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Abstract

In this paper we study groups in which every subgroup is subnor-
mal of defect at most 3. Let G be a group which is either torsion-free
or of prime exponent different from 7. We show that every subgroup in
G is subnormal of defect at most 3 if and only if G is nilpotent of class
at most 3. When G is of exponent 7 the situation is different. While
every group of exponent 7, in which every subgroup is subnormal of
defect at most 3, is nilpotent of class at most 4, there are examples of
such groups with class exactly 4. We also investigate the structure of
these groups.

1991 Mathematics Subject Classification (Amer. Math. Soc.):
primary 20F19, 20F45; secondary 20F18.

1 Introduction

Let G be a group. A subgroup H in G is said to be subnormal, if there exists
a finite series H = H0, H1, . . . , Hn−1, Hn = G, such that

H = H0 � H1 � · · · � Hn = G.

The length of the shortest such series is called the subnormal defect of H
in G. Now let H be an arbitrary subgroup of G. We define the series,
(H(G,i))∞i=1, of successive normal closures by induction as follows:

H(G,0) = G, H (G,i+1) = HH(G,i)
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where HK denotes as usual the normal closure of H in K. It is easy to see
that H is subnormal in G if and only if H (G,r) = H for some r, and the
smallest integer n such that H(G,n) = H is the subnormal defect of H in G.

An element x in G is called a left Engel element if for each g ∈ G there
exists a positive integer n(g) such that

[· · · [[g, x], x], · · · , x
︸ ︷︷ ︸

n(g)

] = 1. (1)

If n = n(g) in (1) can be chosen independently of g, then we say that x is a
left n-Engel element. We define right Engel elements similarly. An element
x in G is called a right Engel element if for each g ∈ G there exists a positive
integer n(g) such that

[· · · [[x, g], g], · · · , g
︸ ︷︷ ︸

n(g)

] = 1. (2)

If n = n(g) in (2) can be chosen independently of g, then we say that x is a
right n-Engel element. If every x ∈ G is a left Engel element, we say that G
is an Engel group and if furthermore every x ∈ G is a left n-Engel element,
we say that G is a n-Engel group.

It is a well known fact that for a finite group G the following are equiva-
lent:

(1) G is nilpotent.
(2) Every subgroup of G is subnormal.
(3) Every cyclic subgroup of G is subnormal.
(4) G is an Engel group.

The only difficult part is that the first statement follows from the last. This
was proved originally by M. Zorn [19].

For infinite groups these properties need not be equivalent although it is
easy to see that (1)⇒(2)⇒(3)⇒(4). It is known that no two of these proper-
ties are equivalent. An example of a non-nilpotent group satisfying (2) was
constructed by Heineken and Mohamed in 1968 [10]. It is much easier to find
an example of a group G satisfying (3) but not (2). One could for example
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take G to be the standard wreath product of the group of order 2 with the
countably infinite elementary abelian 2-group A. This group satisfies (2) but
A is not subnormal. By Golod’s example [4] we have finitely generated Engel
groups that are not nilpotent. However every group satisfying property (3)
is locally nilpotent (every subnormal locally nilpotent subgroup is contained
in the Hirsch-Plotkin radical and since every cyclic subgroup is subnormal,
the Hirsch-Plotkin radical is the whole group) so (4) does not imply (3).

The groups satisfying (3) are called Baer groups. If every cyclic subgroup in
G is subnormal of defect at most n then we say that G is an n-Baer group
or a Bn-group. Under the stronger hypothesis that every subgroup of G is
subnormal of defect at most n, we say that G is a Un-group. By a theorem
of Roseblade [14], every Un-group is nilpotent and the nilpotency class is
bounded by a function only depending on n. This function is however still
not well understood. It is easy to see that every group of class n is a Un-group
and of course every Un-group is a Bn-group. It is also not difficult to see that
every Bn-group is an (n + 1)-Engel group.

Much is known about these classes for some small values of n. It is ob-
vious that a group is a B1-group if and only if it is a U1-group. These groups
are called Dedekind groups and their structure is well known [2,3]. A group
G is a Dedekind group if and only if G is either abelian or the direct prod-
uct of a quaternion group of order 8 and an abelian torsion group without
elements of order 4.

2-Engel groups are also well understood. A group is a 2-Engel group if and
only if the normal closure xG of an arbitrary element is abelian. Moreover
every 2-Engel group is nilpotent of class at most 3 [12]. 2-Baer groups are
closely related to 2-Engel groups. It follows from Levi’s result that every
2-Engel group is a 2-Baer group. Furthermore Heineken [9] and Mahdavia-
nary [13] have shown that if G is a B2-group then G is centre-by-2-Engel and
nilpotent of class at most 3.

3-Engel groups are much harder. Heineken [8] has proved that a 3-Engel
group is nilpotent of class at most 4 if it has no element of order 2 or 5.
There are 3-Engel 2-groups and 5-groups that are not nilpotent. In fact
there is a 3-Engel 5-group that is not soluble [1], whereas Gupta [6] has
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shown that 3-Engel 2-groups are soluble. In 1972 L. Kappe and W. Kappe
[11] gave a characterisation of 3-Engel groups which is analogous to Levi’s
theorem on 2-Engel groups. They showed that the following are equivalent:

(1) G is a 3-Engel group
(2) xG is a 2-Engel group for all x ∈ G
(3) for all x ∈ G we have that xG is nilpotent of class at most 2.

Property (3) implies that a 3-Engel group with r generators has nilpotency
class at most 2r. Gupta and Newman [6] have shown that 2r − 1 is the
best upper bound when r ≥ 3. It also follows from property (3) that every
3-Engel group is a 3-Baer group.

Relatively little is known about 4-Engel groups. It is even still an open
question whether they are locally nilpotent. Some partial results can be
found in [16] and [18]. In this paper we will be looking at the class of U3-
groups. In general, the class of U3-groups is contained in the class of 4-Engel
groups. We will however see later that if one adds the further restriction on
a U3-group that it is either torsion free or of prime exponent, then the group
is a 3-Engel group. Our main results are the following.

Theorem 1 Let G be a 2-torsion free 3-Engel group in U3. Then G is nilpo-
tent of class at most 4.

Theorem 2 Let G be a group in U3 that is either torsion free or of exponent
p where p is a prime not equal to 7. Then G is nilpotent of class at most 3.

Since every group that is nilpotent of class at most 3 is in U3, these two
conditions are actually equivalent. The prime 7 turns out to be exceptional.
For this prime we get the following structure theorem.

Theorem 3 Let G be a group of exponent 7 and nilpotency class 4 in U3.
Then G is a 3-Engel group which satisfies the following properties:
(1) γ4(G) is cyclic of order 7.
(2) The left 2-Engel elements of G/γ4(G) form a subgroup H/γ4(G)

of index 7. Furthermore H is a characteristic subgroup subgroup and
nilpotent of class 2.

(3) The left 2-Engel elements of G form a characteristic subgroup
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which is equal to Z3(G).
Conversely we have that every 3-Engel group of exponent 7 that satisfies (1),
(2) and (3) is in U3.

The groups of exponent 7 can also be described in terms of certain groups
G(r, 7) in U3 that will be constructed later.

Theorem 4 Let r ≥ 3 and let G be an r generator group of exponent 7 in
U3 that is nilpotent of class 4. Then G is a homomorphic image of G(r, 7).

When r = 3 we will see that the situation is quite simple.

Theorem 5 There is exactly one group of exponent 7 in U3 that has 3 gen-
erators and nilpotency class 4. This is the group G(3, 7).

We will also give a complete classification of all groups G of exponent 7 in
U3 that are nilpotent of class 4 and which are minimal with respect to that
property in the following sense: every proper quotient of G is nilpotent of
class at most 3. In particular we will see that there are no such groups of
even rank and for an odd integer n ≥ 3 there are exactly (n − 1)/2 such
groups of rank n.

2 Upper bounds for nilpotency classes

As we pointed out in the introduction, every 3-Engel group is a 3-Baer group.
The converse holds when G is either torsion free or of prime exponent.

Lemma 1 Let G be a n-Baer group which is either torsion free or of prime
exponent. Then G is a n-Engel group.

Proof Let us first introduce some notation. Let x, y ∈ G. We define the
commutators [x,n y] and [yn, x] inductively as follows: [x,0 y] = [y0, x] = x,
[x,n+1 y] = [[x,n y], y] and [yn+1, x] = [y, [yn, x]]. The commutator [x,n y] ∈
〈y〉(G,n). Since G is a n-Baer group, we have 〈y〉(G,n) = 〈y〉 and hence [x,n y] =
yr for some integer r. Since every n-Baer group is a (n + 1)-Engel group, we
can then infer that

[x,n−1 y, [x,n y]] = yr2

,
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and by induction that
yrm

= [[x,n−1 y]m, y].

But Baer groups are locally nilpotent and as a consequence we must have
yrm

= 1 for some positive integer m. Since G is either torsion free or of prime
exponent this implies that yr = 1. Hence [x,n y] = 1. 2

In this section we will be looking at U3-groups which are either torsion free
or of prime exponent. By Lemma 1 we have that these groups are 3-Engel
groups.

Lemma 2 Let G be a 3-Engel group. If u ∈ Z4(G), the 4th term of the
upper central series, then

[u, v, c, c]12 = [u, [v, c, c]]−8

[u, c, v, c]6 = [u, [v, c, c]]−2

[u, c, c, v]4 = [u, [v, c, c]]4.

for all v, c ∈ G.

Proof From the 3-Engel identity, we have

1 = [u, vc, vc, vc][u, vc−1, vc−1, vc−1]

= [u, v, c, c]2[u, c, v, c]2[u, c, c, v]2

and

1 = [v, uc, uc, uc][v, uc−1, uc−1, uc−1]

= [v, u, c, c]2[v, c, u, c]2[v, c, c, u]2

= [u, v, c, c]−6[u, c, v, c]6[u, c, c, v]−2.

Also
[u, [v, c, c]] = [u, v, c, c][u, c, v, c]−2[u, c, c, v].

We can now derive the lemma from these three equations. 2

Lemma 3 Let G be a 3-Engel group that is nilpotent of class at most 4 and
has no element of order 2 or 3. If [v, c, c] ∈ Z(G) then every commutator
[x1, x2, x3, x4] of weight 4 with v occurring at least once and c at least twice,
is trivial.
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Proof Follows immediately from Lemma 2. 2

The next lemma is crucial for later arguments.

Lemma 4 Let G be a group in U3 which is either torsion free or of prime
exponent. If u ∈ Z4(G) and [u, [v, c, c]] 6= 1 for some v, c ∈ G, then

[u, [v, c, c]] = [v, c, c]β[c, v, v]γ

for some integers β and γ where [c, v, v]γ 6= 1. Furthermore, if we let v1 =
c−βvγ then

[u, [v, c, c]]γ = [u, [v1, c, c]] = [c, v1, v1].

When G is of prime exponent then we can take our power indices from Zp.
If we let v2 = c−β/γv then

[u, [v, c, c]] = [u, [v2, c, c]] = [c, v2, v2]
γ .

Proof We have that

[u, [v, c, c]] = [u, v, c, c][u, c, v, c]−2[u, c, c, v].

Since all the factors on the right hand side are in 〈v, c〉(G,3), the same is true
for [u, [v, c, c]]. But since G is in U3, 〈v, c〉(G,3) = 〈v, c〉 and we conclude
that [u, [v, c, c]] ∈ 〈v, c〉. Since 〈v, c〉 is a 2-generator 3-Engel group without
involutions it is nilpotent of class at most 3 [8]. Therefore

[u, [v, c, c]] = vrcs[v, c]α[v, c, c]β[c, v, v]γ

for some integers r, s, α, β, γ. Since [u, [v, c, c]] ∈ Z(G),

1 = [u, [v, c, c], c, c] = [v, c, c]r

and
1 = [u, [v, c, c], v, c] = [v, c, c]−s.

As [u, [v, c, c]] 6= 1, we must have r = s = 0 (modulo p when G is of exponent
p). Therefore

1 = [u, [v, c, c], c] = [v, c, c]α
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which implies as before that α = 0. So

[u, [v, c, c]] = [v, c, c]β[c, v, v]γ.

If γ = 0 then β 6= 0 (modulo p when G is of exponent p) and 1 = [u, [v, c, c], u] =
[u, [v, c, c]]−β which would imply that [u, [v, c, c]] = 1. Hence we must have
γ 6= 0. Simple calculations give the rest of the lemma. 2

Proposition 1 Let G be a group in U3 that is either torsion free or of prime
exponent. Then G is nilpotent of class at most 4.

Proof This is obviously true when G is of exponent 2. It is also well known
that all groups of exponent 3 are nilpotent of class at most 3. We can thus
assume that G is not of exponent 2 or 3. Since G is locally nilpotent it is
sufficient to show that γ5(G) ≤ γ6(G). We can thus assume that G is nilpo-
tent of class at most 5.

We first reduce the problem to showing that [x, t, [y, z, z]] = 1 for all x, t, y, z ∈
G. So suppose we have already established this. We calculate modulo γ6(G).
Let a, b, c, d ∈ G. Since G is a 3-Engel group by Lemma 1, we have from
Lemma 2 that

[x, t, y, z, z] = [x, t, z, y, z] = [x, t, z, z, y] = 1 (3)

for all x, t, y, z ∈ G. In particular we have

1 = [x, z, tz, tz, y] = [x, z, t, z, y][x, z, z, t, y]. (4)

Interchanging x and t in this last identity, using (3), gives

1 = [t, z, x, z, y][t, z, z, x, y]

= [x, t, z, z, y]−1[x, z, t, z, y][x, t, z, z, y]−1[x, z, t, z, y]2[x, z, z, t, y]−1

= [x, z, t, z, y]3[x, z, z, t, y]−1.

From this and (4) we deduce that [x, z, t, z, y] = [x, z, z, t, y] = 1 for all
x, t, y, z ∈ G. From (3) we also have 1 = [x, z, zy, t, zy] = [x, z, z, t, y][x, z, y, t, z].
We have seen that [x, z, z, t, y] = 1, hence [x, z, y, t, z] = 1 and we have shown
that all commutators of weight 5 with repeated entry are trivial. Thus

1 = [x, yz, yz, u, v] = [x, y, z, u, v][x, z, y, u, v],
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which implies that [x, y, z, u, v] = [z, x, y, u, v]. Similarly [z, x, y, u, v] =
[y, z, x, u, v]. From the Hall-Witt identity we then have

1 = [x, y, z, u, v][y, z, x, u, v][z, x, y, u, v]

= [x, y, z, u, v]3.

Therefore γ5(G) ≤ γ6(G) and G is nilpotent of class at most 4. It now
only remains to show that G satisfies the identity [x, t, [y, z, z]] = 1 for all
x, t, y, z ∈ G. We argue by contradiction and assume that [a, b, [c, d, d]] 6= 1
for some a, b, c, d ∈ G. By Lemma 4 we can assume that c has been chosen
such that

[a, b, [c, d, d]] = [d, c, c]. (5)

We see next that [b, [c, d, d]] ∈ Z(G). We apply Lemma 4 again for H =
G/Z(G). From that lemma we would have that [b, [c, d, d]] 6∈ Z(G) implies
that [d, c, c] 6∈ Z(G). But this contradicts (5). Hence [b, [c, d, d]] ∈ Z(G) and
similarly [a, [c, d, d]] ∈ Z(G). Finally

[c, d, d, [a, b]] = [c, d, d, a, b][c, d, d, b, a]−1 ∈ [Z(G), G] = 1

which is the contradiction we were looking for. So [x, t, [y, z, z]] = 1 for all
x, t, y, z ∈ G and the proposition has been proved. 2

Remark From Heineken [8] we already know that every {2, 5}-torsion free
3-Engel group is nilpotent of class at most 4. The proof of Proposition 1 is
thus only needed for groups of exponent 5.

All the groups in Proposition 1 are 3-Engel groups. As a corollary we get
the following generalisation.

Theorem 1 Let G be a 2-torsion free 3-Engel group in U3. Then G is nilpo-
tent of class at most 4.

Proof By Gupta and Newman [7], every 2-torsion free 3-Engel group G has
the property that γ5(G) ∩ G5 = {1}. So any 2-torsion free 3-Engel group
is a subdirect product of a nilpotent 3-Engel group of class at most 4 and
a 3-Engel group that is of exponent 5. Now let G be a 2-torsion free 3-
Engel group in U3. It follows from Proposition 1 that γ5(G) ≤ G5 and since
γ5(G) ∩ G5 = {1}, we deduce that γ5(G) = {1}.
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Remark It is interesting that while the prime 5 is exceptional for 3-Engel
groups in general [1], this is no longer the case when we are in the subclass
of 3-Engel groups in U3.

When G is not of exponent 7 more can be said. We will see in the next
section that 7 is exceptional.

Theorem 2 Let G be a group in U3 that is either torsion free or of exponent
p where p is a prime not equal to 7. Then G is nilpotent of class at most 3.

Proof As we noted in the proof of Proposition 1, this follows easily if G
is of exponent 2 or 3. We therefore exclude those possibilities as well as
exponent 7. Since 2-Engel groups without elements of order 3 are known to
be nilpotent of class at most 2 [12], we only need to show that G satisfies
[y, z, z, x] = 1 for all x, y, z ∈ G. Proposition 1 tells us that G is nilpotent of
class at most 4. As in the proof of Proposition 1, we argue by contradiction
and assume that [a, [b, c, c]] 6= 1 for some a, b, c ∈ G. By Lemma 4 we can
choose a, b, c such that

[a, [b, c, c]] = [c, b, b] 6= 1. (6)

By Lemma 4 it is also true for all integers r that

[a, [b, c, c]] = [a, [b[a, c]r, c, c]] = [b[a, c]r, c, c]β[c, b[a, c]r, b[a, c]r]τ

for some integers β and τ where τ 6= 0 (modulo p when G is of exponent p).
This time β must be trivial. Otherwise we would have

1 = [a, [b, c, c], a] = [c, b, b, a]τ [b, c, c, a]β

and since, by (6), [c, b, b] ∈ Z(G) we would get the contradiction that
[a, [b, c, c]] = 1. So β = 0 and it follows that [a, [b, c, c]] ∈ 〈[c, b[a, c]r, b[a, c]r]〉
for all r. In particular

1 6= [c, b[a, c]r, b[a, c]r] = [c, b, b][c, b, [a, c]]r[c, [a, c], b]r

for all r. But

([c, b, [a, c]][c, [a, c], b])6 = [a, c, b, c]6[a, c, c, b]−12
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which by Lemma 2 is [a, [b, c, c]]−14. Hence

1 6= [a, [b, c, c]]6−14r

for all integers r. Since the group is not of exponent 7 this gives a contra-
diction when G is of prime exponent. In the case when G is torsion free, we
argue similarly. As

[a, [b, c, c]]6 ∈ 〈[a, [b, c, c]]6−14r〉

for all r, we conclude that 6−14r divides 6 for all integers r which is absurd.
2

3 Groups of exponent 7 in U3

In the previous section we saw that groups of prime exponent p in U3 are
nilpotent of class at most 3 when p 6= 7. In this section we will see that there
are groups of exponent 7 that are nilpotent of class 4 and we will investigate
their structure.

Let G be a group of exponent 7 in U3 that is nilpotent of class 4. Since
2-Engel groups of exponent 7 are nilpotent of class at most 2 there must ex-
ist elements c, a1, b1 ∈ G such that [a1, [b1, c, c]] 6= 1. Let T = 〈[a1, [b1, c, c]]〉.
(We will see later that T = γ4(G)).

Lemma 5 There exist a, b ∈ 〈a1, b1, c〉[G, G] such that:
(1) 〈[a, [b, c, c]]〉 = T ;
(2) [c, h, h] ∈ T for all h ∈ 〈a, b〉[G, G] and [c, h, h] = 1 if and only if

h ∈ [G, G];
From (1) and (2) it follows in particular that [c, a, a], [c, b, b] and [c, a, b][c, b, a]
are in T .

Proof Lemma 2 gives us that [b1, [a1, c, c]] = [a1, [b1, c, c]]
−1. We can then

apply Lemma 4 twice to find a, b ∈ 〈a1, b1, c〉[G, G] such that [a, [b, c, c]] =
[a1, [b1, c, c]] and that [c, a, a], [c, b, b] are nontrivial elements in T . As a conse-
quence of this and Lemma 3, every commutator [x1, x2, x3, x4] with c occur-
ring at least once and either a or b occurring at least twice is trivial. Therefore
[c, h, h, k] = 1 for all h, k ∈ 〈a, b〉[G, G]. Now let h ∈ 〈a, b〉[G, G] \ [G, G] and
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choose k ∈ 〈a, b〉 which is linearly independent from h modulo [G, G]. Then
[k, [h, c, c]] is a nontrivial multiple of [a, [b, c, c]]. Lemma 4 tells us further
that

[k, [h, c, c]] = [h, c, c]β[c, h, h]γ

for some β, γ ∈Z7 where [c, h, h]γ 6= 1. Taking the commutator with k
on both sides and using the fact that [c, h, h, k] = 1 we get [k, [h, c, c]]β =
1. Therefore β = 0 which implies that [c, h, h] ∈ T . This proves (2).
Since [c, ab, ab] = [c, a, a][c, b, b][c, a, b][c, b, a], it is now clear from (2) that
[c, a, b][c, b, a] ∈ T . 2

Lemma 6 Let d1 ∈ G\〈c, a, b〉[G, G]. Then there is an element d ∈ d1〈a, b, c〉
such that:
(1) 〈[a, [d, c, c]]〉 = 〈[b, [d, c, c]]〉 = T ;
(2) [c, d, d] is a nontrivial element in T and [c, a, d][c, d, a], [c, b, d][c, d, b] ∈ T .

Proof Since [a, [b, c, c]] 6= 1 there are some r, s ∈Z7 such that [a, [d1a
rbs, c, c]] 6=

1 and [b, [d1a
rbs, c, c]] 6= 1. Lemma 4 implies that there is some d ∈ d1a

rbs 〈c〉
such that [c, d, d] = [a, [d, c, c]]γ where γ 6= 0. G is a 3-Engel group, so clearly
[a, [d, c, c]] and [b, [d, c, c]] are nontrivial. From Lemma 4 we have

[a, [d, c, c]] = [d, [a, c, c]]−1 = [a, c, c]β1[c, a, a]γ1 ,

for some β1, γ1 ∈Z7 with γ1 6= 0. By taking the commutator with d on
both sides, we see that β1 = 0. So 〈[a, [d, c, c]]〉 = 〈[c, a, a]〉 = T , and sim-
ilarly 〈[b, [d, c, c]]〉 = 〈[c, b, b]〉 = T . We now repeat the second part in the
proof of Lemma 5 with b replaced by d and conclude that [c, a, d][c, d, a] ∈
〈[a, [d, c, c]]〉 = T . Similarly we get [c, b, d][c, d, b] ∈ 〈[b, [d, c, c]]〉 = T . 2

Now let a and b satisfy the conditions given in Lemma 5 and add to them
elements di, i ∈ I, such that {c, a, b, di : i ∈ I} is a minimal set of gen-
erators for G with each di having the same properties as d in Lemma 6.
Let H = 〈a, b, di : i ∈ I〉[G, G]. The next proposition contains some of the
essential properties which will be needed for our first structure theorem.

Proposition 2 H is a 2-Engel group and the following properties are satis-
fied for all h ∈ H and u ∈ [G, G]:
(1) [c, h, h] ∈ T ;
(2) [c, hu, hu] = [c, h, h].
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Proof We know from Lemma 5 and Lemma 6 that [c, e, e] ∈ T for all e ∈
{a, b, di : i ∈ I} and that [c, a, b][c, b, a], [c, a, di][c, di, a] and [c, b, di][c, di, b]
are in T for all i ∈ I. If we can prove that [c, di, dj][c, dj, di] ∈ T for all
i, j ∈ I and that [c, h1, h2, h3] = 1 for all h1, h2, h3 ∈ H , then (1) is true.

As a preliminary step we show that [c, di, dj][c, dj, di] ∈ Z(G) for all i, j ∈ I.
Since [di, [a, c, c]] 6= 1, there is some r ∈Z7 such that [di, [dja

r, c, c]] 6= 1.
Applying Lemma 4 we conclude that

[di, [dja
r, c, c]] = [di, [didja

r, c, c]]

= [didja
r, c, c]β[c, didja

r, didja
r]γ ,

for some β, γ ∈Z7 with γ 6= 0. We know that [c, di, di] and [c, dja
r, dja

r] are
in T . From this and Lemma 3 we infer that [c, didja

r, didja
r, di] = 1. So if

we take the commutator with di on both sides in the equation above we see
that we must have β = 0. Therefore [c, didja

r, didja
r] is in 〈[di, [dja

r, c, c]]〉.
Similarly we see that 〈[di, [dja

r, c, c]]〉 = 〈[c, di, di]〉 = T . We conclude from
this that

[c, didja
r, didja

r] ∈ T. (7)

By expanding this commutator and using what we have established so far we
see that [c, di, dj][c, dj, di] ∈ Tγ4(G) ≤ Z(G).

It follows from the previous paragraph that [c, h, h] is in Z(G) for all h ∈ H .
We will now use this fact to prove that H is a 2-Engel group and thus nilpo-
tent of class at most 2. We consider a few cases. First assume that h, k ∈ H
satisfy [h, [k, c, c]] 6= 1. Since [c, h, h] ∈ Z(G) we have by Lemma 3 that every
commutator [x1, x2, x3, x4], with c occurring once and h or k occurring twice,
is trivial. Therefore [h, [k, chr, chr]] = [h, [k, c, c]] for all r ∈Z7. We can then
apply Lemma 4 to see that

[h, [k, c, c]] = [h, [k, chr, chr]] = [k, chr, chr]βr [chr, k, k]γr

where γr 6= 0. Taking the commutator with h on both sides gives as before
that βr = 0. Therefore the expression becomes

[h, [k, c, c]] = [c, k, k]γr [h, k, k]rγr .
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Hence [c, k, k] and [h, k, k] are both in 〈[h, [k, c, c]]〉. If [h, k, k] 6= 1 then we
could choose r such that [c, k, k][h, k, k]r = 1 and we would get the contra-
diction that [h, [k, c, c]] = 1. This means that we must have [h, k, k] = 1
whenever [h, [k, c, c]] 6= 1. Let us now assume that [h, [k, c, c]] = 1 but that
[a, [k, c, c]] 6= 1. Then [ah, [k, c, c]] is also nontrivial and by the previous case
we get that

[a, k, k] = [ah, k, k] = 1.

Now Lemma 3 gives us that [a, k, h, k] = 1 and thus

[h, k, k] = [ah, k, k] = 1.

Next suppose that [h, [k, c, c]] = 1 but that [h, [b, c, c]] 6= 1. Then [h, [bk, c, c]]
and [h, [b−1k, c, c]] are nontrivial as well and by the first case we can deduce
that

[h, b, b] = [h, bk, bk] = [h, b−1k, b−1k] = 1.

Then from Lemma 3 we also know that [h, b, k, b] = [h, k, b, b] = 1. Therefore

1 = [h, bk, bk][h, b−1k, b−1k]

= [h, k, k][h, k, b][h, b, k][h, k, b, k][h, b, k, k]

[h, k, k][h, k, b]−1[h, b, k]−1[h, k, b, k]−1[h, b, k, k]−1

= [h, k, k]2.

Finally we are left with the situation when [h, [k, c, c]] = [a, [k, c, c]] = [h, [b, c, c]] =
1. But [a, [b, c, c]] 6= 1 and since [a, [k, c, c]] = 1 we can infer from this and our
previous case that [a, k, k] = 1. Since [ah, [b, c, c]] 6= 1 and [ah, [k, c, c]] = 1,
we similarly deduce that [ah, k, k] = 1. Lemma 3 gives us as before that
[a, k, h, k] = 1 and thus

1 = [h, k, k] = [ah, k, k][a, k, k]−1 = 1.

We have therefore shown that H is a 2-Engel group and thus nilpotent of class
at most 2. It follows in particular that [c, h1, h2, h3] = 1 for all h1, h2, h3 ∈ H .
Hence we can derive from equation (7) that [c, di, dj][c, dj, di] ∈ T for all
i, j ∈ I. As we said in the beginning of the proof we can conclude from this
that statement (1) holds.

We now turn to the second statement. Let e ∈ {a, b, di : i ∈ I} and
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u ∈ [G, G]. By Lemma 6 we have that [e, c, c] is not in Z(G). It follows that
[eur, c, c] is not in Z(G) for all r ∈Z7. Lemma 4 then tells us that [c, eur, eur]
is nontrivial for all r ∈Z7 and by the first part of the proposition we see that
[c, eur, eur] ∈ T for all r ∈Z7. In particular [c, eu, eu] = [c, e, e]α for some
α ∈Z7 which implies that [c, e, u][c, u, e] = [c, e, e]α−1. If α 6= 1 then α − 1
would have an inverse τ in Z7 and then [c, eu−τ , eu−τ ] = [c, e, e][c, e, e]−1 = 1
which gives a contradiction. Hence α = 1 and [c, e, u][c, u, e] = 1. Since this
is true for all e ∈ {a, b, di : i ∈ I} we conclude that [c, h, u][c, u, h] = 1 for all
h ∈ H . The second statement clearly results from this. 2

We are now ready to state and prove the first structure theorem of this
section.

Theorem 3 Let G be a group of exponent 7 and nilpotency class 4 in U3.
Then G is a 3-Engel group which satisfies the following properties:
(1) γ4(G) is cyclic of order 7.
(2) The left 2-Engel elements of G/γ4(G) form a subgroup H/gamma4(G)

of index 7. Furthermore H is a characteristic subgroup and
nilpotent of class 2.

(3) The left 2-Engel elements of G form a characteristic subgroup
which is equal to Z3(G).

Conversely we have that every 3-Engel group of exponent 7 that satisfies
(1), (2) and (3) is in U3.

Proof Lemma 1 gives us that G must be a 3-Engel group. Let {c, a, b, di :
i ∈ I} be a minimal set of generators. Suppose furthermore that c is chosen
such that [a1, [b1, c, c]] 6= 1 for some a1, b1; that a and b are then chosen as
in Lemma 5 and that all the di are chosen with the same properties as d in
Lemma 6. Let H = 〈a, b, di : i ∈ I〉[G, G]. By Proposition 2 we have that H
is a 2-Engel group and thus nilpotent of class at most 2 by Levi [12]. We also
have from Proposition 2 that [c, h, h] ∈ γ4(G) for all h ∈ H and therefore
H/γ4(G) is a set of left 2-Engel elements in G/γ4(G). Clearly H is of index
7. Also since H is nilpotent of class at most 2, [a, ch, ch, b] = [a, c, c, b] 6= 1
for all h ∈ H . Then H/γ4(G) is the set of all left 2-Engel elements and we
have proved (2).

Consider some commutator of weight 4 in the generators. If c occurs three
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times then the commutator is trivial since G is a 3-Engel group. If c occurs
at most once then the commutator is again trivial because γ3(H) = 1. So if
the commutator is nontrivial c occurs necessarily exactly twice. So we have
a commutator of c, h1,h2 with c occurring twice and where h1,h2 are in H .
By Lemma 2, the commutator is in 〈[h1, [h2, c, c]〉. If [h1, [h2, c, c]] 6= 1 then
Lemma 4 tells us that

[h1, [h2, c, c]] = [h2, c, c]
β[c, h2, h2]

γ

where [c, h2, h2]
γ 6= 1. Taking the commutator with h1 on both sides and

using the fact that γ3(H) = 1, we see that [h1, [h2, c, c]]
−β = 1. Therefore

β = 0 and [h1, [h2, c, c]] ∈ 〈[c, h2, h2]〉 which is contained in 〈[a, [b, c, c]]〉 by
Proposition 2. So we have proved that γ4(G) = 〈[a, [b, c, c]]〉, and it is thus
cyclic of order 7.

To prove (3) we apply Proposition 2 again. We define a map qc from H/[G, G]
to γ4(G) as follows:

qc(h[G, G]) = [c, h, h].

By Proposition 2 this is well defined and since γ4(G) is cyclic, this gives a
quadratic form on the vector space H/[G, G]. We first choose an orthog-
onal basis for 〈a, b〉[G, G]/[G, G] with respect to qc and then expand it to
an orthogonal basis for the whole vector space H/[G, G]. Without loss of
generality we can assume that ā = a[G, G] and b̄ = b[G, G] are orthogo-
nal. We use additive notation for the group operations in H/[G, G] and
γ4(G). Since −1 is a non-square in Z7 and since by Lemma 5 we know that
〈a, b〉[G, G]/[G, G] is a regular subspace, we can furthermore choose a and b
such that qc(b̄) is equal to either qc(ā) or −qc(ā). But by Lemma 5 qc(x) = 0
if and only if x = 0, and this can only happen in the first case. So we can
assume that qc(b̄) = qc(ā). Let {ā, b̄, d̄i = di[G, G] : i ∈ I} be the orthog-
onal basis for H/[G, G]. Our next step is to prove that qc(d̄i) = 0 for all
i ∈ I. Since every element in Z7 can be written as a sum of two squares, we
can find r, s ∈Z7 such that qc(rā + sb̄ + d̄i) = qc(rā + sb̄ − d̄i) = 0. Then
[c, arbsdi, a

rbsdi] = [c, arbsd−1
i , arbsd−1

i ] = 1 and by Lemma 4 we must have
[arbsdi, c, c], [a

rbsd−1
i , c, c] ∈ Z(G). We multiply these elements together and

see that [arbs, c, c] ∈ Z(G). But this can only happen when (r, s) = (0, 0) and
thus qc(d̄i) = 0. In other words we have shown that D = 〈di : i ∈ I〉[G, G]
consists of left 2-Engel elements in G. We next show that there are no
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other left 2-Engel elements in G. Suppose x = crasbt is a left 2 Engel el-
ement in G. Since [a, x, x, b] = [a, c, c, b]r, we must have r = 0. Then
0 = qc(sā+tb̄) = (s2 +t2)qc(ā) which implies that (s, t) = (0, 0). Therefore D
is the set of all left 2-Engel elements of G. Finally let [d, x1, x2, x3] be a com-
mutator such that x1, x2, x3 are in {c}∪H and d ∈ D. Since [c, d, d] = 1 it fol-
lows from Lemma 4 that [d, c, c] ∈ Z(G) and thus we have from Lemma 3 that
[d, x1, x2, x3] = 1 if c occurs at least twice. Since γ3(H) = 1 this is also true
if c occurs at most once. Hence d ∈ Z3(G). Clearly 〈a, b, c〉∩Z3(G) ≤ [G, G]
so D = Z3(G) and we have proved (3).

Now suppose that G is a 3-Engel group of exponent 7 satisfying (1), (2)
and (3). We know from Heineken [8] that G is nilpotent and from (1) that
G is nilpotent of class 4. To show that G is in U3 we need to show that
[G, K, K, K] ≤ K for every subgroup K of G. Since G is nilpotent of class 4
this is equivalent to

[u, v1, v2, v3] ∈ 〈v1, v2, v3〉

for all u, v1, v2, v3 ∈ G. Suppose [u, v1, v2, v3] 6= 1. Since H is nilpotent of
class at most 2 it is necessary that at least one of v1, v2, v3 is not in H . Call
this element c. Then 〈v1, v2, v3〉 = 〈c〉(H ∩ 〈v1, v2, v3〉). Since [u, c, c, c] = 1
we cannot have that H∩〈v1, v2, v3〉 ⊆ Z3(G). Let h ∈ H∩〈v1, v2, v3〉\Z3(G).
By (3) we have that h is not a left 2-Engel element in G and since γ3(H) = 1
this is equivalent to saying that [c, h, h] 6= 1. From (1) and (2) we conclude
that 〈[c, h, h]〉 = γ4(G). Therefore [u, v1, v2, v3] ∈ 〈[c, h, h]〉 ⊆ 〈v1, v2, v3〉. 2

Remark Let G be as in Theorem 3. It is not difficult to see that Z3(G)/Z(G)
is the set of right 2-Engel elements of G/Z(G) and that Z2(G) is the set of
right 2-Engel elements of G. Notice also that the proof tells us that Z3(G)
has index 49 in H .

Our next result will establish the existence of groups with the properties
given in Theorem 3. We will see that for each cardinal r ≥ 3, there is an
r-generator group G(r, 7) of exponent 7 in U3 that is nilpotent of class 4 and
has the further property that every r-generator group of exponent 7 in U3

that is nilpotent of class 4 is a quotient of G(r, 7).

Let r be a cardinal greater than 2. Let E(r, 7) be the relatively free r-
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generator 3-Engel group of exponent 7 with nilpotency class at most 4 and
let the free generators be {z, x, y, ti : i ∈ I} where the cardinal of I is r − 3.
Let H0 = {x, y, ti : i ∈ I} and D0 = {ti : i ∈ I}. We define N(r, 7) as the
normal closure of the set of following elements:

[z, x, x][x, [y, z, z]]−1 [z, y, y][x, [y, z, z]]−1; (8)

[t, z, z, u], [z, t, t] t ∈ D0, u ∈ H0; (9)

[z, u, v][z, v, u] u, v ∈ H0 and u 6= v; (10)

[z, u, v, w] u, v, w ∈ H0; (11)

[u, v, w] u, v, w ∈ H0. (12)

Finally we let G(r, 7) = E(r, 7)/N(r, 7).

Theorem 4 G(r, 7) is in U3 and is nilpotent of class 4. Furthermore, if G
is an r-generator group of exponent 7 in U3 that is nilpotent of class 4 then
G is a homomorphic image of G(r, 7).

Proof Let G be an r-generator group of exponent 7 in U3 that is nilpotent
of class 4. Then G is a 3-Engel group and we saw in the proof of Theorem
3 that G has a set of generators {c, a, b, di : i ∈ I} with all di in Z3(G) and
such that the following properties hold:

[c, a, a] = [c, b, b] ∈ 〈[a, [b, c, c]]〉; (13)

[c, di, di] = 1 for all i ∈ I; (14)

[c, u, v][c, v, u] = 1 for all u, v ∈ {a, b, di : i ∈ I} (15)

where u 6= v.

Let H = 〈a, b, di : i ∈ I〉[G, G]. The proof of Theorem 3 implies that
γ3(H) = 1. Therefore we have:

[c, u, v, w] = 1 for all u, v, w ∈ {a, b, di : i ∈ I}; (16)

[u, v, w] = 1 for all u, v, w ∈ {a, b, di : i ∈ I}. (17)

Suppose that [c, a, a] = [c, b, b] = [a, [b, c, c]]τ . Then

[cτ , a, a] = [cτ , b, b] = [a, [b, cτ , cτ ]].
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We define a homomorphism from E(r, 7) to G by mapping (z, x, y) to (cτ , a, b)
and each ti to di. Since N(r, 7) is the normal closure of the elements (8)-
(12) it follows from the relations above that N(r, 7) is in the kernel of this
homomorphism and thus G is a homomorphic image of G(r, 7). So it only re-
mains to show that G(r, 7) has the properties in the statement of the theorem.

Let c = zN(r, 7), a = xN(r, 7), b = yN(r, 7) and di = tiN(r, 7) for all
i ∈ I. Then let H = 〈a, b, di : i ∈ I〉[G(r, 7), G(r, 7)] and D = 〈di : i ∈
I〉[G(r, 7), G(r, 7)]. It clearly results from relations (8)-(12) and Lemma 2
that H is nilpotent of class at most 2, and that γ4(G(r, 7)) = 〈[a, [b, c, c]]〉. It
is also clear from these relations that the elements of H/γ4(G(r, 7)) are left
2-Engel elements in G/γ4(G(r, 7)) and that the elements of D are left 2-Engel
elements of G(r, 7). Lemma 2, (9) and (11) also give that D ≤ Z3(G). To
finish the proof we need to establish two things. That [a, [b, c, c]] 6= 1 and that
all left 2-Engel elements in G(r, 7) are contained in D. From [a, [b, c, c]] 6= 1
we deduce then that Z3(G) ≤ D and Theorem 3 implies that G(r, 7) has the
claimed properties. It will follow from the next theorem that [a, [b, c, c]] 6= 1.
We will now assume this and show that D contains all the left 2-Engel ele-
ments.

Let
g = cuasbt[c, a]l[c, b]m[a, b]nd

where d ∈ 〈di : i ∈ I〉(G(r,7)γ3(G(r, 7)). Clearly every element in G(r, 7) can
be written in this form. Suppose that g is a left 2-Engel element then

1 = [b, g, g, a] = [b, c, c, a]u

and thus u = 0 (since we are assuming that [a, [b, c, c]] 6= 1). From this and
the fact that γ3(H) = 1 we can infer that g is a left 2-Engel element if and
only if [c, g, g] = 1. Now

[c, g, g] = [c, a, a]s
2

[c, b, b]t
2

[c, a, [c, b]]sm

[c, [c, b], a]sm[c, b, [c, a]]tl[c, [c, a], b]tl.

But [c, b, [c, a]][c, [c, a], b] = [a, c, b, c][a, c, c, b]−2 which is, by Lemma 2, equal
to [a, [b, c, c]]−7/3 = 1. Similarly we have that [c, a, [c, b]][c, [c, b], a] = 1 (it is
here that we need the exponent to be 7). Therefore we have

1 = [c, a, a]s
2

[c, b, b]t
2

= [a, [b, c, c]](s
2+t2),
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and since −1 is not a square in Z7 we must have that (s, t) = (0, 0). Hence g =
[c, a]l[c, b]m[a, b]nd ∈ D and we have shown that every left 2-Engel element is
in D. It remains to be proved that γ4(G(r, 7)) 6= 1. Since G(3, 7) is a quotient
of G(r, 7) for all cardinals r ≥ 3 it is sufficient to show that γ4(G(3, 7)) 6= 1.
This is a consequence of our next result. 2

Theorem 5 There is exactly one group of exponent 7 in U3 that has 3 gen-
erators and nilpotency class 4. This is the group G(3, 7).

Let a = xN(3, 7), b = yN(3, 7) and c = zN(3, 7). Then it is clear from the
relations (8)-(12) that

[c, a, a] = [a, [b, c, c]];

[c, b, b] = [a, [b, c, c]];

[c, a, b][c, b, a]; = 1

[a, b, b] = 1;

[b, a, a] = 1.

From the Hall-Witt identity and Lemma 2 we have:

1 = [a, b, ca][c, a, bc][b, c, ab]

= [a, b, c][c, a, b][b, c, a][c, a, [b, c]]

= [a, b, c][c, a, b]2[a, [b, c, c]]−1.

It follows that

[a, b, c] = [c, a, b]−2[a, [b, c, c]]. (18)

From Lemma 2 we have the extra relations

[a, b, c, c] = [a, [b, c, c]]−3 (19)

[a, c, b, c] = [a, [b, c, c]]2 (20)

[a, c, c, b] = [a, [b, c, c]]. (21)

Let a1 = a, a2 = b, a3 = c, a4 = [b, a], a5 = [c, a], a6 = [c, b], a7 =
[c, a, b], a8 = [a, c, c], a9 = [b, c, c] and a10 = [a, [b, c, c]]. We can deduce from
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the relations above that G(r, 3) has a power-commutator presentation with
generators a1, . . . , a10 and the following relations:

a7
1 = a7

2 = · · · = a7
10 = 1,

[a2, a1] = a4, [a3, a1] = a5, [a3, a2] = a6,
[a4, a1] = 1, [a4, a2] = 1, [a4, a3] = a2

7a
6
10,

[a5, a1] = a10, [a5, a2] = a7, [a5, a3] = a6
8,

[a5, a4] = 1, [a6, a1] = a6
7, [a6, a2] = a10,

[a6, a3] = a6
9, [a6, a4] = 1, [a6, a5] = a6

10,
[a7, a3] = a5

10, [a7, ai] = 1 if i 6= 3
[a8, a2] = a10, [a8, ai] = 1, if i 6= 2
[a9, a1] = a6

10, [a9, ai] = 1 if i 6= 1
[a10, ai] = 1 for all i.

We refer to [17] for a discussion of power-commutator presentations. One
can check that this power commutator-presentation is consistent so G(3, 7)
has order 710 and class 4. It is also easy to see that Z(G) = γ4(G) = 〈a10〉.
This implies that every quotient of G(3, 7) is nilpotent of class at most 3. By
Theorem 4 we have that every 3-generator group of exponent 7 in U3 that is
nilpotent of class 4 is a quotient of G(3, 7), therefore G(3, 7) is the only such
group. 2

When r ≥ 4 the situation is much more complicated and we will not at-
tempt here to obtain a detailed classification of the r-generator groups of
exponent 7 in U3. We will however proceed a bit further and analyse closely
a certain subclass. The group G(3, 7) has the property that every proper
quotient is nilpotent of class at most 3. Our next result gives a complete
classification of all finitely generated groups of exponent 7 in U3 with this
property.

We let r and s be some nonnegative integers and as before we let E(3 +
2r + 2s, 7) be the relatively free (3 + 2r + 2s)-generator 3-Engel group of ex-
ponent 7 with nilpotency class at most 4 and with free generators {z, x, y, ti :
1 ≤ i ≤ 2r + 2s}. We recall that G(3 + 2r + 2s, 7) was defined as E(3 + 2r +
2s, 7)/N(3 + 2r + 2s, 7), where N(3 + 2r + 2s, 7) was the normal closure of
the relations (8)-(12). We rename the generators t1, t2, . . . , t2r+2s as follows:

fi = ti, gj = tj+2r,
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for 1 ≤ i ≤ 2r and 1 ≤ j ≤ 2s. We extend N(3 + 2r + 2s, 7) to a normal
subgroup N(r, s, 7) which is defined to be the normal closure of the set of
elements (8)-(12) together with the set of following elements:

[fi, x], [fi, y], [fi, z, z] 1 ≤ i ≤ 2r (22)

[gi, x], [gi, y], [gi, z] 1 ≤ i ≤ 2s (23)

[fi, f2r+1−i][x, y, z]−1 1 ≤ i ≤ r (24)

[gi, g2s+1−i][x, [y, z, z]]−1 1 ≤ i ≤ s (25)

[fi, fj] 1 ≤ i < j ≤ 2r and i + j 6= 2r + 1 (26)

[gi, gj] 1 ≤ i < j ≤ 2s and i + j 6= 2s + 1 (27)

[fi, gj] 1 ≤ i ≤ 2r and 1 ≤ j ≤ 2s. (28)

We define G(r, s, 7) as E(3 + 2r + 2s, 7)/N(r, s, 7).

Theorem 6 For each pair of integers r, s ≥ 0, we have that the group
G(r, s, 7) is nilpotent of class 4 and has the property that every proper quo-
tient has class at most 3. Conversely, if G is a finitely generated group of
exponent 7 in U3 which is nilpotent of class 4 and of which every proper quo-
tient has class at most 3 then G is isomorphic to G(r, s, 7) for some integers
r, s ≥ 0.

Proof Let G be a group of exponent 7 in U3 that is nilpotent of class 4
but of which every proper quotient has class at most 3. This clearly happens
if and only if Z(G) = γ4(G), since we have seen that γ4(G) has order 7.
Let H be as in Theorem 3 and D = Z3(G). Choose some c ∈ G \ H and
a, b ∈ H \ D such that [c, a, a] = [c, b, b] = [a, [b, c, c]]. We then have that
Z(G) = 〈[a, [b, c, c]]〉.

We define a map f from D/[G, G] × D/[G, G] to Z(G) as follows:

f(d[G, G], e[G, G]) = [c, d, e].

We can think of f as an antisymmetric bilinear form on the vector space
V = D/[G, G]. According to the classical theory of antisymmetric bilin-
ear forms, we can find a basis U1 = d1[G, G], . . . , U2r = d2r[G, G], V1 =
e1[G, G], . . . , Vt = et[G, G] such that (with additive notation)

f(Ui, Uj) =

{

[a, [b, c, c]] if i + j = 2r + 1 and i < j
0 otherwise,
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and such that
f(Ui, Vj) = f(Vk, Vj) = 0

for all 1 ≤ i ≤ 2r and 1 ≤ j, k ≤ t. It follows that [di, dj] commutes with c
when i + j 6= 2r + 1 and that [ei, dj] and [ei, ej ] commute with c for all i and
j. Since γ3(H) = 1, all these elements are in Z(G). Suppose

[di, dj] = [c, d2r+1−j, dj]
2ri,j when i + j 6= 2r + 1;

[ei, dj] = [c, d2r+1−j, dj]
si,j 1 ≤ i ≤ t and 1 ≤ j ≤ 2r.

If we let

ẽi = ei

2r∏

j=1

[c, dj]
−si,2r+1−j

d̃i = di

2r∏

j=1

[c, dj]
−ri,2r+1−j ,

then one easily computes that ẽi commutes with d̃j for all i and j. One also
has

[d̃i, d̃j] = [di, dj][c, d2r+1−j , dj]
−ri,j [c, d2r+1−i, di]

rj,i

= [di, dj]
1−1/2−1/2

= 1.

Without loss of generality we can thus assume that all the indices ri,j and si,j

are 0. By the choice of basis with respect to the antisymmetric form f it is
also true that [di, d2r+1−i, c] is a nontrivial element of Z(G) for all 1 ≤ i ≤ r.
Suppose that [di, d2r+1−i, c] = [a, b, c, c]ri. Let ti be the inverse of ri modulo
7. By replacing di with dti

i , we can assume that [di, d2r+1−i, c] = [a, b, c, c].
Then [di, d2r+1−i][a, b, c]−1 is in Z(G). Suppose

[di, d2r+1−i] = [a, b, c][c, di, d2r+1−i]
−li .

Then [di[c, di]
li , d2r+1−i] = [a, b, c]. We can thus choose di such that [di, d2r+1−i] =

[a, b, c]. Let us summarise: We can choose d1, . . . , d2r, e1, . . . , et in D such
that d1[G, G], . . . , d2r[G, G], e1[G, G], . . . , et[G, G] form a basis for D/[G, G]
and such that

[ei, dj] = 1 for all i, j; (29)

[di, dj] = 1 when i + j 6= 2r + 1; (30)

[di, d2r+1−i] = [a, b, c] for i = 1, . . . , r. (31)
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Let g ∈ D\ [G, G]. Since D = Z3(G), [g, a, c], [g, b, c] and [g, c, c] are in Z(G).
Suppose

[g, a, c] = [c, b, a, c]−r

[g, b, c] = [c, a, b, c]−s

[g, c, c] = [a, b, c, c]−t.

Then g1 = g[c, b]r[c, a]s[a, b]t satisfies [g1, a, c] = [g1, b, c] = [g1, c, c] = 1. By
Theorem 3, γ3(H) = 1 and we conclude that [g1, a] and [g1, b] are in Z(G).
Suppose

[g1, a] = [b, c, c, a]−m

[g1, b] = [a, c, c, b]−n.

Then g2 = g1[b, c, c]
m[a, c, c]n satisfies [g2, a] = [g2, b] = 1. Since [g2, a, c] =

[g2, c, a]2, we also see that [g2, c, a] = 1. Similarly [g2, c, b] = 1.

The previous paragraph allows us furthermore to assume that the genera-
tors d1, . . . , d2r can be chosen such that we also have

[di, a] = [di, b] = [di, c, a] = [di, c, b] = [di, c, c] = 1. (32)

We can suppose that the same equations hold for the ei. Since we have seen
that [ei, ej] commutes with c for all i and j, it follows from (29) and (32)
that [ei, c] ∈ Z(G). Suppose that

[ei, c] = [a, b, c, c]−ri.

Then ei[a, b, c]ri commutes with c. It is now clear that we can choose e1, . . . , et

such that:
[ei, a] = [ei, b] = [ei, c] = 1. (33)

Let E = Z2(G). From (29)-(33) we can infer that E = 〈e1, . . . , et〉[D, G]
so e1[D, G], . . . , et[D, G] is a basis for E/[D, G]. We define a map g from
E/[D, G] × E/[D, G] to Z(G) by:

g(e[D, G], h[D, G]) = [e, h].

We can think of g as an antisymmetric bilinear form on the vector space
E/[D, G]. As before we apply the classical theory of antisymmetric forms
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and get a basis W1 = k1[D, G], . . . , W2s = k2s[D, G], X1 = h1[D, G], . . . , Xl =
hl[D, G] for E/[D, G] such that

g(Wi, Wj) =

{

[a, [b, c, c]] if i + j = 2s + 1 and i < j
0 otherwise,

and such that
g(Xi, Wj) = g(Xi, Xj) = 0

for all i and j. But now we must have l = 0: each hi ∈ Z(G) = γ4(G) and
thus cannot be in E \ [D, G]. So t = 2s and without loss of generality we can
assume that ki = ei for 1 ≤ i ≤ 2s. So we can choose ei such that

[ei, e2s+1−i] = [a, [b, c, c]] for i = 1, . . . , s; (34)

[ei, ej] = 1 when i + j 6= 2s + 1. (35)

Comparing (29)-(35) with (22)-(28), we see that G is a homomorphic image
of G(r, s, 7).

We finish the proof by showing that G(r, s, 7) has the claimed properties
stated in the theorem. Let a = xN(r, s, 7), b = yN(r, s, 7), c = zN(r, s, 7),
di = fiN(r, s, 7), ei = giN(r, s, 7). Then it is clear from the relations that
〈a, b, c〉 is isomorphic to G(3, 7). Therefore G(r, s, 7) has nilpotency class 4.
It now only remains to be shown that every proper quotient is nilpotent of
class at most 3.

Let H and D be as before. Let N be a proper normal subgroup of G(r, s, 7).
We want to show that [a, [b, c, c]] ∈ N . We argue by contradiction and assume
this is not the case. Suppose first that N is not contained in H . Then crh ∈ N
for some r 6= 0 and some h ∈ H . But then [a, b, c, c]r

2
= [a, b, crh, crh] ∈ N ,

and we arrive at the contradiction that [a, [b, c, c]] ∈ N . Thus N must be
contained in H . Similarly it is easy to see that N must be contained in D.
Suppose that

x = ([a, b]r[c, a]s[c, b]t
∏

i

dri

i )u ∈ N

for some u ∈ Z2(G). Then [a, b, c, c]r = [x, c, c], [c, a, c, b]s = [x, c, b] and
[c, b, c, a]t = [x, c, a] are in N so we must have r = s = t = 0. Also
[c, dj, d2r+1−j]

rj = [c, x, d2r+1−j]. Therefore [a, [b, c, c]]rj ∈ N for all 1 ≤
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j ≤ 2r and we must have that all these indices are 0. Hence N must be
contained in Z2(G). Clearly Z2(G) = 〈e1, . . . , e2s, [c, d1], . . . , [c, d2r]〉γ3(G).
Suppose that

x = u
2s∏

i=1

eri

i

2r∏

j=1

[c, di]
si

for some u ∈ γ3(G). Then [a, [b, c, c]]rj = [ej , e2s+1−j ]
rj = [x, e2s+1−j ] ∈

N which implies that rj = 0 for all 1 ≤ j ≤ 2s. Also [a, [b, c, c]]sj =
[c, dj, d2r+1−j]

sj = [x, d2r+1−j ] ∈ N and this necessarily implies that sj = 0
for all 1 ≤ j ≤ 2r. Therefore N ⊆ γ3(G). So if x is a nontrivial element in
N it must be of the form

x = [c, a, b]u[a, c, c]v[b, c, c]w[a, [b, c, c]]l

for some u, v, w, l ∈Z7. But then [c, a, b, c]u = [x, c], [a, c, c, b]v = [x, b] and
[b, c, c, a]w = [x, a] are in N and thus u = v = w = 0. Hence we must have
N = 〈[a, [b, c, c]]〉 which contradicts our assumption that [a, [b, c, c]] 6∈ N . 2

Remarks (1) Every element x in G(r, s, 7) can be written uniquely of the
form

x = cuavbw[c, a]l[c, b]m[a, b]n

[a, b, c]α[a, c, c]β[b, c, c]γ[a, [b, c, c]]τ

2r∏

i=1

dri

i [c, di]
si

2s∏

i=1

eti
i .

Therefore G(r, s, 7) has rank 3 + 2r + 2s and order 710+4r+2s.

(2) Notice that G(r, s, 7) always has odd rank. For a given odd integer
n ≥ 3 there are exactly (n − 1)/2 groups of exponent 7 in U3 which have
rank n, are nilpotent of class 4 and of which every proper quotient is of class
at most 3. These groups have orders 77+n, 79+n, . . . , 74+2n.

(3) Suppose that n ≥ 3. Let N be a maximal element in

{U � G(n, 7) : G(n, 7)/U is nilpotent of class 4 and has rank n}.

It follows from Theorem 6 that G(n, 7)/N ∼= G(r, s, 7) × M(t) where 3 +
2r + 2s + t = n and M(t) is an elementary abelian group of exponent 7.



U3 groups 27

We have that Z3(G(n, 7)) = 〈t1, . . . , tn−3〉[G(n, 7), G(n, 7)]. By the proof
of Theorem 6 there are elements f1, . . . , f2r, g1, . . . , g2s, k1, . . . , kt ∈ Z3(G) \
[G(n, 7), G(n, 7)] such that N is the normal closure of the union of the set of
the elements in (8)-(12),(22)-(28) and following set of elements:

{[ki, km], [ki, dj], [ki, el], [ki, a], [ki, b], [ki, c] : i, j, l, m}

where 1 ≤ i, m ≤ t, 1 ≤ j ≤ 2r and 1 ≤ l ≤ 2s.
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