
find a semigroup identity which is equivalent to (8) modulo the identity (6).
Let u = xy and v = yx. Expansion of [u, [u, [u, v]]] gives (8) the form

u−1v−1u−1vu−1v−1uvuv−1u−1vuv−1uv = 1.

We now introduce some more notation. We let a(x, y), b(x, y) and c(x, y) be
the semigroup words in x and y such that the identity (6) can be written in
the following three ways:

xa(x, y) = ya(y, x)

b(x, y)x = b(y, x)y

xyc(x, y) = yxc(y, x).

Identity (6) then gives v(vu)−1 = b(v, vu)−1b(vu, v) and v−1u−1vu = c(u, v)c(v, u)−1.
This implies that modulo (6) the identity (8) is equivalent to

1 = u−1v−1u−1b(v, vu)−1b(vu, v)uvuc(u, v)c(v, u)−1v−1uv.
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Using (6) again we have (vc(v, u))−1uv = a(vc(v, u), uv)a(uv, vc(v, u))−1. Us-
ing this together with the last identity we reach the semigroup identity

b(v, vu)uvua(uv, vc(v, u)) = b(vu, v)uvuc(u, v)a(vc(v, u), uv). (9)

A group is therefore a 4-Engel group if and only if it satisfies the semigroup
identities (6) and (9). The identity (9) is too long to be written down as
word in x and y. Both sides have weight 576 in both x and y. It is likely
however that one can find a description with simpler semigroup identities.
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