
Group Theory, 2016

Exercise sheet 9 (solutions)

Exercise 1. (a) We know that if n(p) = n(q) = 1 then the unique Sylow p-subgroup P and the
unique Sylow q-subgroup Q are normal in G. (Follows in fact from the 2nd Sylow Theorem as
the Sylow p-subgroups and the Sylow q-subgroup form each a single conjugacy class). As |P ∩Q|
divides |P | = p and |Q| = q it follows that P ∩ Q = {1}. Finally we know from lectures that
|PQ| = |P |·|Q|/|P∩Q| = pq/1 = |G| and thus G = PQ is the internal direct product of P and Q.

(b) Using the Sylow Theorems, we know that n(5) = (1 + 5r)|3 and n(3) = (1 + 3s)|5 for
some non-negative integers r, s. The only possible values for r and s, where this holds, are
r = s = 0. Thus n(5) = n(3) = 1 and by (a) we know that G ∼= Z5 ⊕ Z3

∼= Z15. (The last fact
that Z3 ⊕ Z5 is cyclic follows from Question 4 on Sheet 5).

Exercise 2. Let P be a Sylow 3-subgroup of G. The core of P , PG, is a subgroup of P
that is normal in G. As P is not normal in G it follows that PG = {1}. Theorem 5.10 from
lectures tells us then that G is isomorphic to a subgroup of S4 of order 12. This is then a
subgroup of index 2 in S4 and thus normal in S4. From Exercise 5 on Sheet 5 we know that the
only normal subgroup in S4 of order 12 is A4. Hence G ∼= A4.

Exercise 3. (a) We have that 36 = 32 · 22. By the 1st Sylow theorem, there is a Sylow 3
subgroup which here has order 9 and therefore index 4. If G were simple then by Poincaré’s
lemma, we would have that G is isomorphic to a subgroup of S4. But then

36 = |G| ≤ |S4| = 24

which is absurd. Hence G can’t be simple.

(b) Without loss of generality we can assume that p < q. By the 3rd Sylow Theorem we
have

n(q) = 1 + qr | p2

for some non-negative integer r. If G is simple then n(q) > 1 and must be either p or p2. As
q > p this can only happen if n(q) = p2. So we have

qr = (p− 1)(p + 1).

As q > p we then must have that q divides p + 1 and thus equal to p + 1 (as q > p). This can
only happen if p = 2 and q = 3. But then the order of G is 22 · 32 = 36. By (a) we know that
G can’t be simple. 2

Exercise 4. For both parts we apply the 2nd isomorphism theorem PN/N ∼= P/P ∩ N .
As the orders of the two groups is then the same we get in particular |PN | · |P ∩N | = |N | · |P |
and thus

[N : P ∩N ] = [PN : P ].

(a) As P ∩ N ≤ P it is clearly a p-group. Furthermore [N : N ∩ P ] = [PN : P ] and as
[PN : P ] divides [G : P ] = [G : PN ] · [PN : P ] it is not divisible by p. (Notice that as P is a
Sylow p-subgroup of G, [G : P ] is coprime to p). It follows that N∩P is a Sylow p-subgroup of N .



(b) As PN/N ∼= P/N ∩ P , it is a p-group. Furthermore [G/N : PN/N ] = [G : PN ] that
divides [G : P ] = [G : PN ] · [PN : P ]. Hence [G/N : PN/N ] is coprime to p and PN/N is a
Sylow p-subgroup of G/N .

Exercise 5. (a) The elements of A4 are

order 1: id
order 2: (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)
order 3: (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3)

The Sylow 3-subgroups are of order 3 and thus cyclic. These are clearly

H1 = 〈(1 2 3)〉, H2 = 〈(1 2 4)〉, H3 = 〈(1 3 4)〉, H4 = 〈(2 3 4)〉

Notice that the number of these is 4 = 1 + 3 · 1 which is in accordance with the third Sylow
theorem. They also form a single conjugacy class as H2 = H

(1 2)(3 4)
1 , H3 = H

(1 3)(2 4)
1 and

H4 = H
(1 4)(2 3)
1 . There are only 4 elements that are of 2-power order which means that we have

only one Sylow 2-subgroup

K4 = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

(b) The extra 12 elements of S4, i.e. the odd elements are

order 2: (1 2), (1 3), (1 4), (2 3), (2 4), (3 4)
order 4: (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)

Notice that none of these elements have order that is a power of 3. Hence the Sylow 3-subgroups
remain the same as in (a). Notice that |S4| = 3 · 8 and so the Sylow 2-subgroups should have
order 8. First let us see that every Sylow 2-subgroup must contain the normal subgroup K4 of
S4 as a subgroup. Let G be any subgroup of order 8. Then GK4/K4

∼= G/G∩K4. This implies
that

|GK4| = |GK4/K4| · |K4| =
|G| · |K4|
|G ∩K4|

which is a power of 2. Since G ≤ GK4 it follows that GK4 = G and thus K4 ≤ G. By the
correspondence theorem we now only need to find all subgroups in S4/K4 of order 2. But these
are the cyclic groups of order 2 that correspond to the elements of 2-power order that are not in
K4. These are all the cosets aK4 where a runs through those 12 extra odd elements. Inspection
shows that we get the following groups:

R1 = K4 ∪K4(1 2) = K4 ∪ {(1 2), (3 4), (1 4 2 3), (1 3 2 4)}
R2 = K4 ∪K4(1 3) = K4 ∪ {(1 3), (2 4), (1 4 3 2), (1 2 3 4)}
R3 = K4 ∪K4(1 4) = K4 ∪ {(1 4), (2 3), (1 3 4 2), (1 2 4 3)}

Notice that the number of these is 3 = 1 + 2 · 1 in accordance with the third Sylow theorem and
that they form a single conjugacy class as

R2 = R
(2 3)
1 , R3 = R

(2 4)
1 .


