Cosets as equivalence classes. Suppose G is a group with a subgroup H. We de-
fine a relation ~ on G as follows:

r~yiff 27y € H.

This relation is an equivalence relation. To see this we need to see that it is reflexive,
symmetric and transitive. Firstly it is reflexive as 27 'x = 1 € H implies that z ~ z.
To see that it is symmetric suppose x ~ y. Then 7'y € H and as H is a subgroup it
follows that y 'z = (z7'y)™' € H and thus y ~ z. Finally to see that the relation is
transitive notice that if x ~ y and y ~ 2 then 27 'y,y 'z € H. Being a subgroup, H
is closed under the group multiplication and thus x 7'z = (z71y)-(y~'2) € H. Thus z ~ 2.

Notice that  ~ y if and only if 27ty € H if and only if y € xH. Hence the equiva-
lence class of x is [z] = ©H, the left coset of H in G.

Theorem 1.1 (Lagrange) Let G be a finite group with a subgroup H. Then |H| divides
G|

Proof Using the equivalence relation above, G gets partitioned into pairwise disjoint
equivalence classes, say
G=aHUaHU---Ua,H

and adding up we get
G| = |a H| + |agH| + -+ |a, H| =7 - |H|.

Notice that the map from G to itself that takes g to a;g is a bijection (the inverse is the
map g — a; 'g) and thus |¢;H| = |H|. O

Remark. If we had used instead the relation z ~ vy iff zy~! € H, we would have
had [z] = Hz. Hence G also partions into a pairwise disjoint union of right cosets. (Re-
call that in general the partions into right cosets and into left cosets are different).

Examples. (1) The subsets {1} and G are always subgroups of G.

(2) The subset C,, = {a € C : a" = 1} is a subgroup of (C,-). In fact 1" = 1 and
if a,b € C, then (ab)” = a"b" = 1 and (¢ ')" = (a™)~' = 1. Thus both the subgroup
criteria (a) and (b) hold.

(3) H = {id, (1, 2)} is a subgroup of S3. Clearly (a) holds as id € H and direct in-
spection shows that (b) holds as well.

Definition. Let G be a group and a € G. The cyclic subgroup generated by a is
(a) ={a": n € Z}.

Remark. We have that 1 = a° € (a). We also have that (a) is closed under the
group multiplication and taking inverses since a" - ™ = a"™™ and (a")™! = a". Hence
(a) is a subgroup of G. It is clearly the smallest subgroup of G that contains a.
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Definition. We say that a group G is cyclic if there exists an element a € G where

G = (a).



Definition. Let G be a group and a € G. The order of a, denoted o(a), is defined
as follows. If there is a positive integer m such that ™ = 1 then o(a) is the smallest such
integer. If there is on the other hand no such positive integer we say that a is of infinite
order and write o(a) = co.

Remarks.(1) If o(a) = n < oo, then

(@) ={1=a"a,...;a""}
where the elments 1,a,a?,...,a" ! are distinct. To see why the elements are different
suppose for a contraction that a" = a® for some 0 < r < s <n —1. But then a* " =1
where 0 < s —r < n —1 < n. This however contradicts the fact that n = o(a) is the
smallest positive integer where a™ = 1.

(2)Thus o(a) = n = |{(a)|. Note also that a™ = 1 iff n|m. It follows that a" = o if
and only if n|(r — s). (The structure of the group is just like that of Z,).

(3) Let G be a finite group and a € G. As o(a) = |(a)| that divides |G| by Lagrange, we
have from Remark (2) that al®l = 1.

Let G = (a) be a finite cyclic group. By Lagrange any subgroup has a order d that
is a divisor of n. For cyclic groups there is conversely exactly one subgroup of order d for
each divisor d.

Proposition 1.2 Let G = (a) be a finite cyclic group of order n and let d be a divisor of
n. The subgroup (a™?) is the unique subgroup of order d.

Proof. Let H be a subgroup of order d. As (a™?) has also d elements it suffices to show
that H C (a™?). Let a™ € H. By Remark (3) above we have 1 = o™l = ¢™¢ and, by
Remark (2), it follows that n = o(a) divides md. Hence n/d divides m, say m = r - (n/d),
and a™ = (a™9)" € (a™4). O

Proposition 1.3 Let p be a prime number and G be a group such that |G| = p. The
group G is cyclic.

Proof As p > 2 there has to be some element a # 1 in G. Then |{(a)| > 2 and (by
Lagrange’s Theorem) |(a)| divides |G| = p. As p is a prime we must have |(a)| = p and
thus (a) = G. O.

I1I. Congruences and quotient groups.

Definition. Let G be a group. A congruence on G is an equivalence relation ~ on
G that satisfies:
a1 >~ asg, b1 =~ by = a1b; =~ azbs.

Remark. This extra condition is needed to introduce a well defined multiplication on
the equivalence classes [a] - [b] = [ab].



Lemma 1.4 Let G be a group with congruence ~. Then N = [1] is a subgroup of G that
satisfies:
g 'NgC N

for all g € G. Furthermore a ~ b if and only if a='b € N.

Proof. To see that N is a subgroup, we go through the subgroup criteria. As ~ is
reflexive we have 1 ~ 1 and thus 1 € N = [1]. It remains to see that N is closed under
group multiplication and taking inverses. For the first of these, notice that of a,b € N
then a,b ~ 1 and the congruence property gives us that ab ~ 1-1 = 1. Thus ab € N.
To see that N is closed under taking inverses, suppose that a € N then a ~ 1 and the
congruence property gives us that 1 = a 'a ~a™!-1=a"!. This shows that a=! € N.

It remains to see that N has the requested extra property. So suppose a € N. Then
a ~ 1 and the congruence property implies that ¢ 'ag ~ ¢~'-1-g = 1. Hence g 'ag € N.
Finally we have a ~ b iff 1 =a la~a b iffa™'b e [1] = N. O

Definition. A subgroup H of G is said to be a normal subgroup if

g 'HgC H VgeG.

Notation. We write H < G or G > H for ‘H is a normal subgroup of G’

Lemma 1.5 Let G be a group with a normal subgroup N and define a relation ~ on G
by v ~ y if and only if x™'y € N. Then ~ is a congruence on G and [a] = aN. In
particular [1] = N.

Proof We have seen in the proof of Lagrange’s Theorem that ~ is an equivalence relation
and that [a] = aN. It remains to see that the congruence property holds. So suppose
that a; >~ a9 and by ~ by. This means that aflag,bflbg € N. We want to show that
a1b; >~ asby. But this follows from

(a1by) ™ (azbs) = by (a7 "az)bo = (b7 'bs) - by (ay "az)bo.

As N is normal we have that by ' (aj 'az)by € N and thus the equation above shows that
(a1b1)tagbs is a product of two elements from N. As N is a subgroup of G, this product
is in N. Hence a1b; >~ asby,. O

Remark. It follows from Lemmas 1.4 and 1.5 that there is a 1-1 correspondence be-
tween congruences on (G and normal subgroups of G.

Remarks. (1) We write often more shortly H® instead of a~'Ha and call it a conju-
gate of H by a. Similarly if 2 € G then 2* = a~'za is a conjugate of x by a.

(2) Let z,a,b € G and 1 be the identity element in G. Then

b= (ab)~tzab = b~ (a"txa)b = (z*)°

xa
=11 2-1=uz.

It follows then that if H < G we also have H® = (H*)" and H! =

10



(3) Notice that H” is a subgroup of G: firstly 1 = a™'-1-a = 1* € H® and then
%% = atzaa 'ya = a (xy)a = (xy)® and (%) = (a7 lwa)™! = a7 ta7la = (z71)
In fact the group H® has the same structure as H. (The conjugation by a is a bit like a
renaming or an ornament).

Lemma 1.6 The following are equivalent:

(a) H<LG,
(b) H* = H for all a € G,
(¢c) Ho = aH for alla € G.

Proof (b)=-(a) is obvious. To prove (a)=-(b), notice that (a) implies in particular that
for any a € G we have H*' C H and therefore

H — He — Ha_la — (Ha_ )a C Ha‘

This gives H* = H. It now only remains to show that (b)<(c). But this is easy
a'Hao=H < a-a'Ha=aH < Ha=aH.

This finishes the proof. O

Definition. Let G be a group with a subgroup H. The number of left cosets of H
in G is called the index of H in G and is denoted [G : H].

Remark. Suppose that G is finite. Recall from the proof of Lagrange’s Theorem that
we get a partition of G into a union of pairwise disjoint union of left cosets

G:alHUagHU~-~UanH.

As each of the cosets have order |H], it follows that |G| = r - |H|. Hence [G : H] = r =
|G|/|H|. (Likewise we have that G' can be written as a pairwise disjoint union of right
cosets and the same reasoning shows that their number is also |G|/|H|.

Examples. (1) Every subgroup N of an abelian group G is normal (since then obvi-
ously aN = Na for all a € G).

(2) The trivial subgroup {1} and G itself are always normal subgroups of G.

(3) If H is a subgroup of G such that [G : H] = 2 then H I G (since the left cosets
are H, G\ H which are also the right cosets. Hence the right cosets are the same as the
left cosets).

The quotient group G/N. Let G be a group with a congruence ~ and a corresponding
normal subgroup N. Let
G/N ={[a]=aN : a € G}

with a binary operation [a] - [b] = [ab] (that is aN - DN = abN). Notice that this is well
defined as ~ is a congruence. To see that G/N is a group with respect to this binary
operation we check that the three group axioms hold.

Firstly there is an identity element, namely [1] = N as [1] - [a] = [1 - a] = [a] and
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[a] - [1] = [a - 1] = [a].

Secondly every element [a] € G/N has an inverse, namely [a™!] since [a]-[a"!] = [a-a™!] =
[1] and [a™"] - [a] = [a™" - a] = [1].

Finally associativity in G/N follows from associativity in G:

[a] - ([b] - [e]) = [a] - [be] = la(be)] = [(ab)e] = [ab] - [c] = ([a] - [b)) - [¢]-

Remark. That the binary operation on G/N is well defined followed from the fact
that ~ is a congruence. There is another way of seeing this using the fact that N is
normal in GG. First we introduce set products in the natural way. So if X,Y C G then we
let X Y ={zy: x € X,y € Y}. Then, using this set product as the action on G/N, we
get

la] - [b] = aN - bN = abNN = abN = [ab].

Hence the binary operation (being the same as the set multiplication) is well defined.
Notice that we used the fact that NV is normal when applying Nb = bN. Also N-N C N
as N is a subgroup and N =N -{1} C N-Nas1l &€ N. Thus N- N = N.

Remark. Notice that the size of the group G/N is [G : N| and when G is finite this is
the same as |G|/|N].

Examples. (1) We always have G < G. The congruence with respect to the normal
subgroup G is  ~ y < 2~y € G. As the latter holds for any z,y € G we are identifying
all the elements. Hence

G/G=A{[1]} ={G}

is the trivial group with only one element.

(2) The trivial subgroup N = {1} is always normal in . The congruence in this case is
givenbyr ~y< 2 lye Neoaoly=1«y=2x Thus

G/N = {{a} : a € G}.

The structure is just like the structure of G: {a}-{b} = {ab}. (The curly bracket is there
just as a decoration).

(3)Let G = S5 = {id, (12),(13),(23),(123),(132)} and N = A; = {id, (123), (13 2)}.
Here [G : N] = 2 and thus G/N has two elements. Notice that these are

N ={id,(123),(132)}=[id = [(123)] =[(132)]

and
(12)N ={(12),(23),149}=[12)]=[13)]=[23)]

(So here we have identified all the even permutations and likewise all the odd permuta-
tions). G/N = {1 = [id], a = [(1 2)]}. This is the unique group structure with 2 elements:
l-a=a-1=a,1-1=1anda-a=1.
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