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Introduction

In this paper we investigate Engel-n Lie-algebras. They are Lie-algebras
which satisfy the additional condition that ad(b)n = 0 for all b. Our aim
is to get some detailed information about the nilpotency classes of Engel-n
Lie-algebras for n ≤ 4.

Engel Lie-algebras arise naturally in group theory in connection with ”the
restricted Burnside problem”.

For what values of r and n is there an upper bound on the orders
of finite r-generator groups of exponent n?

The answer turns out to be that such an upper bound exists for all r and
n. From the classification of finite simple groups and the work of P. Hall and
G. Higman [4] it follows that it is sufficient to consider n when n is a power
of a prime. In 1959 Kostrikin [8] proved that there is an upper bound if n is
a prime. And finally in 1989 Zelmanov [14,15] showed that an upper bound
exists if n is a power of a prime.

The theorems of Kostrikin and Zelmanov are in fact theorems about Lie-
algebras. The reason is that the following are equivalent.

1. There is a largest finite r-generator group of exponent pm;

2. The associated Lie-ring of B(r, pm) is nilpotent.
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Here B(r, n) is the (relatively) free r-generator group of exponent n. Now
the associated Lie-ring of B(r, p) satifies Engel-(p−1) identity and has char-
acteristic p, and so we can think of it as an Engel Lie-algebra over the field
Z/pZ. So it was sufficient for Kostrikin to prove the following.

Kostrikin’s Theorem[8] Let L be a finitely generated Engel-(p − 1) Lie-
algebra over a field of characteristic p. Then L is nilpotent.

The more general result, that the associated Lie-ring of B(r, pm) is nilpo-
tent, follows from

Zelmanov’s Theorem[14,15] Let L be a finitely generated Lie-algebra. Sup-
pose that there exist positive integers s, t such that:

∑

σ∈Sym(s)

xxσ(1)xσ(2) · · ·xσ(s) = 0 (1)

for all x, x1, x2, . . . , xs ∈ L, and

abt = 0 (2)

for all a ∈ L, and all b ∈ L such that b can be expressed as a Lie product of
the generators.

Then L is nilpotent.

Identities (1) and (2) are closely related to an Engel identity. In fact
Zelmanov’s theorem gives an answer to one of the major questions about
Engel Lie-algebras, whether every finitely generated Engel-n Lie-algebra is
nilpotent. The answer is yes, because an Engel-n algebra satisfies conditions
(1) and (2) in the theorem with s = t = n. But we still have the problem
of determining how the nilpotency class varies in terms of r (number of
generators), n, and the characteristic of the field.

There are infinitely generated Engel Lie-algebras which are non-nilpotent.
But it is known [13] that if the characteristic of the field is 0 then the Engel
Lie-algebra is nilpotent. As a logical consequence of this we have that for
each n there is an integer mn such that

if L is an Engel-n Lie-algebra over a field k such that char k ≥ mn

then L is nilpotent.
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On the other hand, Razmyslov [10,11] proved the following result.

Razmyslov’s Theorem If k is a field and char k = p where p ≥ 5 then
there exists a non-solvable Engel-(p − 2) Lie-algebra over k.

This theorem implies that mn > n for some n. Zelmanov has conjectured
that mn ≤ 2n for all n.

As mentioned above, we will investigate Engel-n Lie-algebras for low val-
ues of n.

In section 1 we will summarise some basic properties of Engel algebras
needed later on.

In section 2 we will look at Engel-3 Lie-algebras. It has been known
for a long time that if L is an Engel-3 Lie-algebra over a field k, and if
char k 6= 2, 5 then L is nilpotent. P. J. Higgins [6] proved that the nilpotency
class is less than or equal to 6. In fact his argument gives the correct upper
bound, namely 4. We will give a proof of this using Higgins’ argument. In
the case when char k = 2, 5 there exist non-nilpotent Engel-3 Lie-algebras.
But in the case when char k = 5 we will see that for all x in L we have
Id〈x〉3 = 0, where Id〈x〉 is the ideal generated by x. This implies that if
the number of generators is r then the nilpotency class is ≤ 2r. In a paper
of S. Bachmuth, H. Mochizuki and D. Walkup [2] they prove that there
exist Engel-3 Lie-algebras over a field of characteristic 5 with class 2r − 1.
When the characteristic is 2 we will construct an Engel-3 Lie-algebra with
an element x such that Id〈x〉 is non-nilpotent.

Let us now turn to Engel-4 algebras. To deal with them we are going
to use super algebras, so we will study super algebras in section 3. In [9]
Kostrikin shows that if char k ≥ 7 then L is soluble of derived length ≤ 7
which implies nilpotency of class at most 5461. In section 4 we will prove that
when char k 6= 2, 3, 5 then L is nilpotent of class≤ 7. We will also see that
when char k = 3 then for all x in L we have Id〈x〉4 = 0, which implies that
the class of an r-generator Engel-4 Lie algebra is at most 3r. In the case when
char k = 5 we have the Higman, Havas, Newman and Vaughan-Lee [5] result
that Id〈x〉7 = 0 so then the class of an r-generator Engel-4 Lie algebra is at
most 6r. The examples of non-nilpotent Engel-3 Lie-algebras of characteristic
2 and 5 are also examples of non-nilpotent Engel-4 Lie-algebras and when
the characteristic is 3 there are also non-nilpotent Engel-4 Lie-algebras. (See
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[3] p. 12-13)

1 Basic concepts

In this section we will give some basic facts about Engel Lie-algebras over a
field k which are needed later on.

1.1 Definitions

We let ab denote the Lie product of two elements a, b in a Lie algebra. In the
following we will use left normed notation: thus if a1, a2, . . . , an are elements
of L, then

a1a2 · · ·an = ((· · · ((a1a2)a3) · · ·)an−1)an.

This means that
abn = (· · · ((a b)b) · · ·)b

︸ ︷︷ ︸

n

We say that L is graded if we can express it in the form

L = L1 ⊕ L2 ⊕ · · · ⊕ Li ⊕ · · · ,
where each Li is a k-linear subspace and we have

LiLj ≤ Li+j , LiL1 = Li+1

for all i, j.
If L1 has basis {a1, . . . , ar} as a vector space, then we can give each Lie-

product of basis elements a ‘multiweight’ in the following way: the product
is given multiweight W = (w1, · · · , wr) if ai appears wi times in the product
for i = 1, 2, . . . , r.

Now let LW be the subspace of L generated by all Lie-products of basis
elements which have multiweight W . An element that lies in LW is said to
be homogeneous of multiweight W . If

L =
⊕

W

LW

where the sum ranges over all possible r-tuples of non-negative integers, then
we say that L is multigraded.

We let Ln denote the n-th element of the lower central series of L and
L(n) denote the n-th element of the derived series.
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1.2 Linearizations of the Engel-identity

If we want to show that a certain algebra is an Engel Lie-algebra or we want
to construct an Engel Lie-algebra, then it is convenient if it is enough to
look at elements from a vector space basis of the Lie algebra. But because
the Engel identity is not multilinear, the Engel identity does not necessarily
follow if abn = 0 for all basis elements a and b. However, in most cases the
Engel identity is equivalent to a multilinear identity.

Proposition 1.1 Let L be an Engel-n Lie-algebra over a field k. If char k
is zero or bigger than n then the Engel-n identity is equivalent to

∑

σ∈Sym(n)

abσ(1) · · · bσ(n) = 0. (3)

Proof To show that (3) implies the Engel identity let b1 = b2 = · · · = bn = b.
Then we get n!abn = 0 which implies abn = 0 since char k does not divide n!.

The converse holds for all fields k. Let λ1, . . . , λn be indeterminates and
consider

U = a(λ1b1 + · · ·+ λnbn)n.

If we multiply this out we get

U = r0 + λ1r1 + λ1λ2r2 + · · · + λ1λ2 · · ·λn

∑

σ∈Sym(n)

abσ(1) · · · bσ(n)

where r0 is the sum of the monomials not divisible by λ1, λ1r1 is the sum of
those monomials from U − r0 not divisible by λ2, and so on. Now U = 0 for
all λ1, . . . λn. Putting λ1 = 0, we get r0 = 0. Then let λ1 = 1, λ2 = 0 and we
get r1 = 0. Continuing in this way we see finally that

∑

σ abσ(1) · · · bσ(n) is 0.
2

We call identity (3), the ‘full linearization’ of the Engel identity. Clearly (3)
is satisfied for all a, b1, b2, . . . , bn ∈ L if it is satisfied whenever a, b1, b2, . . . , bn

are basis elements.

For low characteristics things are more complicated and we have to con-
sider partial linearizations. Let us look at Engel-3 Lie-algebras. In an Engel-3
Lie-algebra

0 = a(λb + c)3 = λ(abc2 + acbc + ac2b) + λ2(ab2c + abcb + acb2), (4)
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and

0 = λa(b + c)3 = λ(abc2 + acbc + ac2b) + λ(ab2c + abcb + acb2). (5)

Now if we subtract (5) from (4), we get

ab2c + abcb + acb2 = 0 (6)

if λ 6= 0, 1. So (6) holds if |k| ≥ 3.
So if |k| ≥ 3, the Engel-3 identity implies (6) and the full linearization

∑

σ∈Sym(3)

abσ(1)bσ(2)bσ(3) = 0. (7)

On the other hand it is easy to see that if (6), (7) and the identity ab3 = 0
hold for all basis elements a, b, c, b1, b2, b3 in some Lie-algebra L, then L is an
Engel-3 Lie-algebra. Notice that all these identities are homogeneous.

So for each Engel-n Lie-algebra we have some partial linearizations of the
Engel identity. The Engel-n identity implies these linearizations provided
|k| ≥ n. In the following we will be assuming that |k| ≥ 3 for Engel-3
algebras and that |k| ≥ 4 for Engel-4 algebras. Slightly different arguments
are needed to deal with Engel-4 Lie algebras over the field of three elements.

2 Engel-3 algebras

In his paper ”Lie rings satisfying the Engel condition”[6], P. J. Higgins proves
that every Engel-3 algebra over a field k with char k 6= 2, 5 is nilpotent of
class less than or equal to 6. In fact his argument can be used to get the
correct upper bound, namely that the class is less than or equal to 4. In this
section we will give a proof of this result. In the case when char k = 2, 5
there exists non-nilpotent Engel-3 algebras. But in the case when char k = 5
we will see that for all x in L we have Id〈x〉3 = {0}, where Id〈x〉 is the ideal
generated by x. This implies local nilpotency. When the characteristic is 2
we will construct an Engel-3 Lie-algebra with an element x such that Id〈x〉
is non-nilpotent.
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2.1 A counterexample for char k = 2

We will now construct an example of an Engel-3 Lie-algebra which has an
element x such that Id〈x〉 is non-nilpotent.

Remark: To show that an algebra L is an Engel-3 Lie-algebra it is sufficient
to show that for all basis elements a, b, c, b1, b2, b3 we have

1) a2 = 0, ab = −ba;
2) abc + bca + cab = 0;
3) ab3 = 0;
4) abc2 + acbc + ac2b = 0;
5)

∑

σ∈Sym(3) abσ(1)bσ(2)bσ(3) = 0.

We need 3, 4 and 5 to show that the Engel-3 identity holds.

Example Let k be a field such that char k = 2. We define an algebra L
over k in the following way.

For each nonempty finite A ⊆N we let UA, VA and WA be basis elements.
To these we add one other basis element that we will call x. So we define L
to be the vector space over k with this basis. We define a product on L in
the following way. We let ab = ba and aa = 0 for all basis elements a and b.
Furthermore we let

UAx = 0, VAx = 0, WAx = UA,

UAUB = VAVB = WAWB = 0,

UAVB =

{

UA∪B if A ∩ B = ∅
0 otherwise,

UAWB =

{

VA∪B if A ∩ B = ∅
0 otherwise,

VAWB =

{

WA∪B if A ∩ B = ∅
0 otherwise.

We extend this product linearly to all L.

Proposition 2.1 L is a non-soluble Engel-3 algebra. Furthermore Id〈x〉 is
non-nilpotent.
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Proof Since char k = 2, we have ab = ba = −ba for all a, b in L. Every
product of basis elements such that the corresponding integer sets are not
pairwise disjoint is zero. We therefore only have to check the Jacobi and Engel
identities over the basis elements where the corresponding integer sets are
pairwise disjoint. There are 4 different types of basis elements. It is sufficient
to look at the Jacobi and Engel identities over every possible combination
of these types. Therefore there are only a finite number of different cases to
check and it is not difficult to show that we get 0 in all these cases. As an
example we have

UAVBWC + VBWCUA + WCUAVB = 2VA∪B∪C = 0,

and

WAWBUCx + WAWBxUC + WAUCWBx + WAUCxWB + WAxWBUC+
WAxUCWB = 0 + 0 + UA∪B∪C + 0 + UA∪B∪C + 0 = 2UA∪B∪C = 0

.

So L is an Engel-3 Lie-algebra. Now it is clear from the definition of the
product that L(n) contains U ’s, V ’s and W ’s for all n, and therefore it is
non-solvable. Furthermore

W{1}xW{2}W{3}xW{4}W{5} · · ·xW{2n}W{2n+1} = W{1,···,2n+1}

So for each n there is a non-zero product containing n appearances of x. This
implies that Id〈x〉n 6= {0} for all n, so Id〈x〉 is non-nilpotent. 2

2.2 Nilpotency of Id〈x〉 when char k 6= 2

Let L be an Engel-3 algebra over a field k such that char k 6= 2, 3. In
this subsection we will show that Id〈x〉3 = {0}. This implies that if L is
finitely generated then L is nilpotent of class≤ 2r, where r is the number
of generators. It will follow from next subsection that this is also true if
char k = 3.

Lemma 2.1 For all x, a1, a2 in L we have

xa1xa2x = 0.
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Proof From the Jacobi identity we get

(a2xa1)x = (a1xa2)x + (a2a1x)x.

By using this, the Jacobi identity, and then the Engel-3 identity we have

0 = (a1x)a2x + a2x(a1x) + x(a1x)a2

= a1xa2x + a2xa1x − a2x
2a1 − a1x

2a2

= 2a1xa2x + a2a1x
2 + xa2xa1 + xa1xa2, (8)

0 = a1xa2x + a1a2x
2 + a1x

2a2

= a1xa2x − a2a1x
2 − xa1xa2, (9)

0 = xa2a1x + xa1a2x + xa2xa1 + xa1xa2

= −2a1xa2x − a2a1x
2 + xa2xa1 + xa1xa2. (10)

Since char k 6= 2, (8) and (10) implies xa2xa1 + xa1xa2 = 0. Therefore
2·(9)−(8) gives 2xa1xa2 = −3a2a1x

2. Thus 2xa1xa2x = −3a2a1x
3 = 0 which

implies xa1xa2x = 0. 2

Lemma 2.2 For all x, a1, a2 in L we have

xa1a2x
2 = 0.

Proof By the Engel-3 identity we have

0 = xa1a2x
2 + xa1xa2x + xa1x

2a2

= xa1a2x
2 − a1x

3a2 (Lemma 2.1)

= xa1a2x
2. 2

Lemma 2.3 For all n ∈N and for all x, a1, . . . , an ∈ L, we have

xa1 · · ·anx
2 = 0.
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Proof We use induction over n. The case n = 1 follows at once from the
Engel identity and the case n = 2 follows from Lemma 2.2. So now suppose
this is true for some n ≥ 2. Then for every i ∈ {1, · · · , n} we have by the
induction hypothesis

xa1 · · ·ai−1(aiai+1)ai+2 · · ·an+1x
2 = 0,

so

xa1 · · ·ai−1aiai+1ai+2 · · ·an+1x
2 = xa1 · · ·ai−1ai+1aiai+2 · · ·an+1x

2.

It follows that xa1a2a3a4 · · ·an+1x
2 = xaσ(1)aσ(2)aσ(3)a4 · · ·an+1x

2 for every
σ ∈ S(3). Therefore

3!xa1a2a3a4 · · ·an+1x
2 =

∑

σ∈S(3)

xaσ(1)aσ(2)aσ(3)a4 · · ·an+1x
2 = 0,

where the last identity follows from the Engel identity. So xa1 · · ·an+1x
2 = 0

since char k 6= 2, 3. (In fact it is also true if char k = 3 because then L is
nilpotent of class 4, as we will see in the next subsection.) The lemma now
follows. 2

So we can now prove the assertion made at the beginning of the section.

Theorem 2.1 If L is as above then for all i, j ∈N we have

xa1 · · ·aixb1 · · · bjx = 0

for all x, a1, . . . , ai, b1, . . . bj ∈ L.

Proof We use induction over j. The case j = 0 follows from Lemma 2.3.
Now look at the case j = 1. Using the Engel identity we get

0 = xa1 · · ·aixb1x + xa1 · · ·aix
2b1 + xa1 · · ·aib1x

2

= xa1 · · ·aixb1x (Lemma 2.3).

Now suppose this is true for some j ≥ 1. Then using the Engel identity again
we get

0 = xa1 · · ·aixb1 · · · bj−1bjbj+1x + xa1 · · ·aixb1 · · · bj−1bj+1bjx

+xa1 · · ·aixb1 · · · bj−1bjxbj+1 + xa1 · · ·aixb1 · · · bj−1bj+1xbj

+xa1 · · ·aixb1 · · · bj−1xbjbj+1 + xa1 · · ·aixb1 · · · bj−1xbj+1bj

= xa1 · · ·aixb1 · · · bj−1bjbj+1x + xa1 · · ·aixb1 · · · bj−1bj+1bjx.
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Where the last identity follows from the induction hypothesis. But

xa1 · · ·aixb1 · · · bj−1bjbj+1x − xa1 · · ·aixb1 · · · bj−1bj+1bjx
= xa1 · · ·aixb1 · · · bj−1(bjbj+1)x = 0 (by the induction hypothesis).

Therefore 2xa1 · · ·aixb1 · · · bj+1x = 0 which implies that xa1 · · ·aixb1 · · · bj+1x =
0 since char k 6= 2. Now the theorem follows. 2

Corollary 2.1 If char k 6= 2, 3 then Id〈x〉3 = {0} for every x in L.

Suppose now that L has r generators. We can express every element in L
as a sum of products of the generators. But because Id〈u〉3 = 0 for every
generator u, every generator can at most appear twice in a non-zero product.
So the maximal length of a non-zero product is 2r. This implies that the
nilpotency class is less than or equal to 2r. This is in particular true in the
case when char k = 5. In the case when char k 6= 2, 5 we are now going to
prove a stronger result.

2.3 Nilpotency of L when char k 6= 2, 5

Let ad(u) be the endomorphism from L → L with ad(u)(z) = zu. To simplify
the notation we will let U denote ad(u). Similarly we let X denote ad(x),
Y denote ad(y), and so on. For Engel-2 algebras we have the following well
known result. (See Higgins [6] or Vaughan-Lee [12] for example.)

Theorem 2.2 If L is an Engel-2 algebra over some field k then L3 = {0} if
char k 6= 3 and L4 = {0} if char k = 3.

So we are now ready for the main result of this section.

Theorem 2.3 If L is an Engel-3 algebra over some field k such that char k 6=
2, 5 then L5 = {0}.

Proof The proof of the result is almost identical to Higgin’s proof that
L7 = {0}. But we repeat the argument since it is very short and actually
proves the stronger result that L5 = {0}.

From the Engel-3 identity we have

XY 2 + Y XY + Y 2X = 0. (11)
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We also have

0 = −xay2 − xyay − xy2a

= axy2 + a(xy)y + a(xy2)

= 3axy2 − 3ayxy + ay2x,

and therefore
3XY 2 − 3Y XY + Y 2X = 0. (12)

If char k = 3 we thus have Y 2X = 0. Consider the subspace

I = Sp〈uv2|u, v ∈ L〉.

It is not difficult to see that I is an ideal. The quotient algebra L/I is an
Engel-2 algebra. It follows from Theorem 2.2 that every product of four
elements lies in I. If char k = 3 then the fact that Y 2X = 0 implies that
ay2x = 0 for all a, y, x ∈ L, and so every product of five elements is zero.
Now suppose char k 6= 2, 3, 5. From (11) and (12) we have

XY 2 = 2Y XY and Y 2X = −3Y XY. (13)

It also follows that 3XY 2 = −2Y 2X. If we interchange X and Y in (13) we
get

Y X2 = 2XY X and X2Y = −3XY X. (14)

Now multiply (13) by X on the left and (14) on the right by Y . We then get

X2Y 2 = 2XY XY and X2Y 2 = −3XY XY.

It follows that 5X2Y 2 = 0 so X2Y 2 = 0 since char k 6= 5. From Theorem 2.2
we then have X1X2Y

2 = 0. But since 3XY 2 = −2Y 2X we get

4Y 2X1X2 = −9X1X2Y
2 = 0

and then again from Theorem 2.2

Y1Y2X1X2 = 0

so L5 = 0 2

It is easy to construct Engel-3 Lie algebra of class 4, and so this result is
best possible.
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3 Superalgebras

In Section 4 we are going to study Engel-4 algebras. There we shall see that
if L is an Engel-4 algebra over a field k such that char k 6= 2, 3, 5 then L
is nilpotent of class≤ 7. This means that we have to show that every left
normed product of 8 elements is zero. If we were to use the same approach
as for the Engel-3 algebras, we would have to work in 8-generator Engel-4
algebras. Fortunately it will be sufficient to work only with 4 generators.
But instead of looking at Engel-4 algebras we will use superalgebras. In this
section we will describe this reduction to superalgebras.

3.1 Reduction for Engel-4 algebras

Let L be the free Engel-4 algebra generated by x1, x2, . . . , x8. Let M be
the subspace generated by all left normed products of weight (1, 1, . . . , 1)
in x1, x2, . . . , x8. Let S(8) be the symmetric group on {1, 2, . . . , 8}. We
can think of M as a kS(8)-module with an action defined as follows: if
K(x1, x2, . . . , x8) is some left normed product of x1, . . . , x8 in some order
and σ ∈ S(8) then

σK(x1 . . . , x8) = K(xσ(1), . . . , xσ(8)).

Example (125)x1x2x3x4x5x6x7x8 = x2x5x3x4x1x6x7x8.

Definition 3.1 We call an element µ in kS(8) symmetrized if

µ = λ( id + (12) + (13) + (23) + (123) + (132) )λ−1σ

for some λ, σ ∈ S(8). We call µ skew-symmetrized if

µ = λ( id − (12) − (13) − (23) + (123) + (132) )λ−1σ.

We also say that µ is [skew-]symmetrized in λ(1), λ(2) and λ(3). We say that
U in M is [skew-]symmetrized if U = µK where µ is a [skew-]symmetrized
element in kS(8) and K is a left normed product of x1 . . . x8 in some or-
der. We say that U = µK is [skew-]symmetrized in xi1 , xi2 , xi3 if µ is
[skew-]symmetrized in i1, i2, i3.
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Example Let σ = (135), λ = (14)(25) and µ = λ( id + (12) + (13) + (23) +
(123) + (132) )λ−1σ. Then

σx1x2x3x4x5x6x7x8 = x3x2x5x4x1x6x7x8,

and λ( id+(12)+(13)+(23)+(123)+(132) )λ−1 = ( id+(45)+(43)+(53)+
(453) + (435) ). So

µx1x2x3x4x5x6x7x8 =
∑

τ∈Sym{3,4,5}

xτ(3)x2xτ(5)xτ(4)x1x6x7x8.

If µ had been skew-symmetrized in the example above, then we would have
had to put a minus sign in front of every product in the sum that we got
from odd permutations before adding. That is, we should have

µx1x2x3x4x5x6x7x8 =
∑

τ∈Sym{3,4,5}

sign(τ)xτ(3)x2xτ(5)xτ(4)x1x6x7x8.

We can think of symmetrized and skew-symmetrized elements of M in the
following way. Start with any left normed product of x1, . . . , x8 in some or-
der. Then take some three elements inside the product and permute them
in all possible ways. What we get are 6 products. If we add these products
together we get a symmetrized element and if we form the alternating sum
of these products we get a skew-symmetrized element.

The key to the reduction is the fact that id ∈ kS(8) is in the linear span of the
symmetrized and skew-symmetrized elements provided that char k 6= 2, 3, 5.
To be more precise we should talk about 3-symmetrized elements and 3-
skew-symmetrized elements. More generally if we are looking at S(n) and
m is the least integer greater than or equal to

√
n then it follows from the

representation theory of the symmetric groups that id is in the linear span
of m-symmetrized elements and m-skew-symmetrized elements in kS(n) pro-
vided that char k > n. (See [7])

For σ ∈ S(5) let Sσ be the sum of all elements in the conjugacy class
of σ. Let µ+ = ( id + (12) + (13) + (23) + (123) + (132) ) and µ− =
( id − (12) − (13) − (23) + (123) + (132) ). We have

∑

σ∈S(5)

σµ+σ−1 = 120id + 36S(12) + 12S(123),
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∑

σ∈S(5)

σµ−σ−1 = 120id − 36S(12) + 12S(123),

∑

σ∈S(5)

σµ+(45)σ−1 = 12S(12) + 24S(12)(34) + 12S(12)(345),

∑

σ∈S(5)

σµ−(45)σ−1 = 12S(12) − 24S(12)(34) + 12S(12)(345),

∑

σ∈S(5)

σµ+(14)σ−1 = 12S(12) + 12S(123) + 8S(12)(34) + 8S(1234),

∑

σ∈S(5)

σµ−(14)σ−1 = 12S(12) − 12S(123) − 8S(12)(34) + 8S(1234),

where we think of S(5) as a subgroup of S(8) in the usual way. From this it
follows that

720id = 3
∑

σ

σµ+σ−1 + 3
∑

σ

σµ−σ−1 − 3
∑

σ

σµ+(14)σ−1 +

3
∑

σ

σµ−(14)σ−1 +
∑

σ

σµ+(45)σ−1 −
∑

σ

σµ−(45)σ−1.

Considered as permutations in S(8), all the permutations in this sum fix 6,
7 and 8. Clearly for any r, s, t ∈ {1, 2, . . . , 8} we can find similar expression
for 720id as a linear combination of symmetrized and skew-symmetrized el-
ements which fix r, s, t.

Now suppose we want to show that x1 · · ·x8 is zero. Using the formula above
we see that 720x1 · · ·x8 is a sum of symmetrized and skew symmetrized
products. So because the only divisors of 720 are 2, 3 and 5, it is enough
to show that every symmetrized and skew symmetrized product is zero if
char k 6= 2, 3, 5.

So suppose char k 6= 2, 3, 5 and look at some symmetrized element U ∈
M , say U = λµ+λ−1σK. We can express id in kS(8) as a sum of sym-
metrized and skew-symmetrized elements γµ+γ−1τ or γµ−γ−1τ where τ fixes
λ(1), λ(2), λ(3), and where {γ(1), γ(2), γ(3)} ∩ {λ(1), λ(2), λ(3)} = ∅. So U
is in the linear span of elements of the form

(γµ+γ−1τ)(λµ+λ−1σ)K or (γµ−γ−1τ)(λµ+λ−1σ)K

where τ fixes λ(1), λ(2), λ(3) and where {γ(1), γ(2), γ(3)}∩{λ(1), λ(2), λ(3)} =
∅.
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Example Let γ = (14)(25)(37). Then if µ1 = γµ+γ−1µ+ we have

µ1x1x2x3x4x5x6x7x8 =
∑

α,β

xα(1)xα(2)xα(3)xβ(4)xβ(5)x6xβ(7)x8,

and if µ2 = γµ−γ−1µ+ then

µ2x1x2x3x4x5x6x7x8 =
∑

α,β

(signβ)xα(1)xα(2)xα(3)xβ(4)xβ(5)x6xβ(7)x8,

where α runs through Sym{1, 2, 3} and β through Sym{4, 5, 7}.
We can similarly look at skew-symmetrized elements in M . We can express
them as linear combination of elements of the form

(γµ+γ−1τ)(λµ−λ−1σ)K or (γµ−γ−1τ)(λµ−λ−1σ)K,

where τ fixes λ(1), λ(2) and λ(3),and {γ(1), γ(2), γ(3)}∩{λ(1), λ(2), λ(3)} =
∅.
Example Let γ = (14)(25)(37) as in the last example, and let µ3 = γµ+γ−1µ−

and µ4 = γµ−γ−1µ−. Then

µ3x1x2x3x4x5x6x7x8 =
∑

α,β

(signα)xα(1)xα(2)xα(3)xβ(4)xβ(5)x6xβ(7)x8

and

µ4x1x2x3x4x5x6x7x8 =
∑

α,β

(signα)(signβ)xα(1)xα(2)xα(3)xβ(4)xβ(5)x6xβ(7)x8.

Definition 3.2 We call an element U ∈ M a (sym, sym) element if

U = (γµ+γ−1τ)(λµ+λ−1σ)K

where K is some left normed product of x1, . . . , x8, and γ, λ, τ, σ ∈ Sym(8)
are such that τ fixes λ(1), λ(2) and λ(3), and {γ(1), γ(2)γ(3)}∩{λ(1), λ(2), λ(3)} =
∅. We call U a (skew, skew) element if

U = (γµ−γ−1τ)(λµ−λ−1σ)K

and we call U a (skew, sym) element if

U = (γµ−γ−1τ)(λµ+λ−1σ)K or U = (γµ+γ−1τ)(λµ−λ−1σ)K,

where γ, λ, τ, σ ∈ Sym(8) satisfy the same conditions.
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Remark It is not difficult to see that the class of all elements of the
form (γµ−γ−1τ)(λµ+λ−1σ)K is equal to the class of all elements of the form
(γµ+γ−1τ)(λµ−λ−1σ)K.

We conclude that to show that x1 · · ·x8 is zero it is enough to show that all
(sym, sym), (skew, sym) and (skew, skew) elements are zero. And now it is
time to introduce superalgebras.

Let U , V , E and F be the following associative algebras with unity.

U = 〈u1, u2, u3 | u2
i = 0, uiuj = ujui for all i, j〉,

V = 〈v1, v2, v3 | v2
i = 0, vivj = vjvi for all i, j〉,

E = 〈e1, e2, e3 | e2
i = 0, eiej = −ejei for all i, j〉,

F = 〈f1, f2, f3 | f 2
i = 0, fifj = −fjfi for all i, j〉.

Now look first at the algebra

L̃ = L ⊗ U ⊗ V.

Clearly L̃ is an Engel-4 Lie algebra. If we let x = x1 ⊗u1 ⊗ 1 + x2 ⊗u2 ⊗ 1 +
x3 ⊗u3 ⊗ 1 and y = x4 ⊗ 1⊗ v1 + x5 ⊗ 1⊗ v2 + x6 ⊗ 1⊗ v3 then, for example,

x3y2x7yx8 = (
∑

α,β

xα(1)xα(2)xα(3)xβ(4)xβ(5)x7xβ(6)x8) ⊗ u1u2u3 ⊗ v1v2v3.

(Here we are identifying x7 with x7⊗1⊗1 and x8 with x8⊗1⊗1.) Every prod-
uct of x, x, x, y, y, y, x7, x8 in L̃ corresponds to a (sym, sym) element in this
way. And it is clear that if we want to show that every (sym, sym) element
in L is zero it is sufficient to show that every product of x, x, x, y, y, y, x7, x8

in L̃ is zero. (This is because L is free.)

To treat (skew, sym) elements we consider the algebra

S = L ⊗ U ⊗ E.

This is not a Lie-algebra. We shall call it the superalgebra associated with
the Lie algebra L ⊗ U . If we let x = x1 ⊗ 1 ⊗ e1 + x2 ⊗ 1 ⊗ e2 + x3 ⊗ 1 ⊗ e3

and y = x4 ⊗ u1 ⊗ 1 + x5 ⊗ u2 ⊗ 1 + x6 ⊗ u3 ⊗ 1, then to show that all
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(skew, sym) elements in L are zero it is again sufficient to show that all
products of x, x, x, y, y, y, x7, x8 are zero. Here

x3y2x7yx8 = (
∑

α,β

sign(α)xα(1)xα(2)xα(3)xβ(4)xβ(5)x7xβ(6)x8)⊗ u1u2u3 ⊗ e1e2e3.

Finally to handle (skew, skew) elements we look at the associated colour
algebra

C = L ⊗ E ⊗ F.

Here we let x = x1 ⊗ e1 ⊗ 1 + x2 ⊗ e2 ⊗ 1 + x3 ⊗ e3 ⊗ 1 and y = x4 ⊗ 1 ⊗
f1 + x5 ⊗ 1 ⊗ f2 + x6 ⊗ 1 ⊗ f3 and as before we see that if every product of
x, x, x, y, y, y, x7, x8 is zero it follows that every (skew, skew) element in L is
zero.

3.2 Calculations in superalgebras and colour algebras

Let L be an Engel-4 Lie algebra over some field k and let E be the following
associative algebra with unity.

E = 〈e1, e2, e3 | e2
i = 0, eiej = −ejei for all i, j〉.

E has basis {1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3}. We can write

E = E0 ⊕ E1,

where
E0 = sp〈1, e1e2, e1e3, e2e3〉

and
E1 = sp〈e1, e2, e3, e1e2e3〉.

An element in E0[E1] is called even[odd]. Let us now look at the superalgebra
S = L⊗E. Then S = S0 ⊕S1 where S0 = L⊗E0 and S1 = L⊗E1. We call
S0 the even part and S1 the odd part of S. An element that lies in S0[S1]
will be called even[odd]. It is clear that elements in E0 commute with all
elements in E. But if e and f are odd elements in E then ef = −fe. Using
the fact that the Lie product in L satisfies ab = −ba for all a, b ∈ L we see
that this implies that if u is some even element in S, then we have uv = −vu
for every v in S. But if both u and v are odd then uv = vu.

18



Now consider the full linearization of the Engel-4 identity

K(x1, x2, x3, x4, x5) =
∑

σ∈Sym(4)

x5xσ(1)xσ(2)xσ(3)xσ(4) = 0.

If for each i ∈ {1, . . . , n} we substitute hi = ai ⊗ gi for xi where ai ∈ L and
gi ∈ E then

K(h1, h2, h3, h4, h5) =
∑

σ

a5aσ(1)aσ(2)aσ(3)aσ(4) ⊗ g5gσ(1)gσ(2)gσ(3)gσ(4).

If g1, g2, g3 and g4 are all even then

K(h1, h2, h3, h4, h5) = (
∑

σ

a5aσ(1)aσ(2)aσ(3)aσ(4)) ⊗ g5g1g2g3g4

= 0 ⊗ g5g1g2g3g4

= 0.

So this identity still holds in S in this case. But unfortunately it is not
necessarily true if some of g1, g2, g3, g4 are odd. ‘Cross out’ all the even g’s
and look only at the permutation induced on the odd g’s. We have that

gσ(1)gσ(2)gσ(3)gσ(4) = g1g2g3g4,

if the odd gi are permuted evenly and

gσ(1)gσ(2)gσ(3)gσ(4) = −g1g2g3g4

if the odd gi are permuted oddly. Denote the correct sign with sign(σ, odd g).
Then

K(h1, h2, h3, h4, h5) = (
∑

σ

sign(σ, odd g)a5aσ(1)aσ(2)aσ(3)aσ(4)) ⊗ g5g1g2g3g4

which is not always zero. More generally, let h1, h2, . . . h5 be elements of S,
where each is either even or odd. We define sign(σ, odd h) as we defined
sign(σ, odd g). That is we cross out all the even h’s and look just at the
permutation induced on the odd h’s. Now let

K∗(x1, x2, x3, x4, x5) =
∑

σ∈Sym(4)

sign(σ, oddx)x5xσ(1)xσ(2)xσ(3)xσ(4).
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Then K∗(h1, h2, h3, h4, h5) = 0. So in S we will be working with identities
like K∗ = 0 instead of K = 0. But the identities are similar and there is not
much complication.

Example Let b, x1, x2, y ∈ L. The Engel identity gives

0 = y(x1b)x2y
2 + y(x1b)yx2y + y(x1b)y

2x2 +

yx2(x1b)y
2 + yx2y(x1b)y + yx2y

2(x1b).

Now let g1 and g2 be odd elements in S. Then identifying b and y with the
elements b ⊗ 1, y ⊗ 1 ∈ S, we get the following identity

0 = y(g1b)g2y
2 + y(g1b)yg2y + y(g1b)y

2g2 −
yg2(g1b)y

2 − yg2y(g1b)y − yg2y
2(g1b).

If for example g1 = g2 = x = x1 ⊗ e1 + x2 ⊗ e2 + x3 ⊗ e3, then we have the
identity

0 = y(xb)xy2 + y(xb)yxy + y(xb)y2x −
yx(xb)y2 − yxy(xb)y − yxy2(xb).

Now take another copy of E, say

F = 〈f1, f2, f3 | f 2
i = 0 fifj = −fjfi for all i, j〉

and consider the colour algebra

C = L ⊗ E ⊗ F.

We can also split F into an even part and an odd part, F = F0 ⊕ F1. Then

C = C(0,0) ⊕ C(0,1) ⊕ C(1,0) ⊕ C(1,1),

where C(i,j) = L ⊗ Ei ⊗ Ej . Let us look again at the identity

K(x1, x2, x3, x4, x5) =
∑

σ∈S(4)

x5xσ(1)xσ(2)xσ(3)xσ(4) = 0,
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which holds in L. If we substitute hk for each xk where each hk ∈ C(i,j) for
some i, j, we get

K(h1, h2, h3, h4, h5) = (
∑

σ

sign(σ, oddEh)sign(σ, oddFh)h5hσ(1)hσ(2)hσ(3)hσ(4)),

where we think of h as an odd element with respect to E if it is a sum of
elements a ⊗ r ⊗ s where each r is odd in E. Similarly h would be odd with
respect to F if each s was odd. So here we get K∗(h1, h2, h3, h4, h5) = 0 in
C, where

K∗(x1, x2, x3, x4, x5) =
∑

σ∈Sym(4)

sign(σ, oddEx)sign(σ, oddF x)x5xσ(1)xσ(2)xσ(3)xσ(4).

So again calculations will be quite similar to calculations in the Lie-algebra.

4 Engel-4 algebras

In his paper [6] P. Higgins gives a short elegant proof of global nilpotency of
Engel-4 algebras when char k 6= 2, 3, 5, 7. Kostrikin [9] shows that the same
method works when char k = 7. Here follows a sketch of the proof.

As before we let U denote ad(u). We shall use the bracket symbol to
denote the Lie product in ad(L). So [XY ] = ad(xy) = XY − Y X and
[XY 3] = ad(xy3). First we get the following identities (for details see Higgins
[6]).

X3Y 3 = −Y 3X3 = 13T 2X2Y 2XY = −2Y 2X2Y X = −25T
X2Y 3X = −Y 2X3Y = −T XY XY XY = −Y XY XY X = −3T
XY 3X2 = −Y X3Y 2 = 7T 2XY 2XY X = −2Y X2Y XY = −5T
2X2Y XY 2 = −2Y 2XY X2 = T 2XY 2X2Y = −2Y X2Y 2X = 17T
2XY X2Y 2 = −2Y XY 2X2 = −13T 2XY XY 2X = −2Y XY X2Y = −7T

where T = −X2Y 3X. Now let V = 〈U3|U = ad(u), u ∈ L〉 be the linear
space generated by the cubes of the adjoint operators. Easy calculations
using the equations above give

[XY ]3 = −21T
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and
[Y X3]Y 2 + Y [Y X3]Y + Y 2[Y X3] = 31T.

Since 21 and 31 are coprime, this implies that T lies in V . Therefore X3Y 3 =
13T is also in V . Note also that the product of cubes is anti commutative.
That is X3Y 3 = −Y 3X3. Therefore we have

(X3Y 3)Z3 = −Z3(X3Y 3) = X3Z3Y 3 = −X3Y 3Z3

so X3Y 3Z3 = 0. Since for char k 6= 2, 5 Engel-3 algebras are nilpotent of
class less than or equal to 4 and hence soluble of derived length at most 3,
we get L(3)Y 3Z3 = 0. From this it follows in the same way that L(6)Z3 = 0
and then finally L(9) = 0. So we have that L is soluble and therefore by a
well known theorem of Higgins [6] it follows that L is nilpotent.

Now Kostrikin goes even further and proves that L(7) = 0, which implies
nilpotency of class ≤ 5461. In this section we shall prove that the correct
upper bound is 7 using a computer to deal with the complicated calculations
involved. It is not hard to see that this bound is best possible. If L is
the relatively free Engel-4 Lie algebra over k, freely generated by x, y, z, the
Higgins calculations show that T = −X2Y 3X 6= 0. So L7 6= {0}.

We shall also see that Id〈x〉 is nilpotent of class at most 3 for all x
in the algebra if the characteristic of the field is not 2 or 5. In the case
when characteristic is 5 we have the Higman, Havas, Newman and Vaughan-
Lee [5] result that Id〈x〉7 = 0 for all x in the algebra. In Chapter 2 we
showed that for a graded Engel-4 Lie algebra there is a upper bound for the
nilpotency class which is polynomial in the number of generators. Notice
that every Engel-3 algebra is also an Engel-4 algebra. So all the examples
of non-nilpotent algebras given in Section 2 are also examples of Engel-4
algebras. This means that there exist non-nilpotent Engel-4 algebras when
the characteristic of the field is 2 or 5. J. A. Bahturin [3] gives an example
of a non-nilpotent Engel-4 algebra over a field of characteristic 3.

4.1 Nilpotency of Id〈x〉 when char k 6= 2, 5

In this section L will be an Engel-4 algebra over a field k such that char k 6=
2, 5 and x will be a fixed element of L. We shall prove that Id〈x〉4 = {0}.
Unfortunately the proof given here is not valid in the case when |k| = 3,
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because then we can not use the identity

XY 3 + Y XY 2 + Y 2XY + Y 3X = 0.

(See the discussion about linearizations from Section 1.) Nevertheless, the
result is still true when |k| = 3, though a slightly different proof is needed.
We omit the proof for this case since it is very similar to the proof given for
the case |k| > 3.

Lemma 4.1 Let a, b ∈ L and suppose that ab = 0. Then every left normed
product of x, x, x, a, b is symmetric in a and b and is a multiple of xaxbx. In
particular

xabx2 = xaxbx, xax2b = −2xaxbx.

Proof It is easy to see that every such product lies in the linear span of

xaxbx, xbxax, xax2b, xbx2a, xabx2.

From the Engel identity we have

ax3b = −ax2bx − axbx2 = xaxbx + xabx2,

and then using the Jacobi identity we get

0 = (xa)(xb)x + (xb)x(xa) + x(xa)(xb)

= xaxbx − xabx2 − bx3a − xbxax + ax3b + xaxbx

= 3xaxbx − 2xbxax − xbax2.

If we interchange a and b we get (because xbax2 = xabx2)

3xbxax − 2xaxbx = 3xaxbx − 2xbxax

⇒ 5xbxax = 5xaxbx

⇒ xbxax = xaxbx.

This clearly implies that xabx2 = xaxbx and that xax2b = −2xaxbx. There-
fore every product is a multiple of xaxbx and is symmetric in a and b. 2
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Lemma 4.2 Let a, b ∈ L and suppose that ab = 0. Then every left normed
product of x, x, a, a, b is a multiple of xaxab. In particular

xabxa = xaaxb = xbxaa = xaxab, xa2bx = −2xaxab.

Proof It is clear that every such product is in the linear span of

La = xaxab, Lb = xbxaa, Ra = xabxa, Rb = xaaxb, U = xaabx.

From the Jacobi and Engel identities we get

(J1) 0 = (xa)(xb)a + (xb)a(xa) + a(xa)(xb)

= La − Ra + Ra − U − Rb + U

= La − Rb,

(J2) 0 = (xb)(xa)a + (xa)a(xb) + a(xb)(xa)

= Lb − Ra + Rb − U − Ra + U

= Lb + Rb − 2Ra,

(E1) 0 = 2ax2ab + axaxb + axbxa + 2axabx

= −2La − Rb − Ra − 2U,

(E2) 0 = bx2a2 + bxaxa + bxa2x

= −Lb − Ra − U.

From (J1) and (E2) we get Rb = La and Ra = −Lb − U . Using this in (J2)
and (E1) gives

(i) 0 = 3Lb + La + 2U

and
(ii) 0 = Lb − 3La − U.

From (i) and (ii) we have 5Lb = 5La, that is, Lb = La since char k 6= 5. Then
(ii) implies that U = −2La and then we get from (E2) that Ra = La. So

Ra = Rb = Lb = La and U = −2La. 2
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Lemma 4.3 Let a, b, c ∈ L and suppose that ab = ac = bc = 0. Then all
left normed products of x, x, a, b, c are symmetric in a, b, c and are multiples
of xaxbc.

Proof From Lemma 4.2 we have

−2xbxaa = −2xaaxb = xaabx.

So if we substitute a + c for a and divide by 2 we get

−2xbxac = −2xacxb = xacbx.

But the last product is symmetric in a, b, c, so the other two are also sym-
metric. This clearly implies that all products of x, x, a, b, c are multiples of
xaxbc. 2

Lemma 4.4 Let a, b ∈ L and suppose that ab = 0. Then every left normed
product of x, x, x, a, a, b is a multiple of xaxaxb: indeed

xaxabx = xaxbxa = xaxaxb.

Proof Suppose we have a left normed product of x, x, x, a, a, b. There are
three possibilities. It ends in a, b or x. By Lemmas 4.1 and 4.2 it then lies
in the linear span of xaxbxa, xaxaxb and xaxabx. Now using Lemma 4.1 we
have

2xaxbxa = −xax2ba = −xax2ab = 2xaxaxb,

so xaxbxa = xaxaxb. And then using the Jacobi identity we have

0 = (xax)(xa)b + (xa)b(xax) + b(xax)(xa)

= −3xaxaxb + xab(xa)x − xabx(xa) − xaxb(xa) by Lemma 4.1

= −3xaxaxb + 3xaxabx − xaxbxa + xaxabx

−xaxbxa + xaxabx by Lemma 4.1 and Lemma 4.2

= −3xaxaxb − 2xaxbxa + 5xaxabx

= −5xaxaxb + 5xaxabx.

Hence xaxabx = xaxaxb since char k 6= 5. 2
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Lemma 4.5 Let a, b, c ∈ L such that ab = ac = bc = 0. Then every
left normed product of x, x, x, a, b, c is symmetric in a, b, c and a multiple
of xaxbxc.

Proof If the product ends in x, then by Lemma 4.3 it is a multiple of xaxbcx
and symmetric in a, b and c. If it ends in c, then it is a multiple of xaxbxc
and symmetric in a and b by Lemma 4.1. But using Lemma 4.1 we get

2xaxbxc = −xax2bc = −xax2cb = 2xaxcxb.

So it is symmetric in a, b, c. This also implies that every product that ends
in a, b or c is a multiple of xaxbxc. But from Lemma 4.4 we have

xaxabx = xaxaxb,

which by substituting a + c for a implies that

2xaxcbx = 2xaxcxb,

and therefore
xaxbcx = xaxbxc.

So every product of x, x, x, a, b, c is a multiple of xaxbxc. 2

Lemma 4.6 Let a ∈ L, then every product of x, x, x, x, a, a is 0.

Proof Because L is an Engel-4 algebra, every product of x, x, x, x, a is zero.
So we can assume that the product ends in x. But then by Lemma 4.1 it is
a multiple of xaxax2. It is therefore sufficient to show that xaxax2 = 0. But

0 = (xax)(xa)x + (xa)x(xax) + x(xax)(xa)

= xax2ax − xaxax2 + 0 − xax3a + xax2ax

= −2xaxax2 − xaxax2 − 0 − 2xaxax2 by Lemma 4.1

= −5xaxax2,

so xaxax2 = 0. 2

Lemma 4.7 Let a, b ∈ L and suppose that ab = 0. Then every product of
x, x, x, x, a, b is 0.
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Proof If the product is not to be zero, it must end in x because of the Engel
condition. By Lemma 4.1 it is then a multiple of xaxbx2 and is symmetric
in a and b. But Lemma 4.6 implies that it is also anti-symmetric in a and b.
Therefore it must be 0. 2

Lemma 4.8 Let a, b ∈ L and suppose that ab = 0. Then every left normed
product of x, x, x, x, a, a, b is 0.

Proof From Lemmas 4.1, 4.2 and 4.4 we have

xbxaxa = xaxbxa = xaxaxb = xaxabx = xbxaax (∗).

By Lemma 4.7 we can assume that the product ends in x, and then by Lemma
4.4 it is a multiple of xaxaxbx. So we only have to show that this element is
0.

Now if U is a product of x, x, a, a and V of x, b then UV = 0:

(xaxa)(xb) = xaxaxb − xaxabx = 0 by (*),

and
(xaax)(xb) = xa2x2b − xa2xbx = xaxaxb − xaxabx = 0

by Lemma 4.1, Lemma 4.2 and (*). We shall use this in the following cal-
culations (all underlined products are zero ), and also the fact (Lemma 4.7)
that every product of x, x, x, x, a, a, b which ends in a or b is 0. So in the
following calculations we will not write down products that end in a or b.
Now by the Engel identity we have

0 = x(xbx)a2x + xa(xbx)ax + xa2(xbx)x + xa2x(xbx) + xaxa(xbx)

= −xbx2a2x − xbx(xa)ax + xa2(xb)x2 − xa2x(xb)x

+xa2x(xb)x − xa2x2(xb) + xaxa(xb)x − xaxax(xb)

= 2xbxaxax + 3xbxaxax + 3xaxabx2 + xaxaxbx

+xaxaxbx by Lemma 4.1 and Lemma 4.2

= 10xaxaxbx by (*),

so xaxaxbx = 0, since char k 6= 2, 5. 2

Lemma 4.9 Let a, b, c ∈ L such that ab = ac = bc = 0. Then every product
of x, x, x, x, a, b, c is 0.
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Proof By Lemma 4.7 we can assume that the product end in x. By Lemma
4.5 it is then a multiple of xaxbxcx and symmetric in a, b, c. But from Lemma
4.8 we have xaxbxax = 0, so if we substitute a+ c for a we get 2xaxbxcx = 0
and therefore xaxbxcx = 0. 2

So we are now ready for more general results.

Lemma 4.10 Let a1, . . . , an ∈ L such that n ≥ 3 and aiaj = 0 for all i, j.
Then all products of x, x, a1, . . . , an are symmetric in the a’s and multiples
of xa1xa2 · · ·an.

Proof We will use induction on n. The case n = 3 follows from Lemma 4.3.
So assume this is true for some n ≥ 3.

Let a1, . . . an+1 ∈ L and suppose that aiaj = 0 for all i, j. By the inductive
hypothesis every product of x, x, a1, . . . an+1 that ends in an+1 is symmetric
in a1, . . . , an and a multiple of xa1xa2 . . . an+1. But

xa1xa2 · · ·an−1anan+1 = xa1xa2 · · ·an−1an+1an.

So the product is symmetric in a1, . . . , an+1. This also implies that every
product of x, x, a1, . . . , an+1 that ends in some a is a multiple of xa1xa2 · · ·an+1.
It is therefore only left to show that xa1 · · ·an+1x is a multiple of xa1xa2 · · ·an+1.
It is now clear that all products are symmetric in the a’s. We consider two
cases.

Case 1 If n is odd we have

0 = (xa1 · · ·an−1)(xan)an+1 + (xan)an+1(xa1 · · ·an−1)

+an+1(xa1 · · ·an−1)(xan)

= (−1)n−1xa1 · · ·an+1x + xa1 · · ·an+1x

+ a multiple of xa1xa2 · · ·an+1 (ind. hyp)

= 2xa1 · · ·an+1x + a multiple of xa1xa2 · · ·an+1.

So xa1 · · ·an+1x is a multiple of xa1xa2 · · ·an+1.

Case 2 If n is even we have from the Engel identity

0 = 2an+1(xa1 · · ·an−2)an−1anx + 2an+1xan−1an(xa1 · · ·an−2)

+a multiple of xa1xa2 · · ·an+1 (ind. hyp)
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= −2xa1 · · ·an+1x − (−1)n−22xa1 · · ·an+1x

+ a multiple of xa1xa2 · · ·an+1 (ind. hyp)

= −4xa1 · · ·an+1x + a multiple of xa1xa2 · · ·an+1,

so xa1 · · ·an+1x is a multiple of xa1xa2 · · ·an+1.

Hence the lemma follows. 2

Lemma 4.11 Let a1, . . . , an ∈ L and suppose that aiaj = 0 for all i, j and
n ≥ 3. Then all products of x, x, x, a1, . . . an are symmetric in the a’s and
multiples of xa1xa2xa3 · · ·an.

Proof We will use induction over n. The case n = 3 follows from Lemma
4.5. So let n ≥ 3 and assume this is true for n.

Let a1, . . . , an+1 ∈ L and suppose that aiaj = 0 for all i, j. By the same
argument as in the proof of Lemma 4.10 it follows that these products are
symmetric in the a’s and that every product that ends in some a is a multiple
of xa1xa2xa3 · · ·an+1. We can therefore assume that the product ends in x.
From Lemma 4.10 we then have that it is a multiple of xa1xa2 · · ·an+1x. So it
is only left to show that xa1xa2 · · ·an+1x is a multiple of xa1xa2xa3 · · ·an+1.
Now from the Jacobi identity we have

0 = (xa1xa2 · · ·an−1)(xan)an+1 + (xan)an+1(xa1xa2 · · ·an−1)

+an+1(xa1xa2 · · ·an−1)(xan)

= xa1xa2 · · ·an+1x + (−1)n−2xan+1 · · ·a2(xa1x)

+ a multiple of xa1xa2xa3 · · ·an+1 (ind. hyp)

and from the Engel identity

0 = 2an+1(xa1xa2 · · ·an−2)an−1anx + 2an+1xan−1an(xa1xa2 · · ·an−2)

+ a multiple of xa1xa2xa3 · · ·an+1 (ind. hyp)

= −2xa1xa2 · · ·an+1x + (−1)n−22xan+1 · · ·a2(xa1x)

+ a multiple of xa1xa2xa3 · · ·an+1 (ind. hyp).

Now these equations imply that xa1xa2 · · ·an+1x is a multiple of xa1xa2xa3 · · ·an+1,
so we have proved the lemma. 2
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Theorem 4.1 Let L be an Engel-4 algebra over a field k such that char k 6=
2, 5 and let L be generated by x, a1, a2, . . .. Suppose that aiaj = 0 for all i, j,
then

Id〈x〉4 = {0}.

Proof We will prove by induction over n that every product of 4 x’s and n
a’s is 0. The case n = 1 is trivial and if n = 2 or 3 this follows from lemmas
4.7 and 4.9. So assume this is true for some n ≥ 3.

Every product of x, x, x, x, a1, . . . , an+1 that ends in a is 0 by the inductive
hypothesis. So we can assume that it ends in x. But then it is a multiple
of xa1xa2xa3 · · ·an+1x by Lemma 4.11. So we only have to show that this
product is 0. Now using the Jacobi identity we have

0 = (xa1xa2xa3 · · ·an−1)(xan)an+1 + (xan)an+1(xa1xa2xa3 · · ·an−1)

+an+1(xa1xa2xa3 · · ·an−1)(xan)

= xa1xa2xa3 · · ·an+1x + (−1)n−3xan+1 · · ·a3(xa1xa2x), (ind. hyp)

and from the Engel identity combined with the inductive hypothesis

0 = 2an+1(xa1xa2xa3 · · ·an−2)an−1anx + 2an+1xan−1an(xa1xa2xa3 · · ·an−2) (ind. hyp)

= −2xa1xa2xa3 · · ·an+1x + (−1)n−32xan+1 · · ·a3(xa1xa2x).

From these equations we have xa1xa2xa3 · · ·an+1x = 0. Hence the theorem
follows. 2

And we can now remove the restriction that aiaj = 0.

Theorem 4.2 If L is an Engel-4 algebra over a field k such that char k 6=
2, 5, then

Id〈x〉4 = {0} for all x ∈ L.

Proof Let L be the (relatively) free Engel-4 algebra over k generated by
x, a1, a2, . . . and let I be the ideal generated by aiaj for i, j ∈N. We will prove
the following statement by induction on n.

‘If u5, . . . , un are elements of L and U is a left normed product of
x, x, x, x, u5, · · · , un in some order, then U = 0.’
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The case n = 5 is trivial. Suppose this is true for n = m. Let a be a
left normed product of x, x, x, x, a5, . . . , am+1. Now L and I are multigraded
and a5 + I, a6 + I, · · · commute in L/I. Therefore it follows from Theorem
4.1 that a is a linear combination of elements in L(x, x, x, x, a5, . . . , am+1) ∩
I, where L(x, x, x, x, a5, . . . , am+1) is the homogeneous component of L of
weight (4, 1, · · · , 1) in x, a5, . . . am+1. Now I is spanned, as a vector space,
by products b1b2 · · · br where one of the b’s is some aiaj and the other b’s are
generators of the algebra. Since L is multigraded L(x, x, x, x, a5, . . . , am+1)∩I
is spanned by products b1b2 · · · bm where 4 of the b’s are x’s, one b is some
aiaj and the other b’s are the other a’s in {a5, . . . , am+1}. But these are all
left normed products of 4 x’s and m u’s and hence zero by the induction
hypothesis. Now let U be a product of x, x, x, x, u5, . . . , um+1. Let θ be a
homomorphism from L to L which sends x to x and ai to ui. Then U = θ(a)
where a is a product of x, x, x, x, a5, . . . , am+1. But then a = 0 and therefore
also U = 0. So we have proved the theorem. 2

4.2 Nilpotency of L when char k 6= 2, 3, 5

In this section we shall prove that if L is an Engel-4 algebra over a field
k such that char k 6= 2, 3, 5 then L is nilpotent of class≤ 7. In the last
chapter we reduced this problem to three smaller ones; the (sym,sym) case,
the (sym,skew) case and the (skew,skew) case.

An example of a non-nilpotent Engel-(p + 1) Lie-algebra over a field of
characteristic p may be found in [3]. Taking p = 3, this example shows that
there exist non-nilpotent Engel-4 Lie-algebras of characteristic 3.

Let us now turn to the proof of the nilpotency when char k 6= 2, 3, 5. We
will consider the (sym,skew) case. The other cases are treated similarly.
We let S be the superalgebra L ⊗ U ⊗ E defined in Section 3 and we let
x = x1⊗u1⊗1+x2⊗u2⊗1+x3⊗u3⊗1, y = x4⊗1⊗e1+x5⊗1⊗e2+x6⊗1⊗e3,
a = x7 ⊗ 1 ⊗ 1 and b = x8 ⊗ 1 ⊗ 1. We need to show that all products of
x, x, x, y, y, y, a, b are zero. So consider the subalgebra A of S generated by
a, b, x, y. Note that a, b and x are even, and that y is odd. A is spanned (as
a vector space over k) by left-normed products of the generators a, b, x, y. If
v is a product of the generators then v is even if an even number of y’s occur
in v, and v is odd if an odd number of y’s occur in v. The fact that L is
an Engel-4 Lie-algebra implies that A satisfies the following identities for all
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products v1, v2, v3, v4, v5 of the generators a, b, x, y.

v1v2 = −sign(σ, odd v)v2v1, (15)

where σ = (12). Notice that if v1 = v2 = v and both are even then this
formula gives vv = −vv and hence vv = 0, but if v is odd we have vv = vv
which gives nothing.

v1v2v3 + sign(τ, odd v)v2v3v1 + sign(τ 2, odd v)v3v1v2 = 0, (16)

where τ = (123).

∑

σ∈Sym(4)

sign(σ, odd v)v5vσ(1)vσ(2)vσ(3)vσ(4) = 0. (17)

The subalgebra A could possibly satisfy more relations, but it satisfies at
least these relations.

Now look at the largest algebra generated by a, b, x, y subject to the
relations (15) and (16) (but not (17)). Note that this algebra is multigraded.
We let B be the algebra we get from this one by factoring out the ideal
consisting of all left normed products in a, b, x, y with more than one a,
or one b, or three x’s, or three y’s. Since we are just interested in the
left normed products of weight (1, 1, 3, 3) in a, b, x, y and we will only work
with multilinear identities, we do not need the elements from this ideal and
therefore we can ignore them. The ‘Nilpotent Quotient algorithm’ for Lie-
algebras is described in [12]. The corresponding algorithm for superalgebras
is similar. We can use this algorithm to get a weighted product presentation
for the algebra B. Now B is a graded algebra and

B = B1 ⊕ B2 ⊕ · · · ⊕ B8

where Bi is the linear span of products of weight i in the generators a, b, x, y.
The notion of a weighted product presentation is described in [12]. We have
a vector space basis {b1, . . . , bn} for B consisting of left normed products in
a, b, x, y. We have a weight wi ∈N assigned to every basis element bi. This
basis has the following properties:
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0) b1 = a, b2 = b, b3 = x, and b4 = y;

1) 1 = w1 = w2 = w3 = w4 < w5 ≤ . . . ≤ wn = 8;

2) {bi |wi = j} is a basis for Bj for j = 1, . . . , 8;

3) if 1 ≤ i ≤ n and wi > 1 then bi has a definition of the form
bi = bubv for some 1 ≤ v ≤ u ≤ n such that wi = wu + 1, wv = 1;

4) bi is odd/even if y occurs an odd/even number of times
in the expression for it as a left normed product of a, b, x, y.

We also obtain relations

bibj = cij, bjbi = −sign( (ij), odd b)bibj

for 1 ≤ j ≤ i ≤ n where cij is a linear combination of basis elements of weight
wi + wj. Now given such a presentation we can express every element in B
uniquely as a linear combination of the basis elements and we can multiply
elements together using the relations.

B8 is the subspace of B spanned by all left normed products of weight
(1, 1, 3, 3) in a, b, x, y. As for Lie-algebras, it can be shown that B8 has a
basis consisting of all left normed products of weight (1, 1, 3, 3) that start
in a. This basis consists of 140 elements. We obtained a weighted product
presentation for B which had these 140 elements as the basis elements of
weight 8. Now take some basis elements v1, . . . , v5 such that the sum of the
weights is (1, 1, 3, 3) in a, b, x, y. Then we use the identity (17) in A that
corresponds to the full linearization of the Engel identity in L, namely

∑

σ

sign(σ, odd v)v5vσ(1)vσ(2)vσ(3)vσ(4) = 0,

as described in Section 3.2. Now use the presentation to multiply this out.
We get a relation on the basis elements m1, . . . , m140 of B8

α1m1 + · · ·+ α140m140 = 0.

If we do this for every 5-tuple (v1, . . . , v5) we get a set of homogeneous equa-
tions in m1, . . . , m140.
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The presentation for B and the relations on the basis elements of B8 were
obtained with the aid of a computer program. For each i = 1, 2, . . . , 8 the ho-
mogeneous component Bi of B is spanned by left-normed products of weight
i in the generators a, b, x, y. The relations between these spanning elements
are all consequences of relations (15) and (16) where v1, v2, v3 are left-normed
products of a, b, x, y, together with the relations which specify that a left-
normed product is zero if it has more than one a, one b, three x’s, or three y’s.
The computer program computed the dimension of each Bi, and computed a
basis for each Bi using these spanning products, and these relations. The pro-
gram for the Nilpotent Quotient Algorithm which was used is able to produce
a presentation for B and a set of homogeneous equations in m1, m2, . . . , m140

(as described above) provided the characteristic of the ground field k is a
prime. However we needed a presentation for B over the field of rationals
Q, and the program was unable to do that directly. Fortunately there is a
way round this problem. The coefficients in the weighted product presenta-
tion for B and in the relations α1m1 + α2m2 + · · · + α140m140 = 0 are all
integers. Furthermore it is possible to bound the integers that can occur in
these relations. By choosing a prime p greater than twice the bound, and by
using the program to evaluate the coefficients modulo p, it was possible to
compute the values of the coefficients over Q. To see how we can bound the
coefficients look at the full linearizations of the identities

dvu3 + duvu2 + du2vu + du3v = 0

and
4dvu3 − 6duvu2 + 4du2vu − du3 = 0.

We get the second identity from the first by interchanging d and v. Now
the sum of the absolute values of the coefficients in the identities above is at
most 15. So in a full linearization we have at most 15 · 6 = 90 products with
plus or minus sign. Each product is a left normed product in 5 variables,
say v1, v2, v3, v4, v5. We get the relations α1m1 + · · · + α140m140 from these
identities by substituting basis elements of B for the variables such that the
sum of the weights is (1, 1, 3, 3) in a, b, x, y. By going through all possible
combinations we get all the relations. It is clear that the coefficients are inte-
gers. Also it is not difficult to verify that when we substitute basis elements
of B in a product of v1, · · · , v5 we can get the same basis element of B8 at
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most four times. For example,

ayyy(bx3) = ay3bx3 − 3ay3xbx2 + 3ay3x2bx − ay3x3b,

and
ay(y2)x(bx2) = 2ay3xbx2 − 4ay3x2bx + 2ay3x3b.

Now since there are at most 90 such left normed products in an identity, we
have the same basis element at most 90 · 4 = 360 times. So 360 is an upper
bound for the coefficients.

So by evaluating the coefficients modulo the prime 997 we we were able to
obtain 227 relations in m1, · · · , m140 with coefficients in Z.

The output was in such a form that one could check it by hand. First we
have from the presentation for B a multiplication table for the basis elements

bibj =
∑

cij.

Some of the relations are defining relations bibj = bk and from those the
rest of the multiplication table can in principle be calculated by hand. So
it is possible to check by hand that the weighted product presentation for
B is correct. However the number of relations to check is enormous, and
so only a representative sample was checked by hand in this way. Next the
227 relations were calculated using the presentation. Each of these relations
corresponds to some equation

∑

σ

sign(σ, odd v)v5vσ(1) · · · vσ(4) = 0

for some basis elements v1, . . . , v5 with sum of weights (1, 1, 3, 3) in a, b, x, y.
In the output not only the relations were given but also these v1, . . . , v5 from
which the relation was derived. So one can check a relation by calculating the
left hand side of the equation using the presentation. Again, a representative
sample of relations were checked in this way.

To solve the (sym,skew) case, we want to show that these relations force
m1, . . . , m140 to be zero.

Suppose we picked out 140 linearly independent (over Z) relations and
calculated the determinant d. Then if

d = 2α3β5γ
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for some positive integers α, β, γ we would be done, because that would mean
that d 6= 0 for every characteristic 6= 2, 3, 5.

We chose 140 independent relations but the determinant turned out to be
too big to compute using a short Fortran program. But instead of calculating
the determinant directly we used the Chinese Remainder Theorem:

Z/p1 · · · pmZ ∼= Z/p1Z × · · ·Z/pmZ

if p1, . . . , pm are distinct primes.
We can calculate the determinant modulo p1, . . . , pm using an elementary

Gauss elimination method and get m values d1, . . . , dm. From these values
we can then calculate the corresponding value d∗ in Z/p1 · · · pmZ. If p1 · · · pm

is known to be bigger than the determinant d then from d∗ we would get d.
(d = d∗ or d = d∗ − p1 · · · pm).

Now a crude estimate of the determinant gave

|d| ≤ 10227,

so p1 · · · pm > 10228 would be sufficient. In computing the values of the
d1, d2, . . . , dm of the determinant modulo the primes p1, p2, . . . , pm we needed
to avoid the possibility of integer overflow. So 70 prime numbers p1, . . . , p70

between 10000 and 20000 were chosen and the determinants d1, . . . , d70 in
the fields Z/p1Z,· · ·,Z/p70Z were calculated using a short Fortran program.
To get the corresponding value d∗ in Z/p1 · · ·p70Z, a function from a package
called Maple was used. A program from this package was used to factorize
the determinant. It turned out to be

da = −257 · 318 · 581 · 11 · 133 · 17 · 19 · 31 · 41 · 163 · 2753 · 5217299.

Then we verified directly that da = di mod pi for i = 1, 2, . . . , 70 as a check.
Now this includes other prime factors than 2, 3 and 5, so another 140 relations
were chosen with determinant

db = 240 · 312 · 567 · 79 · 8025680120903.

Since the common divisor has only 2, 3 and 5 as divisors this solves the
(sym,skew) case.

The (sym,sym) case and the (skew,skew) case were handled in the same way.
Again two determinants were calculated with common divisor only divisible
by 2, 3 and 5. So we have finally proved the following theorem.

36



Theorem 4.3 If L is an Engel-4 algebra over a field k such that char k 6=
2, 3, 5 then L is nilpotent of class≤ 7.

In fact the (sym,sym) case was also done by hand. But unfortunately in
the other cases some of the symmetries were lost and therefore it was too
complicated to do those cases by hand.
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