Proof (\Leftarrow). A composition series with abelian factors is a subnormal series with abelian factors.

 (\Rightarrow) . Suppose G is finite solvable group with subnormal series

$$\{1\} = H_0 < H_1 < \ldots < H_n = G$$

where the factors are abelian. If this series is not a composition series, then some factor H_i/H_{i-1} is not simple and we can insert some K, such that $H_{i-1} < K < H_i$, to get a longer series. Notice that $K/H_{i-1} \leq H_i/H_{i-1}$ and thus abelian. Also we have by the 3rd Isomorphism Theorem that

$$H_i/K \cong \frac{H_i/H_{i-1}}{K/H_{i-1}}$$

that is a quotient of the abelian group H_i/H_{i-1} and thus abelian. Thus the new longer series also has abelian factors. Continuing adding terms until we get a composition series, gives us then a composition series with abelian factors and thus factors that are cyclic of prime order. \Box

How common are finite solvable groups? In fact surprisingly common. We mention two famous results.

Theorem A (Burnside's (p,q)-Theorem, 1904) Let p, q be prime numbers. Any group of order $p^n q^m$ is solvable.

Theorem B. (The odd order Theorem, Feit-Thompson, 1963). Any group of odd order is solvable.

(This is really a magnificent result. The proof is almost 300 pages and takes up a whole issue of a mathematics journal. Thompson received the Field's medal for his contribution).

4 Permutation groups and group actions

I. Permutation groups and the simplicity of A_n , $n \ge 5$

Convention. We will work with permutations from right to left. So if $\alpha, \beta \in S_n$ then for $\alpha\beta$, we apply β first and then α .

Lemma 4.1 Let $\alpha \in S_n$. Then

$$\alpha(i_1 \ i_2 \ \dots \ i_m)\alpha^{-1} = (\alpha(i_1) \ \alpha(i_2) \ \dots \ \alpha(i_m)).$$

Proof First suppose that $k = \alpha(j)$ is not in $\{\alpha(i_1), \alpha(i_2), \dots, \alpha(i_m)\}$. Then j is not in $\{i_1, i_2, \dots, i_m\}$ and

$$\alpha(i_1 \ i_2 \ \dots \ i_m)\alpha^{-1}(\alpha(j)) = \alpha(i_1 \ i_2 \ \dots \ i_m)(j) = \alpha(j).$$

This shows that $\alpha(i_1 \ i_2 \ \dots \ i_m)\alpha^{-1}$ fixes the elements outside $\{\alpha(i_1), \alpha(i_2), \dots, \alpha(i_m)\}$. It remains to show that this map cyclically permutes $\alpha(i_1), \alpha(i_2), \dots, \alpha(i_m)$. But

$$\alpha(i_1 \ i_2 \ \cdots \ i_m)\alpha^{-1}(\alpha(i_r)) = \alpha(i_1 \ i_2 \ \cdots \ i_m)(i_r) = \alpha(i_{r+1})$$

where i_{m+1} is interpreted as i_1 . This finishes the proof. \Box

Orbits. Let $i \in \{1, ..., n\}$. Recall that the α -orbit containing i is the subset $\{\alpha^r(i) : r \in \mathbb{Z}\}$ and that $\{1, ..., n\}$ partitions into a pairwise disjoint union of α -orbits.

Cycle structure. Suppose that the orbits of $\alpha \in S_n$ are O_1, O_2, \ldots, O_r of sizes $l_1 \ge l_2 \ge \cdots \ge l_r$. We then say that α has a cycle structure of type (l_1, \ldots, l_r) .

Example. Let

Then α is of type (5, 2, 1).

Definition. Let G be a group and $x \in G$. The conjugacy class of G containing x is $x^G = \{x^g : g \in G\}.$

On sheet 6, we see that G is a pairwise disjoint union of its conjugacy classes.

By Lemma 4.1, we have that if α is a permutation of some type (l_1, \ldots, l_r) , then the conjugacy class α^{S_n} consists of all permutations of that type. It follows also that if a normal subgroup N contains a permutation of type (l_1, l_2, \ldots, l_r) then it contains all permutations of that type.

Example. $[(1\ 2)(3\ 4)]^{S_4} = \{(1\ 2)(3\ 4),\ (1\ 3)(2\ 4),\ (1\ 4)(2\ 3)\}.$

Remarks. We have the following formula (check it)

$$(i_1 \ i_2 \ \cdots \ i_m) = (i_1 \ i_m)(i_1 \ i_{m-1}) \cdots (i_1 \ i_2). \tag{3}$$

Remark As every permutation in S_n can be written as a product of disjoint cycles, this formula implies that every permutation in S_n can be written as a product of 2-cycles.

Recall. A permutation $\alpha \in S_n$ is said to be even/odd if it can be written as a product of even/odd number of 2-cycles. We also know that no permutation is both even and odd and thus S_n gets partitioned into even and odd elements. We denote by A_n the collection of all even elements. This is a subgroup that contains half the elements of S_n and for any odd element a in S_n , we have

$$S_n = A_n \cup aA_n.$$

In particular A_n is of index 2 in S_n and is thus normal.

Remark. By (3) we have that $(i_1 \cdots i_m)$ is a even/odd permutation if and only if m is odd/even.

Remark Any even permutation in A_n can be written as a product of even number of 2-cycles. So every permutation in A_n is a product of elements of one the following forms (for i, j, r and s distinct)

$$(i \ j)(i \ r) = (i \ r \ j)$$

 $(i \ j)(r \ s) = (i \ j)(i \ r)(r \ i)(r \ s) = (i \ r \ j)(r \ s \ i).$

It follows that any permutation in A_n can be written as a product of 3-cycles.

Lemma 4.2

(a) If $N \leq S_n$ contains a 2-cycle then $N = S_n$. (b) If $N \leq A_n$ contains a 3-cycle then $N = A_n$.

Proof (a) Let $(i_1 i_2)$ be a 2-cycle of N. Let $(j_1 j_2)$ be any other 2-cycle of S_n . Let α be a permutation that maps i_k to j_k . By Lemma 4.1 we have that $(j_1 j_2) = \alpha(i_1 i_2)\alpha^{-1}$ which being a conjugate of $(i_1 i_2)$ is also in N. So every 2-cycle is in N and as S_n is generated by 2-cycles it follows that $N = S_n$.

(b) The proof is similar. Let $(i_1 \ i_2 \ i_3)$ be a 3-cycle of N and let $(j_1 \ j_2 \ j_3)$ be any other 3-cycle of A_n . Let $\alpha \in S_n$ be a permutation that maps i_k to j_k . If $\alpha \in A_n$ then $(j_1 \ j_2 \ j_3) = \alpha(i_1 \ i_2 \ i_3)\alpha^{-1}$ is in N as before. If α on the other hand is odd then consider first instead $\beta = (j_1 \ j_2)\alpha \in A_n$. The element

$$(j_2 \ j_1 \ j_3) = \beta(i_1 \ i_2 \ i_3)\beta^{-1}$$

is then in N and then also $(j_1 \ j_2 \ j_3) = (j_2 \ j_1 \ j_3)^{-1}$. So all the 3-cycles are contained in N and as A_n is generated by the 3-cycles, it follows that $N = A_n$. \Box

Lemma 4.3 Suppose $n \ge 5$ and that $\{id\} \ne N \trianglelefteq A_n$. Then |N| > n.

Proof As $N \neq \{id\}$, we have some $id \neq x \in A_n$. It suffices to show then x^{A_n} has at least n elements since then N would contain these elements plus the identity and thus more than n elements. Write x as a product of disjoint cycles and suppose that the longest cycle in the product has length m. There are two possibilities.

<u>Case 1</u>. $m \ge 3$.

Here x is of the form

 $x = (i \ j \ k \ \cdots) y$

where $(i \ j \ k \ \cdots)$ is one of the cycles of longest length and y is the product of the remaining cycles. Now take any distinct $r, s, t, u, v \in \{1, 2, \ldots, n\}$. Let $\alpha \in S_n$ such that $\alpha(i) = r$, $\alpha(j) = s$ and $\alpha(k) = t$. Notice that by Lemma 4.1, we have

$$x^{\alpha^{-1}} = (r \ s \ t \ \dots) y^{\alpha^{-1}}.$$

The same is true if α is replaced by $(u \ v)\alpha$ (notice that we are using $n \ge 5$ here), so we can assume that α is even. It follows that we can choose r, s, t to be any elements in $\{1, 2, \ldots, n\}$ that we like. We can now easily find at least n elements in x^{A_n} . For example we can take the elements

$$(1 \ 2 \ 3 \ \cdots)y_1, \ (1 \ 2 \ 4 \ \cdots)y_2, \ (1 \ 3 \ 2 \ \cdots)y_3, \ (1 \ 4 \ 2 \ \cdots)y_4, \ \cdots, \ (1 \ n \ 2 \ \cdots)y_n$$

<u>Case 2</u>. m = 2.

As x is even we have to have at least two 2-cycles in the product. It follows that

$$x = (i \ j)(k \ l)y$$

where $(i \ j), (k \ l)$ are two of the 2-cycles and y is the product of the remaining cycles.

Now take any distinct $r, s, t, u \in \{1, 2, ..., n\}$. Let $\alpha \in S_n$ such that $\alpha(i) = r, \alpha(j) = s$, $\alpha(k) = t$ and $\alpha(l) = u$. Notice that

$$x^{\alpha^{-1}} = (r \ s)(t \ u)y^{\alpha^{-1}}$$

and the same holds when α is replaced by $(r \ s)\alpha$ (as $(s \ r) = (r \ s)$). We can therefore again suppose that α is even. As r, s, t, u can be chosen arbitrarily we can now again easily find at least n elements in x^{A_n} . For example we can take these to be

 $(1\ 2)(3\ 4)y_1,\ (1\ 2)(3\ 5)y_2,\ (1\ 3)(2\ 4)y_3,\ (1\ 4)(2\ 3)y_4,\ \cdots,\ (1\ n)(2\ 3)y_n.$

So in both cases we have at least n elements in x^{A_n} and as N also contains the identity element, it follows that N has at least n + 1 elements. \Box

Theorem 4.4 The group A_n is simple for $n \ge 5$.

Proof We prove this by induction on $n \ge 5$. The induction basis, n = 5, is dealt with on Sheet 7. Now for the induction step, suppose $n \ge 6$ and that we know that A_{n-1} is simple. Let $G(n) = \{\alpha \in A_n : \alpha(n) = n\}$. Notice that $G(n) \cong A_{n-1}$ and thus simple by induction hypothesis. Now let $\{id\} \neq N \leq A_n$, we want to show that $N = A_n$.

Step 1. $N \cap G(n) \neq {\text{id}}.$

We argue by contradiction and suppose that $N \cap G(n) = \{id\}$. This means that the only element in N that fixes n is id. Now take $\alpha, \beta \in N$ and suppose that $\alpha(n) = \beta(n)$. Then $\alpha^{-1}\beta(n) = \alpha^{-1}(\alpha(n)) = n$ and by what we have just said it follows that $\alpha^{-1}\beta = id$ or $\alpha = \beta$. Hence, a permutation α in N is determined by $\alpha(n)$ and since there are at most n values, we have that $|N| \leq n$. But his contradicts Lemma 4.3.

Step 2. $N = A_n$.

Now $\{id\} \neq N \cap G(n) \trianglelefteq G(n)$ (by the 2nd Isomorphism Theorem) and since G(n) is simple by induction hypothesis, it follows that $N \cap G(n) = G(n)$. In particular, N contains a 3-cycle and thus $N = A_n$ by Lemma 4.2. \Box