
induction hypothesis. Now let {id} 6= N � An, we want to show that N = An.

Step 1. N ∩ G(n) 6= {id}.

We argue by contradiction and suppose that N ∩ G(n) = {id}. This means that the
only element in N that fixes n is id. Now take α, β ∈ N and suppose that α(n) = β(n).
Then α−1β(n) = α−1(α(n)) = n and by what we have just said it follows that α−1β = id
or α = β. Hence, a permutation α in N is determined by α(n) and since there are at
most n values, we have that |N | ≤ n. But his contradicts Lemma 4.3.

Step 2. N = An.

Now {id} 6= N ∩ G(n) � G(n) (by the 2nd Isomorphism Theorem) and since G(n) is
simple by induction hypothesis, it follows that N ∩ G(n) = G(n). In particular, N con-
tains a 3-cycle and thus N = An by Lemma 4.2. 2

II. Group actions

Theorem 4.5 (Cayley). Any group G is isomorphic to a subgroup of Sym (G).

Proof For a ∈ G consider the map La : G → G, x 7→ ax. Notice that La is bijective with
inverse La−1 and thus La ∈ Sym (G). Now consider the map

φ : G → Sym (G), a 7→ La.

Notice that (La ◦ Lb)(x) = abx = Lab(x) and thus φ(ab) = Lab = La ◦ Lb = φ(a) ◦ φ(b).
Thus φ is a homomorphism. This homomorphism is injective since if φ(a) = φ(b) then
a = a · 1 = La(1) = Lb(1) = b · 1 = b. Thus G is ismorphic to im φ where the latter is a
subgroup of Sym (G). 2

Definition. Let X be a set and G a group. We say that X is a G-set if we have a right
multiplication from G, i.e. a map

φ : X × G → X, (x, g) 7→ x · g

satisfying

(a) x · 1 = x ∀x ∈ X
(b) (x · a) · b = x · (ab) ∀a, b ∈ G and x ∈ X.

Remark. One also says that G acts on X. Notice that x · g is just a notation for
φ(x, g). Notice also that for every a ∈ G we have that the map X → X : x 7→ x · a is a
permutation with inverse X → X : x 7→ x · a−1.

Examples. (1) Let X = G be a group. We can consider this as a G-set with re-
spect to the natural right group multiplication x ∗ g = xg. Clearly x ∗ 1 = x1 = x and
(x ∗ a) ∗ b = (xa)b = x(ab) = x ∗ (ab) by the associativity in G.
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(2) Let H ≤ G and let X be the collection of all the right cosets of H in G. We
can again consider X as a G-set with respect to the natural right group multiplications
Hg∗a = Hga again it is easy to see that Hg∗1 = Hg and (Hg∗a)∗b = Hg∗(ab) = Hgab.

(3) Let G be a group and X = G. We define a group action by G on X by letting
x ∗ a = a−1xa = xa. Then X becomes a G-set as x1 = x and (xa)b = xab.

(4) Let X be the collection of all the subgroups of G. We can consider X as a G-
set with respect to the conjugation action. That is the right multiplication is given by
H ∗ g = g−1Hg = Hg. Again X is a G-set.

Definition. Let X be a G-set. The stabilizer of x ∈ X is

Gx = {g ∈ G : x · g = x}

and the G-orbit of x ∈ X is
x · G = {x · g : g ∈ G}.

Lemma 4.6 Gx ≤ G

Proof Firstly by condition (a) we have 1 ∈ Gx. Now suppose that a, b ∈ Gx. Using
condition (b) we then have x · (ab) = (x · a) · b = x · b = x and ab ∈ Gx. It remains to
show that Gx is closed under taking inverses. But this follows from

x = x · 1 = x · (aa−1) = (x · a) · a−1 = x · a−1.

This finishes the proof. 2

Theorem 4.7 (The Orbit Stabilizer Theorem). Let X be a G-set and x ∈ X. Let H be
the collection of all the right cosets of Gx in G. The map

Ψ : H → x · G, Gxa 7→ x · a

is a bijection. In particular
|x · G| = |H| = [G : Gx].

(In other words the cardinality of the G-orbit generated by x is the same as the cardinality
of the collection of the right cosets of Gx in G).

Proof Ψ is well defined and injective. We have

x · a = x · b ⇔ x · ab−1 = x ⇔ ab−1 ∈ Gx ⇔ Gxb = Gxa.

As Ψ is clearly surjective, this finishes the proof. 2

Proposition 4.8 Let X be a G-set. The relation

x ∼ y if y ∈ x · G

is an equivalence relation on X and the equivalence classes are the G-orbits.
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Proof As x = x · 1 it is clear that x ∼ x and we have that ∼ is reflexive. Now suppose
that y = x ·a. Then x = y ·a−1. This shows that ∼ is symmetric. It now remains to show
that ∼ is transitive. But if y = x · a and z = y · b then x · (ab) = (x · a) · b = y · b = z.
Hence we get x ∼ z from x ∼ y and y ∼ z and this shows that ∼ is transitive and thus
an equivalence relation.

Finally x ∼ y iff y ∈ x ·G. Hence the equivalence class containing x is the G-orbit x ·G. 2

Corollary 4.9 Suppose that the G-orbits of X are are xi · G, i ∈ I. Then

|X| =
∑

i∈I

[G : Gxi
].

Proof We have that X = ∪i∈IxiG where the union in pairwise disjoint. Thus

|X| =
∑

i∈I

|xi · G| =
∑

i∈I

[G : Gxi
].

Where the final equality follows from the Orbit Stabilizer Theorem.
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5 Finite groups and Sylow Theory

Definition. Let G be a group and x ∈ G. The centralizer of x in G is

CG(x) = {g ∈ G : gx = xg}.

Remark. We are going to see shortly that CG(x) is a stabilizer of x with respect to a
certain action. Hence it will follow that CG(x) is a subgroup of G. This we can also see
more directly.

Conjugacy action and the class equation. Let G be a finite group. We can then
think of G as a G-set where the right multiplication is defined by

x ∗ g = xg = g−1xg.

The G-orbit x ∗ G is then {x ∗ g = xg : g ∈ G} = xG, the conjugacy class of x, and the
stabilizer of x is

Gx = {g ∈ G : x = x ∗ g = g−1xg} = {g ∈ G : xg = gx} = CG(x).

The orbit- stabiliser theorem thus tells us that

|xG| = [G : CG(x)]

We next write G as a disjoint union of G-orbits, that is conjugacy classes:

G = aG
1
∪ aG

2
∪ · · · ∪ aG

r
︸ ︷︷ ︸

each of size ≥2

∪ bG
1
∪ bG

2
∪ · · · bG

s
︸ ︷︷ ︸

each of size 1

Recall that Z(G) is the set of all those elements that commute with every element of G
and that this is a normal subgroup of G. Now x ∈ Z(G) if and only if x = g−1xg = xg

for all g ∈ G. It follows that x ∈ Z(G) if and only if it’s conjucacy class {xg : g ∈ G}
consists only of one element x. Therefore Z(G) = {b1, . . . , bs} and

G = Z(G) ∪ aG
1
∪ aG

2
∪ · · · ∪ aG

r .

and |G| = |Z(G)| +
∑r

i=1
|aG

i |. Using the Orbit-Stabilizer Theorem we can deduce from
this the class equation

|G| = |Z(G)| +
r∑

i=1

[G : CG(ai)]

where the sum is taken over the r conjugacy classes with more than one element (so each
[G : CG(ai)] > 1).

Definition. Let p be a prime. A finite group G is said to be a p-group if |G| = pm

for some m ≥ 0.

Remark. The trivial group G = {1} is a p-group for any prime p.
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Theorem 5.1 If G is a non-trivial finite p-group, then Z(G) is non-trivial.

Proof We use the class equation

|G| = |Z(G)| +

r∑

i=1

[G : CG(ai)]
︸ ︷︷ ︸

each ≥2

.

Since 1 6= |G| is of p-power order it follows that |G| and each index [G : CG(ai)] are
divisible by p. From the class equation it then follows that |Z(G)| is divisible by p. In
particular it has at least two elements. 2

Example. The result above does not hold for finite groups in general. For example
Z(S3) = {1} .

Theorem 5.2 (Cauchy). Let G be a finite group with order that is divisible by a prime
p. Then G contains an element of order p.

Remark. From exercise 4 on sheet 3, we know that this is true when G is abelian.

Proof We prove this by induction on |G|. If |G| = 1 then the result is trivial (|G|
is then not divisible by any prime p so the statement will not get contradicted). Now
suppose that |G| ≥ 2 and that the result holds for all groups of smaller order. Consider
the class equation

|G| = |Z(G)| +
r∑

i=1

[G : CG(ai)]
︸ ︷︷ ︸

each ≥2

.

If any of the |CG(ai)| is divisible by p, then, as |CG(ai)| < |G|, we can use the induc-
tion hypothesis to conclude that CG(ai) contains an element of order p (and thus G
as well). Thus we can assume that none of |CG(ai)| are divisible by p. But then, as
|G| = [G : CG(ai)] · |CG(ai)|, all the indices [G : CG(ai)] are divisible by p and the class
equation implies that |Z(G)| is divisible by p. But Z(G) is abelian so it follows from the
remark that it then contains an element of order p. 2

Theorem 5.3 Let G be a finite p-group and suppose that |G| = pn. There exist a chain
of normal subgroups of G

{1} = H0 < H1 < . . . < Hn = G

where |Hi| = pi for i = 0, 1, . . . , n.

Proof. We use induction on |G| = pn. If n = 0 then {1} = H0 = G is the chain we want.
Now suppose that n ≥ 1 and that the result holds for all p-groups of smaller order. By
Theorem 5.1, we have that Z(G) is non-trivial and by Cauchy’s Thoerem (the abelian
version suffices) we know that there is a subgroup H1 of Z(G) such that |H1| = p. Notice
that H1 � G (as all the elements of H1 commute with all the elements of G and thus
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gH1 = H1g for all g ∈ G). Now |G/H1| = pn−1 and by induction hypothesis, there is a
normal chain of subgroups

{1} = K0 < K1 < · · · < Kn−1 = G/H1.

By the Correspondence Theorem this chain corresponds to a normal chain of intermediate
subgroups between H1 and G

H1 < H2 < · · · < Hn = G

where Ki−1 = Hi/H1. Then |Hi| = |Ki−1| · |H1| = pi−1 · p = pi and the chain

{1} = H0 < H1 < · · · < Hn = G

is the chain we want. 2.
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