
the kernel. We have

φ(a) = La = id ⇔ agH = gH for all g ∈ G

⇔ g−1agH = H for all g ∈ G

⇔ g−1ag ∈ H for all g ∈ G

⇔ a ∈ gHg−1 for all g ∈ G.

Therefore the kernel is
⋂
g∈G Hg−1

=
⋂
a∈G Ha = HG. By the 1st Isomorphism Theorem

we have that HG � G and
G/HG = G/ker φ ∼= im φ

where im φ ≤ Sym (X). As |X| = n we have that Sym (X) ∼= Sn and thus G/HG

isomorphic to a subgroup of Sn. 2.

Corollary 5.11 (Poincaré’s Lemma). Let G be a finite simple group with a subgroup H
such that [G : H ] = n > 1. Then

G ∼= K

for some K ≤ Sn. In particular |G| divides |Sn| = n!.

Proof HG is a normal subgroup of G and as HG is contained in H we can’t have HG = G.
Now G is simple and we conclude that HG = {1}. The result now follows from Theorem
5.11 as G/{1} ∼= G. 2

Example 5. Let us give another proof of the fact that there is no simple group of
order 12. We argue by contradiction and suppose that G is a simple groups with 12
elements. By the Sylow theorems we have a subgroup of order 4 and thus of index 3. By
Corollary 5.12 if follows that 12 = |G| divides the 3! = 6. This is absurd.

We end this section by proving the 3rd Sylow Theorem. We need first some prelimi-
nary work.

Definition Let H ≤ G. The normalizer of H in G is

NG(H) = {g ∈ G : Hg = H}.

One can easily check that this is a subgroup of G (in fact it follows also from next remark
as NG(H) turns out to be a stabiliser with respect to a certain G-action) and clearly
H � NG(H).

Remarks. (1) Let X be the set of all subgroups of G. As we have seen before G acts
naturally on X by conjugation and so we can think of X as a G-set with respect to this
action. The stabilizer of the subgroup H is then NG(H) and the Orbit-Stabilizer theorem
tells us that the number of conjugates of H , that is the size of the G orbit {Hg : g ∈ G},
is [G : NG(H)].

(2) Let P be a Sylow p-subgroup of G. By the 2nd Sylow Theorem, we know that
the Sylow p-subgroups form a single conjugacy class {P g : g ∈ G}. By Remark (1) the
total number of all Sylow p-subgroups is then n(p) = [G : NG(P )].
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Lemma 5.12 Let P be a Sylow p-subgroup of G. Then P is the unique Sylow p-subgroup
of NG(P ).

Proof Let Q be any Sylow p-subgroup of NG(P ). By the second Sylow Theorem we have

Q = P a

for some a ∈ NG(P ). But then Q = P a = P since a normalizes P . 2.

Proof of the 3rd Sylow Theorem. Let P be a Sylow p-subgroup of G. Since
the Sylow p-subgroups form a single conjugacy class

{P a : a ∈ G},

we know from the remark above that their number is

n(p) = [G : NG(P )].

In particular n(p) divides |G|. This proves (ii). To prove (i) we need more work. Let
N = NG(P ) and let X be the collection of all the right N cosets of G that we consider as
a P -set. Write X as a disjoint union of P -orbits, say

X = Na1 ∗ P ∪ Na2 ∗ P ∪ · · · ∪ Nam ∗ P

where we assume that the first orbit Na1 ∗ P is the one containing the coset N · 1 = N
and we can also then assume that a1 = 1 From this we get that

n(p) = |Na1 ∗ P | + |Na2 ∗ P | + · · · + |Nam ∗ P |

= [P : P ∩ Na1 ] + [P : P ∩ Na2 ] + · · ·+ [P : P ∩ Nam ].

Now notice that P ∩ Nai = P iff P ≤ Nai iff P a−1

i ≤ N . However, by Lemma 5.9, this
happens iff P a−1

i = P that happens iff ai ∈ NG(P ). But then Na = Nai ∈ Nai ∗P and as
the only orbit containing N is Na1 ∗P , it follows that i = 1. (Notice also that a1 ∈ NGP
and thus [P : P ∩ Na1 ] = 1). We conclude from this that [P : P ∩ Nai ] is divisble by p
for i = 2, . . . , m and that [P : P ∩ Na1 ] = 1. Hence n(p) = 1 + pr for some non-negative
integer r. 2
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6 Semidirect products and groups of order ≤ 15

I. Semidirect products.

We will now introduce a generalization of direct products that is very useful for de-
scribing and constructing groups. As with direct products these come in two disguises
internal and external semidirect products.

Notation. Suppose that N is a group and φ : N → N is an automorphism. In this
section we will use bφ for the value of b under φ (instead of φ(b)). This will actually make
things look clearer. We will also operate a composition of two automorphisms from left
to right. Thus

bψ◦φ = (bψ)φ.

Definition. Let G be a group and N � G, H ≤ G. We say that G is the internal
semidirect product of N by H if G = HN and H ∩ N = {1}.

Remark. The definition is thus very similar to the definition of an internal direct prod-
uct. The only differenct is that one of the groups H does not have to be normal in general.
When H is normal as well then we get a direct product.

Lemma 6.1 Let G be an internal semidirect product of N by H, then the following hold.

(1) Every element g ∈ G can be written uniquely as g = ab with a ∈ H and b ∈ N .

(2) Let a1, a2 ∈ H and b1, b2 ∈ N . Then

(a1b1) · (a2b2) = (a1a2) · (b
a2
1 b2)

Proof (1) If a1b1 = a2b2 then a−1
2 a1 = b2b

−1
1 is in H ∩ N and thus trivial. So a1 = a2

and b1 = b2).

(2) We have
(a1b1) · (a2b2) = (a1a2) · (a

−1
2 b1a2b2) = (a1a2) · (b

a2
1 b2).

This finishes the proof. 2

Remark. Thus, like for internal direct products, we can treat elements like pairs ab
where a is the H component and b is the N component. Furthermore multiplying two
such elements a1b1 and a2b2 gives us a new element whose H compenent is a1a2 and whose
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N component is ba21 b2. It follows that if we know the structure of H and N and if we know
how H acts on N by conjugation, then we know the structure of the semidirect product
G. If you for example had a multiplication table for H and N and you knew how H acts
on N by conjugation then you could write down a multiplication table for G.

Remark. For a ∈ H , let φa : N → N be the conjugation by a. We have seen pre-
viously that this map is an automorphism. Now

xφab = xab = (xa)b = (xφa)φb = xφa◦φb .

Consider the map Ψ : H → Aut (N), a 7→ φa. As Ψ(ab) = φab = φa ◦ φb = Ψ(a) ◦ Ψ(b),
this map is a homomorphism. Notice also

a1b1 · a2b2 = (a1a2) · (b
a2
1 b2) = (a1a2) · (b

φa2

1 b2) = (a1a2) · (b
Ψ(a2)
1 b2)

This motivates the following structure.

Definition Let N, H be groups and let Ψ : H → Aut (N) be a homomorphism. The
external semidirect product H ⋉Ψ N , of N by H with respect to Ψ, is the cartesian set
product of H and N with the binary operation

(a1, b1) · (a2, b2) = (a1a2, b
Ψ(a2)
1 b2)

H ⋉Ψ N is a group. First let us check the associativity. Firstly

[(a1, b1) · (a2, b2)] · (a3, b3) = (a1a2, b
Ψ(a2)
1 b2) · (a3, b3)

= (a1a2a3, (b
Ψ(a2)
1 b2)

Ψ(a3)b3)

Since Ψ(a3) ∈ Aut (N) and since Ψ is a homorphism, we get

(b
Ψ(a2)
1 b2)

Ψ(a3)b3 = b
Ψ(a2)Ψ(a3)
1 b

Ψ(a3)
2 b3

= b
Ψ(a2a3)
1 b

Ψ(a3)
2 b3.

Then secondly

(a1, b1) · [(a2, b2) · (a3, b3)] = (a1, b1) · (a2a3, b
Ψ(a3)
2 b3)

= (a1a2a3, b
Ψ(a2a3)
1 b

Ψ(a3)
2 b3).

This shows that the associative law holds. To see that (1, 1) is the identity. Notice that
any automorphism maps 1 to itself and that Ψ(1) = id. Thus

(1, 1) · (a, b) = (1 · a, 1Ψ(a)b) = (a, b)

and
(a, b) · (1, 1) = (a · 1, bΨ(1) · 1) = (a, bid · 1) = (a, b).

Finally, the inverse of (a, b) is (a−1, (bΨ(a−1))−1) since

(a, b) · (a−1, (bΨ(a−1))−1) = (a · a−1, bΨ(a−1)(bΨ(a−1))−1) = (1, 1)
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and

(a−1, (bΨ(a−1))−1) · (a, b) = (aa−1, ((bΨ(a−1))−1)Ψ(a)b)

= (1, (bΨ(a−1)Ψ(a))−1b)

= (1, (bΨ(1))−1b)

= (1, (bid)−1b)

= (1, 1).

Remark. Consider an internal semidirect product of N by H and let Ψ : H → Aut (N)
be the homomorphism that maps a to φa where the latter is the automorphism that takes
b to ba. Using the data N, H and Ψ, we can also construct the external semidirect product
H ⋉Ψ N . Not surprisingly, the two are isomorphic (see Exercise 1 on Sheet 10).

II. Groups of order less than 16.

In this section (and on the exercise sheets) we play with our new tools and find all
groups of order up to and including 15. We have already shown previously (Exercise 2
on sheet 9) that the only group of order 15 is Z15 and we have no difficulty with groups
of order 1. When p is a prime, there is exactly one group of order p, the cyclic group Zp

of order p. On exercise sheet 8 we also show that there are only two groups of order p2,
namely Zp2 and Zp ⊕ Zp.

Semidirect products of cyclic groups. Suppose that G = HN is an internal semidi-
rect product of a cyclic group N = 〈a〉 by another cyclic group 〈b〉. We have that

ab = ar (5)

for some r ∈ Z. Inductively it follows that ab
n

= ar
n

and then that (am)b
n

= (ab
n

)m =

am
r
n

. Thus the structure of G is determined by (5) and the orders of a and b.

We will now introduce an infinite family of groups, many of which will crop up in the list
of groups of orders 1 to 15.

Example.(D2n, the dihedral group of order 2n). Consider a regular n-gon in the com-
plex plane with corners 1, u, u2, . . . , un−1 where u = e2πi/n (draw a figure). The symmetry
group of this regular n-gon is generated by a counter clockwise rotation a of 2π/n around
the origin and the reflection b in the real axis. This can be described explicitly as follows:

a(z) = e2πi/n · z

b(z) = z̄.

Let us calculate

b−1ab(z) = bab(z)

= ba(z̄)

= b(e2πi/n · z̄)

= e−2πi/nz

= a−1(z).
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This means that the symmetry group is a group of order 2n that is a semidirect product
of 〈a〉, a cyclic group of order n, and 〈b〉, a cyclic group of order 2. Furthermore the action
of 〈b〉 on 〈a〉 is determined by ab = a−1. The unique group of order 2n with a normal
cyclic subgroup 〈a〉 of order n, and a cyclic subgroup 〈b〉 where ab = a−1 is called the
dihedral group of order 2n and is denoted D2n.

Theorem 6.2 Let p be an odd prime. There are (up to isomorphism) exactly two groups
of order 2p these are

Z2p and D2p.

Proof By the Sylow theorems (or Cauchy’s thm) there is a subgroup N = 〈a〉 of order
p. Since N is of index 2 it is normal. There is also a group H = 〈b〉 of order 2. Clearly
H ∩ N = {1}, since it is a subgroup of both H and N and thus its order divides both 2
and p. So we have that G is a semidirect product of N by H . To determine the group
structure it remains to see how H can act on N . Now

b−1ab = ar

for some 0 ≤ r ≤ p − 1. Using the fact that b is of order 2, we see that

a = b−1(b−1ab)b = b−1arb = (b−1ab)r = ar
2

.

This implies that ar
2
−1 = 1 and thus p must divide r2 − 1 = (r − 1)(r + 1). The only

possibilities for this to happen is when r = 1 or r = p − 1. In the first case the group
is abelian and G = 〈ba〉 is a cyclic group of order 2p. (Notice that (ba)2 = a2 6= 1 and
(ba)p = b 6= 1 so the order of ba is 2p by Lagrange’s theorem). In the latter case we have
the relations

ap = 1, b2 = 1, bab−1 = ap−1 = a−1

which gives us D2p as we have seen. 2

Remark. The only orders up to 15 that are not covered by 1, 15, p, p2 and 2p are
8 and 12. These are dealt with on the excercise sheets 9 and 10.

We end by constructing a certain group of order 12, using the external semidirect product.

Example. Let N = 〈a〉 be a cyclic group of order 3 and H = 〈b〉 be a cyclic group
of order 4. The map

φ : N → N, x 7→ x−1

is in Aut (N). The map
Ψ : H → Aut (N), br 7→ φr

is a homomorphism. It is well defined as br = bs ⇒ bs−r = 1 ⇒ 4|(r − s) ⇒ φs−r = id ⇒
φr = φs. Consider the external semidirect product T = H ⋉Ψ N . It is a group of order 12
with a cyclic normal Sylow 3-subgroup of order 3 and a cyclic Sylow 2-subgroup of order 4.

From our study in this chapter and the exercise sheets we can conclude that the groups
of order ≤ 15 are (up to isomorphism)
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order groups
1 {1}
2 Z2

3 Z3

4 Z4, Z2 ⊕ Z2

5 Z5

6 Z6, D6

7 Z7

8 Z8, Z4 ⊕ Z2, Z2 ⊕ Z2 ⊕ Z2, D8, Q
9 Z9, Z3 ⊕ Z3

10 Z10, D10

11 Z11

12 Z4 ⊕ Z3, Z2 ⊕ Z2 ⊕ Z3, A4, D12, T
13 Z13

14 Z14, D14

15 Z15
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