
groups from old groups.

Definition. Let H1, . . . , Hn be groups. The (external) direct product of H1, . . . , Hn is
the cartesian set product

H1 × · · · × Hn

with multiplication

(a1, . . . , an) · (b1, . . . , bn) = (a1b1, . . . , anbn).

Remark. Since each Hi is a group it is immediate that the direct product is also a group
with identity (1H1

, . . . , 1Hn
). The inverse of (a1, a2, . . . , an) is (a−1

1 , a−1
2 , . . . , a−1

n ). The
associatative law follows from the fact that it holds in each component.

Next result tells us that the internal direct product is the same as the external direct
product.

Lemma 2.3 Suppose G is the internal direct product of H1, . . . , Hn. Then

G ∼= H1 × · · · × Hn.

Proof (See sheet 4)

II. Abelian groups.

In this section, we will use additive notation. Thus we use + for the group operation, −a

for the inverse of a and 0 for the group identity. We also talk about direct sums rather
than direct products.

Notice that every subgroup of an abelian group G is normal. Thus for subgroups H1, H2, . . . , Hn

of G we have that H1 + · · ·+ Hn is an internal direct sum of H1, . . . , Hn if

Hi ∩
∑

j 6=i

Hj = {0}

for i = 1, . . . , n. The external direct sum of H1, . . . , Hn is also denoted

H1 ⊕ H2 ⊕ · · · ⊕ Hn

instead of H1 × H2 × · · · × Hn.

The cyclic group generated by a, 〈a〉 = {na : n ∈ Z}, will often be denoted Za.

Definition. Let G be any abelian group and let p be a prime. The subset

Gp = {x ∈ G : o(x) is a power of p}

is called the p-primary subgroup of G.

Lemma 2.4 Gp is a subgroup of G.
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Proof As the order of 0 is 1 = p0, it is clear that 0 ∈ Gp. Now let x, y ∈ Gp with
orders pn, pm. Then pmax{n,m}(x + y) = pmax{n,m}x + pmax{n,m}y = 0 + 0 = 0 and thus
o(x + y) divides pmax{n,m} and is thus also a power of p. Hence x + y ∈ Gp and as
o(−x) = o(x) = pn we also have that −x ∈ Gp. Hence Gp ≤ G. 2

Remark. If G is finite then |Gp| must be a power of p. This follows from Exercise
4(a) on sheet 3. If there was another prime q 6= p that divided |Gp| then by this exercise
we would have an element in Gp of order q but this contradicts the definition of Gp.

Definition. An abelian group is said to be a p-group if G = Gp.

Next lemma reduces the study of finite abelian groups to the study of finite abelian
groups of prime power order.

Lemma 2.5 Let G be a finite abelian group where |G| = pr1

1 · · · prn
n for some positive

integers r1, . . . , rn. Then G is the internal direct sum of Gp1
, Gp2

, . . . , Gpn
. Furthermore

|Gpi
| = pri

i .

Proof Let x ∈ G. Then by Lagrange’s Theorem o(x) divides |G|, say o(x) = ps1

1 · · · psn
n .

The numbers

q1 =
o(x)

ps1

1

, . . . , qn =
o(x)

psn
n

are then coprime and we can find integers a1, . . . , an such that a1q1 + · · ·+anqn = 1. Thus

x = (a1q1 + · · ·+ anqn)x = a1q1x + · · ·+ anqnx

and as psi

i (aiqix) = aio(x)x = 0 we have that aiqix ∈ Gpi
. Thus G = Gp1

+ · · ·+ Gpn
. To

see that the sum is direct let x ∈ Gpi
∩

∑

j 6=i Gpj
, say

x = xi =
∑

j 6=i

xj

where the order of xk is pek . Then pei

i x = 0 and also (
∏

j 6=i p
ej

j )x = 0 and the order of
x divides two coprime numbers. Hence o(x) = 1 and thus x = 0. This shows that the
intersection is trivial and hence we have a direct sum.

By the remark made before the Lemma, we know that |Gpi
| = psi

i for some integer
si. Since G is the direct sum of Gp1

, . . . , Gpn
, we have

pr1

1 · · · prn

n = |G| =

n∏

i=1

|Gpi
| = ps1

1 · · · psn

n .

Comparison of the two sides gives si = ri, i = 1, . . . , n. 2

Remark. Thus G ∼= Gp1
⊕ · · · ⊕ Gpn

. And the study of finite abelian groups reduces to
understanding the finite abelian p-groups.

Definition. Let G be a finite group. The exponent of G is the smallest positive in-
teger n such that xn = 1 for all x ∈ G. (Or with additive notation nx = 0 for all x ∈ G).
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Abelian groups of exponent p as vector spaces. Let G be a finite abelian group of
exponent p. Then px = 0 for all x ∈ G and the group addition induces a scalar multipli-
cation from the field Zp as follows. For [m] = m + Zp we let [m]x = mx = x + · · ·+ x

︸ ︷︷ ︸

m

.

This is well defined and turns G into a vector space over Zp. One also has that a subset
H of G is a subgroup of the group G if and only if H is a subspace of the vector space G.
(See Sheet 5, exercise 1 for the details).

Lemma 2.6 Let G be a finite abelian group of exponent p. Then G can be written as an
internal direct sum of cyclic groups of order p.

Proof Viewing G as a vector space over Zp we know that it has a basis x1, . . . , xn as all
these elements are non-trivial and as the exponent of G is p, they must all be of order p.
To say that these elements form a basis for the vector space G is the same as saying that
we have a direct sum of one dimensional subspaces

G = Zpx1 + · · · + Zpxn.

This happens if and only if

Zpxj ∩
∑

k 6=j

Zpxk = {0}

for j = 1, . . . , n. But as Zpxk = Zxk, this is the same as saying that

Zxj ∩
∑

k 6=j

Zxk = {0}

for j = 1, . . . , n which is the same as saying that

G = Zx1 + · · · + Zxr

is an internal direct sum of cyclic subgroup of order p. 2.

Remark. If we have the direct sum G = Zx1 + · · · + Zxn then |G| = pn. The num-
ber of direct summands is thus unique and is logp(|G|).

Lemma 2.7 We have that sum H1 + · · ·+Hn is direct if and only if for any xi ∈ Hi, i =
1, . . . , n we have

x1 + · · ·+ xn = 0 ⇒ x1 = . . . = xn = 0.

Proof To prove this, notice first that a direct sum would have this property by Proposition
2.2. Conversely, suppose that this property holds and take some xi =

∑

j 6=i
(−xj) in

Hi ∩
∑

j 6=i Hj. Then x1 + · · · + xn = 0 and thus x = xi = 0 by the property. So the
intersection is trivial and the sum is direct. 2.

Proposition 2.8 Let G be a finite abelian p-group. G can be written as an internal
direct sum of non-trivial cyclic groups. Furthermore the number of cyclic summands of
any given order is unique for G.

Proof (See later).

From Lemma 2.5 and Proposition 2.8 we can derive the main result of this chapter.
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Theorem 2.9 (The Fundamental Theorem for finite abelian groups). Let G be a finite
abelian group. G can be written as an internal direct sum of non-trival cyclic groups of
prime power order. Furthermore the number of cyclic summands for any given order is
unique for G.

Remark. Suppose that G = Zx1 + Zx2 + · · · + Zxn is a direct sum of cyclic group of
prime power order. Notice that

G = Zxσ(1) + Zσ(2) + · · · + Zσ(n)

for all σ ∈ Sn.

Convention. We order the cyclic summands as follows. First we order them with respect
to the primes involved in ascending order. Then for each prime we order the summands
in ascending order.

Example. If G is finite abelian group written as an internal direct sum

G = Zx1 + Zx2 + Zx3 + Zx4 + Zx5

of cyclic groups of orders 9, 2, 4, 3, 4, then we order the summands so that they come
instead in orders 2, 4, 4, 3, 9. Notice then that G is isomorphic to Z2 ⊕Z4 ⊕Z4 ⊕Z3 ⊕Z9.

Remarks. (1) This discussion shows that any finite abelian group is isomorphic to a
unique external direct sum

Zp
e1
1

⊕ · · · ⊕ Zp
er
r

where p1 ≤ p2 ≤ · · · ≤ pr and if pi = pi+1 then ei ≤ ei+1.

(2) Finding all abelian groups of a given order n = pm1

1 · · · pmr
r , where p1 < p2 < · · · < pr

are primes, reduces then to the problem of finding, for i = 1, . . . , r, all possible partitions
(pe1

i , . . . , p
el

i ) of the number pmi

i . This means that

1 ≤ e1 ≤ e2 ≤ . . . ≤ el and e1 + · · ·+ el = mi.

Example. Find (up to isomorphism) all abelian groups of order 72.

Solution. We have 72 = 23 · 32. The possible partitions of 23 are (8), (2, 4), (2, 2, 2)
whereas the possible partions for 32 are (32), (3, 3). We then have that the abelian groups
of order 72 are

Z8 ⊕ Z9, Z2 ⊕ Z4 ⊕ Z9, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z9,

Z8 ⊕ Z3 ⊕ Z3, Z2 ⊕ Z4 ⊕ Z3 ⊕ Z3, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3.
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