
Proof (⇐). A composition series with abelian factors is a subnormal series with abelian
factors.

(⇒). Suppose G is finite solvable group with subnormal series

{1} = H0 < H1 < . . . < Hn = G

where the factors are abelian. If this series is not a composition series, then some factor
Hi/Hi−1 is not simple and we can insert some K, such that Hi−1 < K < Hi, to get a
longer series. Notice that K/Hi−1 ≤ Hi/Hi−1 and thus abelian. Also we have by the 3rd
Isomorphism Theorem that

Hi/K ∼=
Hi/Hi−1

K/Hi−1

that is a quotient of the abelian group Hi/Hi−1 and thus abelian. Thus the new longer
series also has abelian factors. Continuing adding terms until we get a composition series,
gives us then a composition series with abelian factors and thus factors that are cyclic of
prime order. 2

How common are finite solvable groups? In fact surprisingly common. We mention
two famous results.

Theorem A (Burnside’s (p,q)-Theorem, 1904) Let p, q be prime numbers. Any group of
order pnqm is solvable.

Theorem B. (The odd order Theorem, Feit-Thompson, 1963). Any group of odd or-
der is solvable.

(This is really a magnificent result. The proof is almost 300 pages and takes up a whole
issue of a mathematics journal. Thompson received the Field’s medal for his contribu-
tion).

28



4 Permutation groups and group actions

I. Permutation groups and the simplicity of An, n ≥ 5

Convention. We will work with permutations from right to left. So if α, β ∈ Sn then for
αβ, we apply β first and then α.

Lemma 4.1 Let α ∈ Sn. Then

α(i1 i2 . . . im)α−1 = (α(i1) α(i2) . . . α(im)).

Proof First suppose that k = α(j) is not in {α(i1), α(i2), · · · , α(im)}. Then j is not in
{i1, i2, · · · , im} and

α(i1 i2 . . . im)α−1(α(j)) = α(i1 i2 . . . im)(j) = α(j).

This shows that α(i1 i2 . . . im)α−1 fixes the elements outside {α(i1), α(i2), · · · , α(im)}.
It remains to show that this map cyclically permutes α(i1), α(i2), · · · , α(im). But

α(i1 i2 · · · im)α−1(α(ir)) = α(i1 i2 · · · im)(ir) = α(ir+1)

where im+1 is interpreted as i1. This finishes the proof. 2

Orbits. Let i ∈ {1, . . . , n}. Recall that the α-orbit containing i is the subset {αr(i) : r ∈
Z} and that {1, . . . , n} partitions into a pairwise disjoint union of α-orbits.

Cycle structure. Suppose that the orbits of α ∈ Sn are O1, O2, . . . , Or of sizes l1 ≥
l2 ≥ · · · ≥ lr. We then say that α has a cycle structure of type (l1, . . . , lr).

Example. Let

α =

(

1 2 3 4 5 6 7 8
3 5 4 2 1 7 6 8

)

= (1 3 4 2 5)(6 7)(8).

Then α is of type (5, 2, 1).

Definition. Let G be a group and x ∈ G. The conjugacy class of G containing x is
xG = {xg : g ∈ G}.

On sheet 6, we see that G is a pairwise disjoint union of its conjugacy classes.

By Lemma 4.1, we have that if α is a permutation of some type (l1, . . . , lr), then the
conjugacy class αSn consists of all permutations of that type. It follows also that if a
normal subgroup N contains a permutation of type (l1, l2, . . . , lr) then it contains all per-
mutations of that type.
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Example. [(1 2)(3 4)]S4 = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Remarks. We have the following formula (check it)

(i1 i2 · · · im) = (i1 im)(i1 im−1) · · · (i1 i2). (3)

Remark As every permutation in Sn can be written as a product of disjoint cycles, this
formula implies that every permutation in Sn can be written as a product of 2-cycles.

Recall. A permutation α ∈ Sn is said to be even/odd if it can be written as a product of
even/odd number of 2-cycles. We also know that no permutation is both even and odd
and thus Sn gets partitioned into even and odd elements. We denote by An the collection
of all even elements. This is a subgroup that contains half the elements of Sn and for any
odd element a in Sn, we have

Sn = An ∪ aAn.

In particular An is of index 2 in Sn and is thus normal.

Remark. By (3) we have that (i1 · · · im) is a even/odd permutation if and only if
m is odd/even.

Remark Any even permutation in An can be written as a product of even number of
2-cycles. So every permutation in An is a product of elements of one the following forms
(for i, j, r and s distinct)

(i j)(i r) = (i r j)

(i j)(r s) = (i j)(i r)(r i)(r s) = (i r j)(r s i).

It follows that any permutation in An can be written as a product of 3-cycles.

Lemma 4.2

(a) If N � Sn contains a 2-cycle then N = Sn.
(b) If N � An contains a 3-cycle then N = An.

Proof (a) Let (i1 i2) be a 2-cycle of N . Let (j1 j2) be any other 2-cycle of Sn. Let α be a
permutation that maps ik to jk. By Lemma 4.1 we have that (j1 j2) = α(i1 i2)α

−1 which
being a conjugate of (i1 i2) is also in N . So every 2-cycle is in N and as Sn is generated
by 2-cycles it follows that N = Sn.

(b) The proof is similar. Let (i1 i2 i3) be a 3-cycle of N and let (j1 j2 j3) be any
other 3-cycle of An. Let α ∈ Sn be a permutation that maps ik to jk. If α ∈ An then
(j1 j2 j3) = α(i1 i2 i3)α

−1 is in N as before. If α on the other hand is odd then consider
first instead β = (j1 j2)α ∈ An. The element

(j2 j1 j3) = β(i1 i2 i3)β
−1

is then in N and then also (j1 j2 j3) = (j2 j1 j3)
−1. So all the 3-cycles are contained in N

and as An is generated by the 3-cycles, it follows that N = An. 2
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Lemma 4.3 Suppose n ≥ 5 and that {id} 6= N � An. Then |N | > n.

Proof As N 6= {id}, we have some id 6= x ∈ An. It suffices to show then xAn has at least
n elements since then N would contain these elements plus the identity and thus more
than n elements. Write x as a product of disjoint cycles and suppose that the longest
cycle in the product has length m. There are two possibilities.

Case 1. m ≥ 3.

Here x is of the form
x = (i j k · · ·)y

where (i j k · · ·) is one of the cycles of longest length and y is the product of the remaining
cycles. Now take any distinct r, s, t, u, v ∈ {1, 2, . . . , n}. Let α ∈ Sn such that α(i) = r,
α(j) = s and α(k) = t. Notice that by Lemma 4.1, we have

xα−1

= (r s t ...)yα−1

.

The same is true if α is replaced by (u v)α (notice that we are using n ≥ 5 here), so
we can assume that α is even. It follows that we can choose r, s, t to be any elements in
{1, 2, . . . , n} that we like. We can now easily find at least n elments in xAn . For example
we can take the elements

(1 2 3 · · ·)y1, (1 2 4 · · ·)y2, (1 3 2 · · ·)y3, (1 4 2 · · ·)y4, · · · , (1 n 2 · · ·)yn

Case 2. m = 2.

As x is even we have to have at least two 2-cycles in the product. It follows that

x = (i j)(k l)y

where (i j), (k l) are two of the 2-cycles and y is the product of the remaining cycles.

Now take any distinct r, s, t, u ∈ {1, 2, . . . , n}. Let α ∈ Sn such that α(i) = r, α(j) = s,
α(k) = t and α(l) = u. Notice that

xα−1

= (r s)(t u)yα−1

and the same holds when α is replaced by (r s)α (as (s r) = (r s)). We can therefore
again suppose that α is even. As r, s, t, u can be chosen arbitrarily we can now again
easily find at least n elments in xAn . For example we can take these to be

(1 2)(3 4)y1, (1 2)(3 5)y2, (1 3)(2 4)y3, (1 4)(2 3)y4, · · · , (1 n)(2 3)yn.

So in both cases we have at least n elments in xAn and as N also contains the identity
element, it follows that N has at least n + 1 elements. 2

Theorem 4.4 The group An is simple for n ≥ 5.

Proof We prove this by induction on n ≥ 5. The induction basis, n = 5, is dealt with
on Sheet 7. Now for the induction step, suppose n ≥ 6 and that we know that An−1 is
simple. Let G(n) = {α ∈ An : α(n) = n}. Notice that G(n) ∼= An−1 and thus simple by
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induction hypothesis. Now let {id} 6= N � An, we want to show that N = An.

Step 1. N ∩ G(n) 6= {id}.

We argue by contradiction and suppose that N ∩ G(n) = {id}. This means that the
only element in N that fixes n is id. Now take α, β ∈ N and suppose that α(n) = β(n).
Then α−1β(n) = α−1(α(n)) = n and by what we have just said it follows that α−1β = id
or α = β. Hence, a permutation α in N is determined by α(n) and since there are at
most n values, we have that |N | ≤ n. But his contradicts Lemma 4.3.

Step 2. N = An.

Now {id} 6= N ∩ G(n) � G(n) (by the 2nd Isomorphism Theorem) and since G(n) is
simple by induction hypothesis, it follows that N ∩ G(n) = G(n). In particular, N con-
tains a 3-cycle and thus N = An by Lemma 4.2. 2
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