
Cosets as equivalence classes. Suppose G is a group with a subgroup H . We de-
fine a relation ≃ on G as follows:

x ≃ y iff x−1y ∈ H.

This relation is an equivalence relation. To see this we need to see that it is reflexive,
symmetric and transitive. Firstly it is reflexive as x−1x = 1 ∈ H implies that x ≃ x.
To see that it is symmetric suppose x ≃ y. Then x−1y ∈ H and as H is a subgroup it
follows that y−1x = (x−1y)−1 ∈ H and thus y ≃ x. Finally to see that the relation is
transitive notice that if x ≃ y and y ≃ z then x−1y, y−1z ∈ H . Being a subgroup, H
is closed under the group multiplication and thus x−1z = (x−1y)·(y−1z) ∈ H . Thus x ≃ z.

Notice that x ≃ y if and only if x−1y ∈ H if and only if y ∈ xH . Hence the equiva-
lence class of x is [x] = xH , the left coset of H in G.

Theorem 1.1 (Lagrange) Let G be a finite group with a subgroup H. Then |H| divides
|G|.

Proof Using the equivalence relation above, G gets partitioned into pairwise disjoint
equivalence classes, say

G = a1H ∪ a2H ∪ · · · ∪ arH

and adding up we get

|G| = |a1H| + |a2H| + · · ·+ |arH| = r · |H|.

Notice that the map from G to itself that takes g to aig is a bijection (the inverse is the
map g 7→ a−1

i g) and thus |aiH| = |H|. 2

Remark. If we had used instead the relation x ≃ y iff xy−1 ∈ H , we would have
had [x] = Hx. Hence G also partions into a pairwise disjoint union of right cosets. (Re-
call that in general the partions into right cosets and into left cosets are different).

Examples. (1) The subsets {1} and G are always subgroups of G.

(2) The subset Cn = {a ∈ C : an = 1} is a subgroup of (C, ·). In fact 1n = 1 and
if a, b ∈ Cn then (ab)n = anbn = 1 and (a−1)n = (an)−1 = 1. Thus both the subgroup
criteria (a) and (b) hold.

(3) H = {id, (1, 2)} is a subgroup of S3. Clearly (a) holds as id ∈ H and direct in-
spection shows that (b) holds as well.

Definition. Let G be a group and a ∈ G. The cyclic subgroup generated by a is
〈a〉 = {an : n ∈ Z}.

Remark. We have that 1 = a0 ∈ 〈a〉. We also have that 〈a〉 is closed under the
group multiplication and taking inverses since an · am = an+m and (an)−1 = a−n. Hence
〈a〉 is a subgroup of G. It is clearly the smallest subgroup of G that contains a.

Definition. We say that a group G is cyclic if there exists an element a ∈ G where
G = 〈a〉.
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Definition. Let G be a group and a ∈ G. The order of a, denoted o(a), is defined
as follows. If there is a positive integer m such that am = 1 then o(a) is the smallest such
integer. If there is on the other hand no such positive integer we say that a is of infinite
order and write o(a) = ∞.

Remarks.(1) If o(a) = n < ∞, then

〈a〉 = {1 = a0, a1, . . . , an−1}

where the elments 1, a, a2, . . . , an−1 are distinct. To see why the elements are different
suppose for a contraction that ar = as for some 0 ≤ r < s ≤ n − 1. But then as−r = 1
where 0 < s − r ≤ n − 1 < n. This however contradicts the fact that n = o(a) is the
smallest positive integer where an = 1.

(2)Thus o(a) = n = |〈a〉|. Note also that am = 1 iff n|m. It follows that ar = as if
and only if n|(r − s). (The structure of the group is just like that of Zn).

(3) Let G be a finite group and a ∈ G. As o(a) = |〈a〉| that divides |G| by Lagrange, we
have from Remark (2) that a|G| = 1.

Let G = 〈a〉 be a finite cyclic group. By Lagrange any subgroup has a order d that
is a divisor of n. For cyclic groups there is conversely exactly one subgroup of order d for
each divisor d.

Proposition 1.2 Let G = 〈a〉 be a finite cyclic group of order n and let d be a divisor of
n. The subgroup 〈an/d〉 is the unique subgroup of order d.

Proof. Let H be a subgroup of order d. As 〈an/d〉 has also d elements it suffices to show
that H ⊆ 〈an/d〉. Let am ∈ H . By Remark (3) above we have 1 = am|H| = amd and, by
Remark (2), it follows that n = o(a) divides md. Hence n/d divides m, say m = r · (n/d),
and am = (an/d)r ∈ 〈an/d〉. 2

Proposition 1.3 Let p be a prime number and G be a group such that |G| = p. The
group G is cyclic.

Proof As p ≥ 2 there has to be some element a 6= 1 in G. Then |〈a〉| ≥ 2 and (by
Lagrange’s Theorem) |〈a〉| divides |G| = p. As p is a prime we must have |〈a〉| = p and
thus 〈a〉 = G. 2.

III. Congruences and quotient groups.

Definition. Let G be a group. A congruence on G is an equivalence relation ≃ on
G that satisfies:

a1 ≃ a2, b1 ≃ b2 ⇒ a1b1 ≃ a2b2.

Remark. This extra condition is needed to introduce a well defined multiplication on
the equivalence classes [a] · [b] = [ab].
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Lemma 1.4 Let G be a group with congruence ≃. Then N = [1] is a subgroup of G that
satisfies:

g−1Ng ⊆ N

for all g ∈ G. Furthermore a ≃ b if and only if a−1b ∈ N .

Proof. To see that N is a subgroup, we go through the subgroup criteria. As ≃ is
reflexive we have 1 ≃ 1 and thus 1 ∈ N = [1]. It remains to see that N is closed under
group multiplication and taking inverses. For the first of these, notice that of a, b ∈ N
then a, b ≃ 1 and the congruence property gives us that ab ≃ 1 · 1 = 1. Thus ab ∈ N .
To see that N is closed under taking inverses, suppose that a ∈ N then a ≃ 1 and the
congruence property gives us that 1 = a−1a ≃ a−1 · 1 = a−1. This shows that a−1 ∈ N .

It remains to see that N has the requested extra property. So suppose a ∈ N . Then
a ≃ 1 and the congruence property implies that g−1ag ≃ g−1 ·1 ·g = 1. Hence g−1ag ∈ N .
Finally we have a ≃ b iff 1 = a−1a ≃ a−1b iff a−1b ∈ [1] = N . 2

Definition. A subgroup H of G is said to be a normal subgroup if

g−1Hg ⊆ H ∀g ∈ G.

Notation. We write H � G or G � H for ‘H is a normal subgroup of G’

Lemma 1.5 Let G be a group with a normal subgroup N and define a relation ≃ on G
by x ≃ y if and only if x−1y ∈ N . Then ≃ is a congruence on G and [a] = aN . In
particular [1] = N .

Proof We have seen in the proof of Lagrange’s Theorem that ≃ is an equivalence relation
and that [a] = aN . It remains to see that the congruence property holds. So suppose
that a1 ≃ a2 and b1 ≃ b2. This means that a−1

1 a2, b
−1

1 b2 ∈ N . We want to show that
a1b1 ≃ a2b2. But this follows from

(a1b1)
−1(a2b2) = b−1

1 (a−1

1 a2)b2 = (b−1

1 b2) · b
−1

2 (a−1

1 a2)b2.

As N is normal we have that b−1

2 (a−1

1 a2)b2 ∈ N and thus the equation above shows that
(a1b1)

−1a2b2 is a product of two elements from N . As N is a subgroup of G, this product
is in N . Hence a1b1 ≃ a2b2. 2

Remark. It follows from Lemmas 1.4 and 1.5 that there is a 1-1 correspondence be-
tween congruences on G and normal subgroups of G.

Remarks. (1) We write often more shortly Ha instead of a−1Ha and call it a conju-
gate of H by a. Similarly if x ∈ G then xa = a−1xa is a conjugate of x by a.

(2) Let x, a, b ∈ G and 1 be the identity element in G. Then

xab = (ab)−1xab = b−1(a−1xa)b = (xa)b

x1 = 1−1 · x · 1 = x.

It follows then that if H ≤ G we also have Hab = (Ha)b and H1 = H .
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(3) Notice that Ha is a subgroup of G: firstly 1 = a−1 · 1 · a = 1a ∈ Ha and then
xaya = a−1xaa−1ya = a−1(xy)a = (xy)a and (xa)−1 = (a−1xa)−1 = a−1x−1a = (x−1)a.
In fact the group Ha has the same structure as H . (The conjugation by a is a bit like a
renaming or an ornament).

Lemma 1.6 The following are equivalent:

(a) H � G,
(b) Ha = H for all a ∈ G,
(c) Ha = aH for all a ∈ G.

Proof (b)⇒(a) is obvious. To prove (a)⇒(b), notice that (a) implies in particular that
for any a ∈ G we have Ha−1

⊆ H and therefore

H = He = Ha−1a = (Ha−1

)a ⊆ Ha.

This gives Ha = H . It now only remains to show that (b)⇔(c). But this is easy

a−1Ha = H ⇔ a · a−1Ha = aH ⇔ Ha = aH.

This finishes the proof. 2

Definition. Let G be a group with a subgroup H . The number of left cosets of H
in G is called the index of H in G and is denoted [G : H ].

Remark. Suppose that G is finite. Recall from the proof of Lagrange’s Theorem that
we get a partition of G into a union of pairwise disjoint union of left cosets

G = a1H ∪ a2H ∪ · · · ∪ anH.

As each of the cosets have order |H|, it follows that |G| = r · |H|. Hence [G : H ] = r =
|G|/|H|. (Likewise we have that G can be written as a pairwise disjoint union of right
cosets and the same reasoning shows that their number is also |G|/|H|.

Examples. (1) Every subgroup N of an abelian group G is normal (since then obvi-
ously aN = Na for all a ∈ G).

(2) The trivial subgroup {1} and G itself are always normal subgroups of G.

(3) If H is a subgroup of G such that [G : H ] = 2 then H � G (since the left cosets
are H, G \ H which are also the right cosets. Hence the right cosets are the same as the
left cosets).

The quotient group G/N . Let G be a group with a congruence ≃ and a corresponding
normal subgroup N . Let

G/N = { [a] = aN : a ∈ G}

with a binary operation [a] · [b] = [ab] (that is aN · bN = abN). Notice that this is well
defined as ≃ is a congruence. To see that G/N is a group with respect to this binary
operation we check that the three group axioms hold.

Firstly there is an identity element, namely [1] = N as [1] · [a] = [1 · a] = [a] and
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[a] · [1] = [a · 1] = [a].

Secondly every element [a] ∈ G/N has an inverse, namely [a−1] since [a]· [a−1] = [a·a−1] =
[1] and [a−1] · [a] = [a−1 · a] = [1].

Finally associativity in G/N follows from associativity in G:

[a] · ([b] · [c]) = [a] · [bc] = [a(bc)] = [(ab)c] = [ab] · [c] = ([a] · [b]) · [c].

Remark. That the binary operation on G/N is well defined followed from the fact
that ≃ is a congruence. There is another way of seeing this using the fact that N is
normal in G. First we introduce set products in the natural way. So if X, Y ⊆ G then we
let X · Y = {xy : x ∈ X, y ∈ Y }. Then, using this set product as the action on G/N , we
get

[a] · [b] = aN · bN = abNN = abN = [ab].

Hence the binary operation (being the same as the set multiplication) is well defined.
Notice that we used the fact that N is normal when applying Nb = bN . Also N ·N ⊆ N
as N is a subgroup and N = N · {1} ⊂ N · N as 1 ∈ N . Thus N · N = N .

Remark. Notice that the size of the group G/N is [G : N ] and when G is finite this is
the same as |G|/|N |.

Examples. (1) We always have G � G. The congruence with respect to the normal
subgroup G is x ≃ y ⇔ x−1y ∈ G. As the latter holds for any x, y ∈ G we are identifying
all the elements. Hence

G/G = {[1]} = {G}

is the trivial group with only one element.

(2) The trivial subgroup N = {1} is always normal in G. The congruence in this case is
given by x ≃ y ⇔ x−1y ∈ N ⇔ x−1y = 1 ⇔ y = x. Thus

G/N = {{a} : a ∈ G}.

The structure is just like the structure of G: {a} · {b} = {ab}. (The curly bracket is there
just as a decoration).

(3) Let G = S3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} and N = A3 = {id, (1 2 3), (1 3 2)}.
Here [G : N ] = 2 and thus G/N has two elements. Notice that these are

N = {id, (1 2 3), (1 3 2)} = [id] = [(1 2 3)] = [(1 3 2)]

and
(1 2)N = {(1 2), (2 3), (1 4)} = [(1 2)] = [(1 3)] = [(2 3)].

(So here we have identified all the even permutations and likewise all the odd permuta-
tions). G/N = {1 = [id], a = [(1 2)]}. This is the unique group structure with 2 elements:
1 · a = a · 1 = a, 1 · 1 = 1 and a · a = 1.
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