
0 Introduction. Groups and symmetry

Group Theory can be viewed as the mathematical theory that deals with symmetry, where
symmetry has a very general meaning. To illustrate this we will look at two very different
kinds of symmetries. In both case we have ‘transformations’ that help us to capture the
type of symmetry we are interested in. We then have the ‘objects’ that we are analysing
and to each object we will associate a ‘symmetry group’ that captures the symmetric
properties of the object in precise mathematical terms.

I. Isometric symmetry in R2

Transformations: Isometries.

An isometry on the plane is a bijection f : R2 → R2 that preserves distances.

Objects: Figures in the place (that is subsets of the plane).

The symmetry group of a figure A: For any figure(subset) A of the plane, we let
GA be the set of all isometries that preserve the figure (as a set). This is a group with
composition as the group multiplication. We call it the symmetry group of A.
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For the equilateral triangle A, GA consists of three rotations r, r2 and r3 = e = id, with
r being a counterclockwise rotation of 120 degrees around the center of A, and three
reflections s1, s2 and s3 with respect to the three symmetry axes of A, through the points
1, 2 and 3 respectively.

We can now write a multiplication table for GA:
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e r r2 s1 s2 s3

e e r r2 s1 s2 s3

r r r2 e s3 s1 s2

r2 r2 e r s2 s3 s1

s1 s1 s2 s3 e r r2

s2 s2 s3 s1 r2 e r
s3 s3 s1 s2 r r2 e

Every equilateral triangle in the plane has a group G of isometries that contains three
rotations and three reflections as above. It depends on the triangle what exactly these
rotations and reflections are but the algebraic structure is always going to be as in the
multiplication table above. So the symmetry is captured in the algebraic structure of G.

In fact the group above is ismorphic to S3, the group of all permutations of 1, 2, 3. This
is because the 6 elements in GA permute the corner points of the triangle and all the
6 = 3! permutations of S3 occur: r and r2 correspond to (1 2 3) and (1 3 2) and the three
reflections s1, s2 and s3 correspond to the (2 3), (1 3) and (1 2).

The following questions now arise naturally:

(Q1) What symmetries are out there?
(Q2) What are their properties?

Or, translating these into formal mathematics questions:

(q1) What groups are there? (Classification)
(q2) What is their structure like? (Structure theory)

The symmetry we have just looked at is of geometric nature and groups and geome-
try have some strong links. For example, one can think of Euclidean geometry in the
plane as the theory that studies properties that are invariant under isometries (i.e. angle,
length, area, triangle, ...). During the 19th century there was a development of a number
of different geometries (i.e. affine geometry, projective geometry, hyperbolic geometry,
....) and Felix Klein (1872) made the general observation that, like Euclidean geometry
can be characterised by the group of isometries, each geometry can be characterised by
some group of transformations. The origin of abstract group theory goes however further
back to Galois (1811-1832) and the problem of solving polynomial equations by algebraic
methods. This we turn to next.

II. Arithmetic symmetry in C. The origin of group theory.

Transformations: Automorphisms.

A automorphism on C is a bijective function f : C → C that preserves the addition
and the multiplication:

f(a + b) = f(a) + f(b)

f(ab) = f(a)f(b).
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Claim. Any automorphism f fixes all the elements in Q.

Proof. Firstly f(0) = 0 and f(1) = 1 as

f(0) + 0 = f(0) = f(0 + 0) = f(0) + f(0)
f(1) · 1 = f(1) = f(1 · 1) = f(1) · f(1).

and cancellation gives what we want. Notice that we can cancel by f(1) as it can’t be 0
(f is bijective and 0 is already taken as a value). Next suppose that n ≥ 1 is an integer.
Then

f(n) = f(1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n

) = f(1) + f(1) + · · ·+ f(1)
︸ ︷︷ ︸

n

= 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n

= n

and f(n) = n for all positve integers n. Before going further we observe that f has the
property that f(−a) = −f(a) and also that f(1/a) = 1/f(a) whenever a 6= 0. The reason
for this is the following

f(a) + f(−a) = f(a + (−a)) = f(0) = 0
f(a) · f(1/a) = f(a · 1/a) = f(1) = 1.

Using this we can now finish the proof of the claim. Firstly for n > 0 we have f(−n) =
−f(n) = −n which shows that f fixes any integer. Finally if q = a/b for some integers
a, b, where b 6= 0, then

f(q) = f(a · 1/b) = f(a) · f(1/b) = f(a) · 1/f(b) = a/b = q

and we have proved the claim. 2

Objects: Polynomials in Q[x].

Let
P = anx

n + an−1x
n−1 + · · ·+ a0

be a polynomial over Q with distinct roots x1, . . . , xn.

Claim. Any automorphism f permutes the complex roots of P .

Proof. We need to show that if t is a root then f(t) is also a root. But this follows
from

0 = f(0)

= f(antn + an−1t
n−1 + · · · + a0)

= f(antn) + f(an−1t
n−1) + · · ·+ f(a0)

= f(an)f(t)n + f(an−1)f(t)n−1 + · · · + f(a0)

= anf(t)n + an−1f(t)n−1 + · · ·+ a0

= P (f(t))

where the 2nd last equality follows from the fact that the coefficients are rational num-
bers. 2
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We have seen that any isomorphism f must permute the roots x1, . . . , xn of P . Hence f
induces a permutation in Sn (if we identify 1, 2, . . . , n with x1, . . . , xn).

The symmetry group of the polynomial P . (Also called the Galois group of P ): We
let

GP = {σ ∈ Sn : σ is induced by an isomorphism }.
GP is then the symmetry group of P .

(By saying that σ ∈ Sn is induced by the automorphism f : C → C means that σ(i) = j
if and only if f(xi) = xj).

Example 1. Determine GP where P = x2 − 3x + 2.

Solution. P = x2 − 3x + 2 = (x − 1)(x − 2) has only rational roots so every iso-
morphism must fix these and thus induce the trivial permutation on the roots. Thus
GP = {id}.

Example 2. Determine GP where P = x4 − 1.

Solution. The polynomial P = x4 − 1 has the roots x1 = 1, x2 = −1, x3 = i and
x4 = −i. Here all isomorphisms must fix 1 and −1. This leaves the possibility of swap-
ping i and −i, and the isomorphism f on C that maps z to z̄ does that (recall that
a + b = a + b and ab = a · b which implies that f is a isomorphism). Thus

GP = {α, id}

where

α =

(
x1 x2 x3 x4

x1 x2 x4 x3

)

or, under the identification of 1, 2, 3, 4 with x1, x2, x3, x4,

α =

(
1 2 3 4
1 2 4 3

)

i.e. α swaps x3 and x4 (or 3 and 4).

Remark. In general GP is a subgroup of Sn and thus thas at most n! elements (in
fact |GP | divides |Sn| = n! by Lagrange’s Theorem).

We say that a polynomial P is solvable by radicals if its roots can be expressed using
only the coefficients, the arithmetic operations and extracting roots. That any quadratic
ax2 + bx + c is solvable by radicals is for example a consequence of the formula:

x =
−b ±

√
b2 − 4ac

2a
.

Such formulas for solving the cubics and the quartics were discovered during the 16th cen-
tury but despite much effort the quintic continued to remain a challenge. The question
was not settled until 1824 when the Norwegian mathematican Niels Henrik Abel demon-
strated that the quintic is not in general solvable by radicals. The French mathematician
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Évariste Galois (1811-1832) proved this independently and went further by finding a suf-
ficient and necessary condition under which a given polynomial is solvable by radicals.
In doing so he developed a new mathematical theory of symmetry, namely group theory.
His famous theorem is the following:

Theorem (Galois). A polynomial P is solvable by radicals iff GP is solvable.

For a group to be solvable means having a structure of a special kind. You will see the
precise definition later in the course.

Fact. For each positive integer n there exists a polynomial Pn of degree n such that
GPn

= Sn (all the permutations of the n roots).

Theorem. Sn is solvable iff n ≤ 4. (We will prove this later in the course).

Corollary. For any n ≥ 5 there exists a polynomial of degree n (namely Pn) that is
not solvable by radicals.
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1 Definitions and basic properties

I. The group axioms and some examples of groups.

We start by recalling the definition of a group.

Definition. A group is a pair (G, ∗), where G is a set, ∗ is a binary operation and
the following axioms hold:

(a) (The associative law)

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

(b) (Existence of an identity) There exists an element e ∈ G with the property that

e ∗ a = a and a ∗ e = a for all a ∈ G.

(c) (The existence of an inverse) For each a ∈ G there exists an element b ∈ G such that

a ∗ b = b ∗ a = e.

Remark. Notice that ∗ : G×G → G is a binary operation and thus the ‘closure axiom’:
a, b ∈ G ⇒ a ∗ b ∈ G is implicit in the definition.

Definition. We say that a group (G, ∗) is abelian or commutative if a ∗ b = b ∗ a for
all a, b ∈ G.

Remarks.(1) Recall that the identity e is the unique element in G with the property
given in (b). To see this suppose we have another identity f . Using the fact that both of
these are identities we see that

f = f ∗ e = e.

we will usually denote this element by 1 (or by 0 if the group operation is commutative).

(2) the element b ∈ G as in (c) is unique. To see this suppose that c is another in-
verse to a. Then

c = c ∗ e = c ∗ (a ∗ b) = (c ∗ a) ∗ b = e ∗ b = b.

We call this unique element b, the inverse of a. It is often denoted a−1 (or −a when the
group operation is commutative).

(3) If it is clear from the context what the group operation ∗ is, one often simply refers
to the group G rather then the pair (G, ∗).
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Some examples of groups. (1) Let X be a set and let Sym (X) be the set of all
bijective maps from X to itself. Then Sym (X) is a group with respect to composition,
◦, of maps. This group is called the symmetric group on X and we often refer to the
elements of Sym (X) as permutations of X. When X = {1, 2, · · · , n} the group is often
denoted Sn and called the symmetric group on n letters.

(2) Let (R, +, ·) be any ring. Then (R, +) is an abelian group. This includes for ex-
ample the group of integers (Z, +) and the fields Q, R, C with repect to addition. It also
includes, for any positive integer n, the group of integers modulo n (Zn, +).

(3) Let again (R, +, ·) be any ring with unity 1. Then the set of all invertible elements
(the units), R∗, is a group with respect to the ring multiplication ·. This group is referred
to as the group of units of R. This includes Q∗, R∗, C∗ and Z∗

n for any positive integer.

(4) Let V be a finite dimensional vector space over a field K. Consider the ring End (V )
of all linear operators α : V → V . Here the group of units is denoted GL(V ) and called
the general linear group on V .

(5) Let K be a field and let Mn(K) be the ring of all n×n matrices over K. The group of
units here is denoted GLn(K) and called the general linear group of n×n matrices over K.

Remarks. (1) We will see later that any group G can be viewed as a subgroup of
some group of permutations Sym (X).

(2) One can see that any group G can be viewed as a subgroup of the group of units
of some ring R. We will see this later at least in the case when G is finite.

II. Subgroups and Lagrange’s Theorem.

Definition. Let G be a group with a subset H . We say that H is a subgroup of G
if the following two conditions hold.

(a) 1 ∈ H ,
(b) If a, b ∈ H then ab, a−1 ∈ H .

Recall. One can replace (a) and (b) with the more economical:

(a)’ H 6= ∅,
(b)’ If a, b ∈ H then ab−1 ∈ H .

Remark. It is not difficult to see that one could equivalently say that H is a sub-
group of G if H is closed under the group multiplication ∗ and that H with the induced
multiplication of ∗ on H is a group in its own right. So subgroups are groups contained
within G that inherit the multiplication from G.

Notation. We write H ≤ G or G ≥ H for ‘H is a subgroup of G’.
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Cosets as equivalence classes. Suppose G is a group with a subgroup H . We de-
fine a relation ≃ on G as follows:

x ≃ y iff x−1y ∈ H.

This relation is an equivalence relation. To see this we need to see that it is reflexive,
symmetric and transitive. Firstly it is reflexive as x−1x = 1 ∈ H implies that x ≃ x.
To see that it is symmetric suppose x ≃ y. Then x−1y ∈ H and as H is a subgroup it
follows that y−1x = (x−1y)−1 ∈ H and thus y ≃ x. Finally to see that the relation is
transitive notice that if x ≃ y and y ≃ z then x−1y, y−1z ∈ H . Being a subgroup, H
is closed under the group multiplication and thus x−1z = (x−1y)·(y−1z) ∈ H . Thus x ≃ z.

Notice that x ≃ y if and only if x−1y ∈ H if and only if y ∈ xH . Hence the equiva-
lence class of x is [x] = xH , the left coset of H in G.

Theorem 1.1 (Lagrange) Let G be a finite group with a subgroup H. Then |H| divides
|G|.

Proof Using the equivalence relation above, G gets partitioned into pairwise disjoint
equivalence classes, say

G = a1H ∪ a2H ∪ · · · ∪ arH

and adding up we get

|G| = |a1H| + |a2H| + · · ·+ |arH| = r · |H|.

Notice that the map from G to itself that takes g to aig is a bijection (the inverse is the
map g 7→ a−1

i g) and thus |aiH| = |H|. 2

Remark. If we had used instead the relation x ≃ y iff xy−1 ∈ H , we would have
had [x] = Hx. Hence G also partions into a pairwise disjoint union of right cosets. (Re-
call that in general the partions into right cosets and into left cosets are different).

Examples. (1) The subsets {1} and G are always subgroups of G.

(2) The subset Cn = {a ∈ C : an = 1} is a subgroup of (C, ·). In fact 1n = 1 and
if a, b ∈ Cn then (ab)n = anbn = 1 and (a−1)n = (an)−1 = 1. Thus both the subgroup
criteria (a) and (b) hold.

(3) H = {id, (1, 2)} is a subgroup of S3. Clearly (a) holds as id ∈ H and direct in-
spection shows that (b) holds as well.
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