
gH1 = H1g for all g ∈ G). Now |G/H1| = pn−1 and by induction hypothesis, there is a
normal chain of subgroups

{1} = K0 < K1 < · · · < Kn−1 = G/H1.

By the Correspondence Theorem this chain corresponds to a normal chain of intermediate
subgroups between H1 and G

H1 < H2 < · · · < Hn = G

where Ki−1 = Hi/H1. Then |Hi| = |Ki−1| · |H1| = pi−1 · p = pi and the chain

{1} = H0 < H1 < · · · < Hn = G

is the chain we want. 2.

Remark. In particular this last result tells us that the converse to Lagrange’s Theo-
rem holds when G is a p-group. To see the converse of Lagrange’s Theorem doesn’t hold
in general consider the group A5. This is a simple group with 60 elements that has no
subgroup with 30 elements. This is because a subgroup with 30 elements would have
index 2 and thus be normal contradicting the simplicity of A5.

Definition. Let G be a finite group of order pn · m where p does not divide m. A
subgroup of order pn is called a Sylow p-subgroup of G.

Remark. A more elegant way of saying that H is a Sylow p-subgroup of G is to say
that H is a p-group such that [G : H ] is not divisible by p.

We are now going to prove a number of very nice and useful results about these. In
particular we will see that these subgroups always exist and are (for a given group G)
all isomorphic. We will also get some information about the number of the Sylow p-
subgroups. These results, known collectively as the Sylow theorems, are going to be an
important tool to understand the structure of the larger group G.

Theorem 5.4 (1st Sylow Theorem) Let G be a finite group and p a prime number. There
exists a Sylow p-subgroup of G.

Proof We prove this by induction on |G|. If |G| = 1 then {1} is the Sylow p-subgroup
for any prime p and thus the Sylow p-subgroups exist trivially in this case. Suppose now
that |G| ≥ 2, and that the result holds for groups of smaller order. Let p be any prime
and suppose that |G| = pnm where p 6 |m. If n = 0 then the trivial subgroup {1} would
be a Sylow p-subgroup. We can thus assume that n ≥ 1. We use the class equation

|G| = |Z(G)| +
r∑

i=1

[G : CG(ai)]
︸ ︷︷ ︸

each ≥2

.

Suppose first that some of [G : CG(ai)] is not divisible by p. Notice that |G| = [G :
CG(ai)] · |CG(ai)| and as p does not divide [G : CG(ai)], whereas pn divides |G|, it follows
that pn divides |CG(ai)|. But |CG(ai)| < |G| and thus by induction hypothesis CG(ai)
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contains a Sylow p-subgroup that is of order pn and thus a Sylow p-subgroup of G as well.

We are then left with the case when all of the indices [G : CG(ai)] are divisible by p.
Then |G| is divisible by p and from the class equation it then follows that p divides the
order of |Z(G)|. By Cauchy’s Theorem (we only need the abelian version) we know that
Z(G) has a subgroup N of order p which has to be normal in G, since Ng = gN for all
g ∈ G. By induction hypothesis, G/N contains a Sylow p-subgroup that is a subgroup
of order pn−1. By the Correspondence Theorem this subgroup is of the form P/N for
some N ≤ P ≤ G. Notice that |P | = |N | · |P/N | = p · pn−1 = pn and thus P is a Sylow
p-subgroup of G. 2

Corollary 5.5 Let G be a group of finite order and let pr be any power of a prime that
divides the order of G. Then there exists a subgroup of order pr.

Proof Suppose that |G| = pnm where p 6 |m. By the first Sylow theorem there is a
subgroup P of order pn and by Theorem 5.3 we know that P has a subgroup of order pr.
2

For the proof of the 1st Sylow Theorems we used arguments that involved counting the ele-
ments of G. For our proofs of the other Sylow theorems we will be counting cosets instead.

Counting cosets If H, K ≤ G and let X be the set of all right cosets of H in G.
Then K acts naturally on X through right multiplication: Ha ∗ x = Hax. This turns X
into a K-set. The next Lemma gives us a useful formula of counting the number of cosets
that belongs to any given K-orbit.

Lemma 5.6 The number of cosets in the K-orbit containing Ha are

|Ha ∗ K| = [K : K ∩ Ha].

Proof We apply the Orbit-Stablizer Theorem. We need to determine the stablizer of the
coset Ha in K. Now

Hak = Ha ⇔ Haka−1 = H ⇔ aka−1 ∈ H ⇔ k ∈ a−1Ha = Ha

As k was in K to start with, this shows that the stablizer of Ha is K ∩ Ha and the
Orbit-Stabilizer Theorem tells us that |Ha ∗ K| = [K : K ∩ Ha]. 2

A formula for counting cosets. As before we let X be the set of all right H-cosets
that we consider as a K-set. Suppose that

X = Ha1 ∗ K ∪ Ha2 ∗ K ∪ · · · ∪ Ham ∗ K

is the partition of X into disjoint K-orbits. Using Lemma 5.6 this implies that

[G : H ] = |X|

= |Ha1 ∗ K| + |Ha2 ∗ K| + · · ·+ |Ham ∗ K|

= [K : K ∩ Ha1 ] + [K : K ∩ Ha2 ] + · · · + [K : K ∩ Ham ].
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Remark. We know from Theorem 5.3 that any Sylow p-subgroup contains a subgroup
of an order that is an arbitrary p-power divisor of |G|. Now we show that the converse
is true. Every subgroup of p-power order is contained in some Sylow p-subgroup. In fact
we prove something much stronger.

Theorem 5.7 Let H ≤ G where H is a subgroup of p-power order. Let P be any Sylow
p-subgroup of G. Then

H ≤ P a

for some a ∈ G.

Proof Suppose that |G| = pnm where p 6 |m. Let X be the collection of all the right P
cosets that we consider as a H-set. By the formula for counting cosets, we have

m = [G : P ] = [H : H ∩ P a1 ] + [H : H ∩ P a2 ] + . . . + [H : H ∩ P am ] (4)

for some a1, . . . , am ∈ G. We claim that H∩P ai = H for some i = 1, . . . , m. Otherwise all
the indices on the RHS of (4) would be divisible by p and we would get the contradiction
that m is divisible by p. Hence H ∩ P ai = H for some i ∈ {1, . . . , m} or equivalently
H ⊆ P ai . 2

The 2nd Sylow theorem is a direct consequence of this.

Theorem 5.8 (2nd Sylow Theorem). Any two Sylow p-subgroup are conjugate. (So they
form a single conjugacy class).

Proof Let P and Q be Sylow subgroups of G. By last theorem we know that

Q ⊆ P a

for some a ∈ G. But these two groups have the same order. Hence we have Q = P a. 2

Remark. The map φ : P → P a, x 7→ xa is an isomorphism and thus P and P a are
isomorphic. So all the Sylow p-subgroups are isomorphic and up to isomorphism we can
talk about the Sylow p-subgroup.

We now move on to the third and the last of the Sylow theorems. This is going to
give us some information on the number of Sylow p-subgroups that is immensely useful
as we will see.

Theorem 5.9 (3rd Sylow Theorem). Let G be a finite group and p a prime. The number
n(p) of Sylow p-subgroups of G satisfies:

(i) n(p) = 1 + pr, for some non-negative integer r.
(ii) n(p) divides |G|.
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Proof (See at the end of this chapter).

Remarks. (1) Suppose that |G| = pnm whre p does not divide m. Let P be a Sy-
low p-subgroup of G. As |G| = pnm = |P | · [G : P ] and as n(p) = 1 + pr divides |G| while
being coprime to p, we must have that n(p) divides m = [G : P ].

(2) Let P be a Sylow p-subgroup of G. The Sylow p-subgroups form a single conjugacy
class

{ a−1Pa : a ∈ G}

The number n(p) of these is one iff all of them are equal to P , i.e. iff P � G.

Example 1. Let G be a group of order 2 · pr where p is an odd prime and r ≥ 1.
By the Sylow theorems there exist a subgroup of order pr that is then of index 2 and
therefore normal. Hence G can’t be simple if it is of order 2pr.

Example 2. Let G be a group of order pq where p and q are primes and p > q. Now the
number n(p) of Sylow p-subgroups, satisfies

n(p) = 1 + pr and n(p) divides |G|/p = q

The only possible n(p) satisfying these criteria is n(p) = 1. It follows that there is only
one subgroup of order p and this must then be normal in G. We have thus shown that
there are no simple groups of order pq.

Example 3. To demonstrate the usefulness of the Sylow theorems, let us see how we can
use them to see that there is no simple group of order 12 = 3 · 22. Firstly we have by the
1st Sylow theorem (or Cauchy’s thm) that there is a subgroup of order 3 and the number
n(3) of these satisfies

n(3) = 1 + 3r and n(3) divides |G|/3 = 4.

There are only two possibilities, n(3) = 1 or n(3) = 4. In the first case there is a normal
subgroup of order 3. Let us look at the latter case. We have 4 groups of order 3 and
therefore 4 · 2 = 8 elements of order 3 (in each of the Sylow 3-subgroups there are two
elements of order 3 and as the intersection of any two of these is {1} we get exactly
4 · 2 = 8 elements of order 3). There remain 4 elements that must form a unique Sylow
2-subgroup Q (which has order 4). Notice that none of the elements of order 3 can be in
Q as 3 does not divide 4. As n(2) = 1 we now have that Q � G.

Example 4. Let p, q be distinct primes. We will see that there is no simple group
of order p2q. We consider two cases. If p > q then n(p) = 1 + pr should divide q and
as p > q this can only happen if n(p) = 1. But in this case we have a normal Sylow
p-subgroup. We can thus assume that p < q. Now

n(q) = 1 + qr divides |G|/q = p2.

If n(q) = 1 we have a normal Sylow q-subgroup, so we can suppose that n(q) > 1. As
q > p the only possibility is that n(q) = p2. We then have

1 + qr = p2 ⇔ qr = p2 − 1 = (p − 1)(p + 1).
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As the prime q is greater than p, it follows that q divides p + 1 and again as q > p, we
must have q = p + 1. The only two primes that are one apart are 2 and 3. Thus p = 2
and q = 3 and |G| = p2 · q = 12. But by Example 3, there is no simple group of order 12
and we are done.

Remark. We mentioned before a famous result of Burnside, the Burnside’s (p, q)- Theo-
rem. This said that any group G of order pnqm is solvable. This means that there are not
composition factors that are non-abelian. In particular G can’t be non-abelian simple.

Later in the notes and on the exercise sheets we will apply the Sylow theorems to find
all groups of order up to and including 15. We will also see that there is no non-abelian
simple group of order less than 60 (|A5| = 60). Before leaving this section we add another
weapon to our list. This is Poincaré’s Lemma that is often of great help.

Definition. Suppose H ≤ G. The subgroup

HG =
⋂

g∈G

Hg

is called the core of H in G.

Remarks. (1) As H = He is one of the conjugates of H it is clear that HG ≤ H
and we will see later that HG � G as a part of Poincaré’s Lemma. This we can also see
directly. Let a ∈ G then

Ha
G =

⋂

g∈G

Hga =
⋂

b∈G

Hb = HG,

where the last identity holds from the fact that Ga = G.

(2) If N ≤ H and N � G then for all g ∈ G we have N = Ng ≤ Hg. It follows
that

N ≤
⋂

g∈G

Hg = HG.

This shows that HG is the largest normal subgroup of G that is contained in H .

Theorem 5.10 Suppose G is a group (possibly infinite) and let H ≤ G such that [G :
H ] = n < ∞. Then

G/HG
∼= K

for some K ≤ Sn.

Proof Let X = {gH : g ∈ G}. For each a ∈ G, we get a map La : X → X, gH 7→ agH .
Notice that La is bijective with inverse La−1 . Also notice that

La ◦ Lb(gH) = La(bgH) = abgH = Lab(gH).

Now consider the map φ : G → Sym (X), a 7→ La. We have just seen that Lab = La ◦ Lb

and this implies that φ(ab) = φ(a) ◦ φ(b). Thus φ is a homomorphism. We next identify
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the kernel. We have

φ(a) = La = id ⇔ agH = gH for all g ∈ G

⇔ g−1agH = H for all g ∈ G

⇔ g−1ag ∈ H for all g ∈ G

⇔ a ∈ gHg−1 for all g ∈ G.

Therefore the kernel is
⋂

g∈G Hg−1

=
⋂

a∈G Ha = HG. By the 1st Isomorphism Theorem
we have that HG � G and

G/HG = G/ker φ ∼= im φ

where im φ ≤ Sym (X). As |X| = n we have that Sym (X) ∼= Sn and thus G/HG

isomorphic to a subgroup of Sn. 2.

Corollary 5.11 (Poincaré’s Lemma). Let G be a finite simple group with a subgroup H
such that [G : H ] = n > 1. Then

G ∼= K

for some K ≤ Sn. In particular |G| divides |Sn| = n!.

Proof HG is a normal subgroup of G and as HG is contained in H we can’t have HG = G.
Now G is simple and we conclude that HG = {1}. The result now follows from Theorem
5.11 as G/{1} ∼= G. 2

Example 5. Let us give another proof of the fact that there is no simple group of
order 12. We argue by contradiction and suppose that G is a simple groups with 12
elements. By the Sylow theorems we have a subgroup of order 4 and thus of index 3. By
Corollary 5.12 if follows that 12 = |G| divides the 3! = 6. This is absurd.
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