
Theorem 2.9 (The Fundamental Theorem for finite abelian groups). Let G be a finite
abelian group. G can be written as an internal direct sum of non-trival cyclic groups of
prime power order. Furthermore the number of cyclic summands for any given order is
unique for G.

Remark. Suppose that G = Zx1 + Zx2 + · · · + Zxn is a direct sum of cyclic group of
prime power order. Notice that

G = Zxσ(1) + Zσ(2) + · · · + Zσ(n)

for all σ ∈ Sn.

Convention. We order the cyclic summands as follows. First we order them with respect
to the primes involved in ascending order. Then for each prime we order the summands
in ascending order.

Example. If G is finite abelian group written as an internal direct sum

G = Zx1 + Zx2 + Zx3 + Zx4 + Zx5

of cyclic groups of orders 9, 2, 4, 3, 4, then we order the summands so that they come
instead in orders 2, 4, 4, 3, 9. Notice then that G is isomorphic to Z2 ⊕Z4 ⊕Z4 ⊕Z3 ⊕Z9.

Remarks. (1) This discussion shows that any finite abelian group is isomorphic to a
unique external direct sum

Zp
e1
1
⊕ · · · ⊕ Zp

er
r

where p1 ≤ p2 ≤ · · · ≤ pr and if pi = pi+1 then ei ≤ ei+1.

(2) Finding all abelian groups of a given order n = pm1

1 · · · pmr
r , where p1 < p2 < · · · < pr

are primes, reduces then to the problem of finding, for i = 1, . . . , r, all possible partitions
(pe1

i , . . . , pel

i ) of the number pmi

i . This means that

1 ≤ e1 ≤ e2 ≤ . . . ≤ el and e1 + · · ·+ el = mi.

Example. Find (up to isomorphism) all abelian groups of order 72.

Solution. We have 72 = 23 · 32. The possible partitions of 23 are (8), (2, 4), (2, 2, 2)
whereas the possible partions for 32 are (32), (3, 3). We then have that the abelian groups
of order 72 are

Z8 ⊕ Z9, Z2 ⊕ Z4 ⊕ Z9, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z9,
Z8 ⊕ Z3 ⊕ Z3, Z2 ⊕ Z4 ⊕ Z3 ⊕ Z3, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3.

We now turn to the proof of Proposition 2.8. First as a preparation here are two sub-
groups that will play an important part in the proof.

Some useful subgroups. Let G be a finite abelian group. The following subgroups
are going to play an important role in the proof of our next main result. That these are
subgroups is shown on exercise sheet 3 (using multiplicative notation).
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PG = {px : x ∈ G}, G[p] = {x ∈ G : px = 0}.

As G[p] is of exponent p it can be viewed as a vector space over Zp.

Proof of Proposition 2.8 First we deal with the existence of such a decomposition
into a direct sum.

Let the exponent of G be pn. We prove the proposition by induction on n. If n = 1
then the result holds by Lemma 2.6. Now suppose that n ≥ 2 and that the result holds
for smaller values of n. The exponent of pG is pn−1 and by the induction hypothesis we
have that pG is a direct sum of non-trivial cyclic groups, say

pG = Zpx1 + · · · + Zpxr. (1)

Suppose the order of xi is pmi (notice that mi ≥ 2 as pxi 6= 0). Then pm1−1x1, . . . , p
mr−1xr

are in G[p]. As G[p] is of exponent p, it can be viewed as a vector space over Zp and we
can then extend to a basis (pm1−1x1, . . . , p

mr−1xr, xr+1, . . . , xs) for G[p]. It follows that
we have a direct sum

G[p] = Zpmi−1x1 + · · ·+ Zpmr−1xr + Zxr+1 + · · ·+ Zxs. (2)

We now want to show that G = Zx1 + · · ·+ Zxs is a direct sum.

First we show that x1, . . . , xs generate G. Let x ∈ G. Then by (1)

px = a1px1 + · · ·+ arpxr

for some integers a1, . . . , ar. Thus x − (a1x1 + · · · + arxr) is in G[p] and thus by (2) in
Zx1 + · · · + Zxs. Hence x is also in Zx1 + · · ·+ Zxs.

It remains to see that the sum G = Zx1 + · · ·+ Zxs is direct. Suppose that

a1x1 + · · ·+ asxs = 0.

We want to show that a1x1 = . . . = asxs = 0. Now multiplying by p we get

a1px1 + · · · + arpxr = 0

and since the Zpx1 + · · · + Zpxr is direct, it follows that pa1x1 = . . . = parxr = 0. Thus
pmj−1 divides aj for j = 1, . . . , r, say aj = bjp

mj−1. So we have

b1p
m1−1x1 + · · ·+ brp

mr−1xr + ar+1xr+1 + . . . + asxs = 0.

As G[p] = Zpm1−1x1 + · · · + Zpmr−1xr + Zxr+1 + · · · + Zxs is direct we must have
b1p

m1−1x1 = . . . = brp
mr−1xr = ar+1xr+1 = . . . = asxr = 0. That is a1x1 = . . . = asxs = 0.

This finishes the inductive proof.

To deal with uniqueness part, write G as a direct sum of cyclic groups of p-power or-
der

G = Za1 + · · ·+ Zar + Zb1 + · · ·+ Zbs
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where a1, . . . , ar have order at most pm−1 whereas b1, . . . , bs have order at least pm (notice
that as G is a p-group the orders of all these elements are powers of p). Then

|
pm−1G

pmG
| =

|Zpm−1b1| · · · |Zpm−1bs|

|Zpmb1| · · · |Zpmbs|
=

o(pm−1b1)

o(pmb1)
· · ·

o(pm−1bs)

o(pmbs)
.

Notice that, in a finite abelian p-group, we have that if a 6= 0 then o(pa) = 1
p
o(a) (If pl is

the order of a then pl−1 is the order of pa). The formula above thus implies that

|
pm−1G

pmG
| = ps

and thus the number of summands of order at least pm is logp |
pm−1G

pmG
|. Similarly the

number of summands of order at least pm+1 is logp |
pmG

pm+1G
|. The number of summands of

order exactly pm is thus the difference

logp |
pm−1G

pmG
| − logp |

pmG

pm+1G
|.

This shows that the number of summands of order exactly pm is an invariant that does
not depend on what the decomposition is. 2
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3 Composition series and solvable groups

I. Simple groups. The primes of group theory.

We now introduce an important notion, namely that of a simple group. These can be
thought of as the atoms or the primes of group theory.

Definition. A group G is simple if G 6= {1} and the only normal subgroups of G
are {1} and G.

Example. The abelian simple groups are the cyclic groups of prime order. See exer-
cise sheet 6.

Remark. Look at Exercise 5 on sheet 4. According to this exercise we have that if
G is a direct product of non-abelian simple groups, then the simple factors are unique up
to order (and not only up to isomorphism!). Thus we had here something analogous to
a unique prime factorisation of a number. When we also allow for abelian simple factors
the result would be similar and we get that the factors are unique (this time up to iso-
morphism). The problem is that not all finite groups can be written as direct products
of simple groups. Example is S3 and Z4. It turns out that any finite group can still in a
different sense been built out of simple groups. To describe what this means we need to
talk first about composition series.

Definition. Let G be a group.

(1) A subnormal series of G is a series

{1} = H0 ≤ H1 ≤ · · · ≤ Hn = G

where Hi−1 � Hi, i = 1, . . . , n. The quotient groups

H1/H0, H2/H1, . . . , Hn/Hn−1

are called the factors of the series.

(2) A subnormal series is called a composition series if

H1/H0, H2/H1, . . . , Hn/Hn−1

are simple groups, called the composition factors.

Example. Let G = Za be a cyclic group of order 6. Then the subgroup 3G is of
order 2 and index 3 and we get a subnormal series

{0} ≤ 3G ≤ G
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with factors 3G/{0} ∼= Z2 and G/3G ∼= Z3. Similarly the subgroup 2G is a subgroup of
order 3 and index 2 that gives us another subnormal series

{0} ≤ 2G ≤ G

with factors 2G/{0} ∼= Z3 and G/2G ∼= Z2. In fact these are both composition series as
the factors are simple. Notice that the composition factors turn out to be the same (up
to order). In fact this is always true.

The Jordan-Hölder Theorem. Suppose that a group G has composition series

{1} = H0 < H1 < . . . < Hn = G

and
{1} = K0 < K1 < . . . < Km = G.

Then n = m and the composition factors H1/H0, . . . , Hn/Hn−1 are the same (up to order)
as K1/K0, . . . , Kn/Kn−1.

Remarks. (1) Let G be a group with a normal subgroup N . It follows from the corre-
spondence theorem that G/N is simple iff G 6= N and there is no normal subgroup M in
G such that N < M < G.

(2) Suppose that for some group G we have a subnormal series

{1} = H0 < H1 < . . . < Hn = G

that is not a composition series. Then some quotient Hm/Hm−1 is not simple and by
remark (1) there exists some subgroup K of G such that Hm−1 < K < Hm where K is
normal in Hm. Notice also that (as Hm−1 is normal in Hm) Hm−1 is normal in K. By
adding K, we thus get a subnormal series that is longer.

(3) Let G be a finite group. It has a subnormal series (for example {1} < G). Ap-
plying remark (2) we can continue adding terms while the series is not a composition
series. Each time we get a longer series and as G is finite, this procedure must terminate
in a composition series for G. Hence every finite group has a composition series.

Examples (1) G be an internal direct product of S1, . . . , Sn where Si is simple. The
map

φ : S1 · · ·Sn → Sn, a1a1 · · ·an 7→ an

is a group homomorphism with kernel S1 · · ·Sn−1. By the first Isomorphism Theorem we
have

S1 · · ·Sn

S1 · · ·Sn−1

∼= Sn

we thus get a compostion series

{0} < S1 < S1S2 < . . . < S1 · · ·Sn = G

with composition factors S1···Si

S1···Si−1

∼= Si. This shows that there exists at least one group

with S1, . . . , Sn as composition factors. (We can take S1 × S2 × · · · × Sn).
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(2) Let n be a positive intger. All finite abelian groups of order n have the same com-
position factors (Sheet 6). So normally there are a number of different groups that have
some given composition factors S1, . . . , Sn.

The Jordan Hölder theorem suggests the following possible strategy for finding all fi-
nite groups.

(a) Find all the simple groups.
(b) For any given choice S1, . . . , Sr of simple groups find all the possible groups G whose
composition factors are S1, . . . , Sr.

Remarks. (1) Classifying all finite groups is generally concidered too hard. These are
too rich and for a given choice of simple groups S1, . . . , Sn there is a great variety of ways
of obtaining a group G with these as composition factors. As the number, n, of simple
factors increases this becomes more and more complicated.

(2) On the other hand (a) is done! This is one of the real triumphs of 20th century
mathematics. The classification result was announced in 1981. The proof is a collection
of a number of journal articles by many different mathematicians and runs over 10000
journal pages!

According to the classification of finite simple groups, these are

(1) The cyclic groups of prime order, Zp,
(2) The alternating groups, An, n ≥ 5,
(3) The simple groups of Lie type (a number of infinite families that crop up in a geomet-
rical context)
(4) Twenty six exceptional groups that do not belong to any of the infinite families above.

The groups in (1) are dealt with on sheet 6. In the next chapter we deal with (2).

II. Solvable groups

Definition. We say that a group is solvable if it has a subnormal series with abelian
factors.

Examples (1) Every abelian group is solvable.
(2) We have that S3 has a composition series

{1} < A3 < S3

with factors A3/{1} ∼= Z3 and S3/A3
∼= Z2. As the factors are abelian S3 is solvable.

Remark. We will see on sheet 6 that S4 is solvable. In next chapter we will how-
ever see that Sn is not solvable for n ≥ 5. This is the underlying reason for the fact that
we can’t solve the quintic by radicals.

Proposition 3.1 A finite group G is solvable if and only its composition factors are cyclic
of prime order.
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Proof (⇐). A composition series with abelian factors is a subnormal series with abelian
factors.

(⇒). Suppose G is finite solvable group with subnormal series

{1} = H0 < H1 < . . . < Hn = G

where the factors are abelian. If this series is not a composition series, then some factor
Hi/Hi−1 is not simple and we can insert some K, such that Hi−1 < K < Hi, to get a
longer series. Notice that K/Hi−1 ≤ Hi/Hi−1 and thus abelian. Also we have by the 3rd
Isomorphism Theorem that

Hi/K ∼=
Hi/Hi−1

K/Hi−1

that is a quotient of the abelian group Hi/Hi−1 and thus abelian. Thus the new longer
series also has abelian factors. Continuing adding terms until we get a composition series,
gives us then a composition series with abelian factors and thus factors that are cyclic of
prime order. 2
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