induction hypothesis. Now let {id} # N < A,,, we want to show that N = A,,.
Step 1. NN G(n) # {id}.

We argue by contradiction and suppose that N N G(n) = {id}. This means that the
only element in N that fixes n is id. Now take «, 5 € N and suppose that a(n) = 3(n).
Then a~'3(n) = a=}(a(n)) = n and by what we have just said it follows that a~!3 = id
or a = 3. Hence, a permutation « in N is determined by a(n) and since there are at
most n values, we have that |N| < n. But his contradicts Lemma 4.3.

Step 2. N = A,,.

Now {id} # N N G(n) < G(n) (by the 2nd Isomorphism Theorem) and since G(n) is
simple by induction hypothesis, it follows that N N G(n) = G(n). In particular, N con-
tains a 3-cycle and thus N = A,, by Lemma 4.2. O

I1. Group actions

Theorem 4.5 (Cayley). Any group G is isomorphic to a subgroup of Sym (G).

Proof For a € G consider the map L, : G — G, x +— ax. Notice that L, is bijective with
inverse L,-1 and thus L, € Sym (G). Now consider the map

¢:G— Sym(G),a — L,.

Notice that (L, o Ly)(z) = abx = Lgy(z) and thus ¢(ab) = Lay = La o Ly = ¢(a) o ¢(b).
Thus ¢ is a homomorphism. This homomorphism is injective since if ¢(a) = ¢(b) then
a=a-1=Lys(1)=Ly(1) =b-1=0>. Thus G is ismorphic to im ¢ where the latter is a
subgroup of Sym (G). O

Definition. Let X be a set and G a group. We say that X is a G-set if we have a right
multiplication from G, i.e. a map

¢: XxG— X, (z,9)—x-g

satisfying

(a)z-1=2 VereX
(b) (x-a)-b=ua-(ab) Va,be G and z € X.

Remark. One also says that G acts on X. Notice that x - g is just a notation for
¢(z,g). Notice also that for every a € G we have that the map X — X : z+—x-aisa

permutation with inverse X — X : v +— z-a™ L.

Examples. (1) Let X = G be a group. We can consider this as a G-set with re-

spect to the natural right group multiplication x * g = zg. Clearly x 1 = x1 = = and
(x % a) % b= (xa)b = x(ab) = x = (ab) by the associativity in G.
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(2) Let H < G and let X be the collection of all the right cosets of H in G. We
can again consider X as a G-set with respect to the natural right group multiplications
Hgxa = Hga again it is easy to see that Hgx1 = Hg and (Hg*a)+b = Hgx*(ab) = Hgab.

(3) Let G be a group and X = G. We define a group action by G on X by letting
r*a=a'ra= 2% Then X becomes a G-set as r! =z and (z%)° = 2.

(4) Let X be the collection of all the subgroups of G. We can consider X as a G-
set with respect to the conjugation action. That is the right multiplication is given by
Hxg=¢g 'Hg= HY. Again X is a G-set.

Definition. Let X be a G-set. The stabilizer of x € X is
G,={9eG:z-g=1x}

and the G-orbit of x € X is
x-G={x-g: g€ G}.

Lemma 4.6 G, <G

Proof Firstly by condition (a) we have 1 € G,. Now suppose that a,b € G,. Using
condition (b) we then have z - (ab) = (z-a)-b=x-b=x and ab € G,. It remains to

show that GG, is closed under taking inverses. But this follows from
r=z-1=x-(aa)=(x-a)-at=x-a".

This finishes the proof. O

Theorem 4.7 (The Orbit Stabilizer Theorem). Let X be a G-set and x € X. Let H be
the collection of all the right cosets of G, in G. The map

V:H—-2x -G Ga—x-a

1s a bijection. In particular

|z G| =H| =[G : G,

(In other words the cardinality of the G-orbit generated by x is the same as the cardinality
of the collection of the right cosets of G in G).

Proof W is well defined and injective. We have

ra=z-ber-abl=rsab! € G, Gb=G,a.

As W is clearly surjective, this finishes the proof. O

Proposition 4.8 Let X be a G-set. The relation
x~y if yex-G

15 an equivalence relation on X and the equivalence classes are the G-orbits.
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Proof As x = x -1 it is clear that x ~ x and we have that ~ is reflexive. Now suppose
that y = 2-a. Then o = y-a~!. This shows that ~ is symmetric. It now remains to show
that ~ is transitive. But if y = x-a and z =y -b then z - (ab) = (x-a)-b=y-b = z.
Hence we get x ~ 2z from © ~ y and y ~ z and this shows that ~ is transitive and thus
an equivalence relation.

Finally x ~ y iff y € - G. Hence the equivalence class containing x is the G-orbit x-G. O

Corollary 4.9 Suppose that the G-orbits of X are are x; - G, 1 € I. Then

X[ =) G : Gy
icl
Proof We have that X = U,c;2;G where the union in pairwise disjoint. Thus
X| = |z -Gl =) [G:G,].
icl icl

Where the final equality follows from the Orbit Stabilizer Theorem.
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5 Finite groups and Sylow Theory

Definition. Let GG be a group and x € GG. The centralizer of x in G is

Co(z) ={9€ G: gz =xg}.

Remark. We are going to see shortly that Co(z) is a stabilizer of z with respect to a
certain action. Hence it will follow that C(z) is a subgroup of G. This we can also see
more directly.

Conjugacy action and the class equation. Let G be a finite group. We can then
think of G as a GG-set where the right multiplication is defined by

rxg=212=g lag.

The G-orbit x x G is then {z x g = 29 : g € G} = 2%, the conjugacy class of z, and the
stabilizer of x is

G,={9eG . v=axg=g'agy={9€G: xg=ga} = Cqx).
The orbit- stabiliser theorem thus tells us that
|29 =[G : Cg()]
We next write G as a disjoint union of G-orbits, that is conjugacy classes:

G = g?UaQGU-~-Uai

each of size >2
Uby ubs u--- ¢

S
J/

-~
each of size 1

Recall that Z(G) is the set of all those elements that commute with every element of G
and that this is a normal subgroup of G. Now x € Z(G) if and only if x = g tzg = 29
for all g € G. It follows that € Z(G) if and only if it’s conjucacy class {29 : g € G}
consists only of one element x. Therefore Z(G) = {by,...,bs} and

G=2ZG)uafuaSu---ual.

T

and |G| = |Z(G)| + Y_i_, |a¥|. Using the Orbit-Stabilizer Theorem we can deduce from
this the class equation

Gl =12(G)| +)_[G: Co(a)]
i=1
where the sum is taken over the r conjugacy classes with more than one element (so each
G : Cgala;)] > 1).

Definition. Let p be a prime. A finite group G is said to be a p-group if |G| = p™
for some m > 0.

Remark. The trivial group G = {1} is a p-group for any prime p.
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Theorem 5.1 If G is a non-trivial finite p-group, then Z(G) is non-trivial.

Proof We use the class equation

Gl =1Z(G)] + Y G : Calar)].

each >2

Since 1 # |G| is of p-power order it follows that |G| and each index [G : Cg(a;)] are
divisible by p. From the class equation it then follows that |Z(G)| is divisible by p. In
particular it has at least two elements. O

Example. The result above does not hold for finite groups in general. For example

Z(53) = {1} .

Theorem 5.2 (Cauchy). Let G be a finite group with order that is divisible by a prime
p. Then G contains an element of order p.

Remark. From exercise 4 on sheet 3, we know that this is true when G is abelian.

Proof We prove this by induction on |G|. If |G| = 1 then the result is trivial (|G|
is then not divisible by any prime p so the statement will not get contradicted). Now
suppose that |G| > 2 and that the result holds for all groups of smaller order. Consider
the class equation

61 = 1Z(G)] + Y26 Colan)],
~  each >

If any of the |Cg(a;)| is divisible by p, then, as |Cg(a;)| < |G|, we can use the induc-
tion hypothesis to conclude that Cg(a;) contains an element of order p (and thus G
as well). Thus we can assume that none of |Cg(a;)| are divisible by p. But then, as
|G| =[G : Cg(a;)] - |Ca(a;)|, all the indices |G : Cg(a;)] are divisible by p and the class
equation implies that |Z(G)] is divisible by p. But Z(G) is abelian so it follows from the
remark that it then contains an element of order p. O

Theorem 5.3 Let G be a finite p-group and suppose that |G| = p™. There exist a chain
of normal subgroups of G

{1}:H0<H1<...<Hn:G
where |H;| = p* fori=0,1,...,n.

Proof. We use induction on |G| = p™. If n = 0 then {1} = Hy = G is the chain we want.
Now suppose that n > 1 and that the result holds for all p-groups of smaller order. By
Theorem 5.1, we have that Z(G) is non-trivial and by Cauchy’s Thoerem (the abelian
version suffices) we know that there is a subgroup H; of Z(G) such that |H;| = p. Notice
that H; < G (as all the elements of H; commute with all the elements of G and thus
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gH, = Hyg for all ¢ € G). Now |G/H;| = p"! and by induction hypothesis, there is a
normal chain of subgroups

{1}:K0<K1<"'<Kn,1:G/H1.

By the Correspondence Theorem this chain corresponds to a normal chain of intermediate
subgroups between H; and GG

H<H<---<H,=G
where K; | = H;/H,. Then |H;| = |K; 4| - |H;| = p" ' - p = p’ and the chain

is the chain we want. O.
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