Group Theory, 2016 Exercise sheet 9 (solutions)

Exercise 1. (a) We know that if n(p) = n(q) = 1 then the unique Sylow *p*-subgroup *P* and the unique Sylow *q*-subgroup *Q* are normal in *G*. (Follows in fact from the 2nd Sylow Theorem as the Sylow *p*-subgroups and the Sylow *q*-subgroup form each a single conjugacy class). As $|P \cap Q|$ divides |P| = p and |Q| = q it follows that $P \cap Q = \{1\}$. Finally we know from lectures that $|PQ| = |P| \cdot |Q| / |P \cap Q| = pq/1 = |G|$ and thus G = PQ is the internal direct product of *P* and *Q*.

(b) Using the Sylow Theorems, we know that n(5) = (1 + 5r)|3 and n(3) = (1 + 3s)|5 for some non-negative integers r, s. The only possible values for r and s, where this holds, are r = s = 0. Thus n(5) = n(3) = 1 and by (a) we know that $G \cong \mathbb{Z}_5 \oplus \mathbb{Z}_3 \cong \mathbb{Z}_{15}$. (The last fact that $\mathbb{Z}_3 \oplus \mathbb{Z}_5$ is cyclic follows from Question 4 on Sheet 5).

Exercise 2. Let P be a Sylow 3-subgroup of G. The core of P, P_G , is a subgroup of P that is normal in G. As P is not normal in G it follows that $P_G = \{1\}$. Theorem 5.10 from lectures tells us then that G is isomorphic to a subgroup of S_4 of order 12. This is then a subgroup of index 2 in S_4 and thus normal in S_4 . From Exercise 5 on Sheet 5 we know that the only normal subgroup in S_4 of order 12 is A_4 . Hence $G \cong A_4$.

Exercise 3. (a) We have that $36 = 3^2 \cdot 2^2$. By the 1st Sylow theorem, there is a Sylow 3 subgroup which here has order 9 and therefore index 4. If G were simple then by Poincaré's lemma, we would have that G is isomorphic to a subgroup of S_4 . But then

$$36 = |G| \le |S_4| = 24$$

which is absurd. Hence G can't be simple.

(b) Without loss of generality we can assume that p < q. By the 3rd Sylow Theorem we have

$$n(q) = 1 + qr | p^2$$

for some non-negative integer r. If G is simple then n(q) > 1 and must be either p or p^2 . As q > p this can only happen if $n(q) = p^2$. So we have

$$qr = (p-1)(p+1).$$

As q > p we then must have that q divides p + 1 and thus equal to p + 1 (as q > p). This can only happen if p = 2 and q = 3. But then the order of G is $2^2 \cdot 3^2 = 36$. By (a) we know that G can't be simple. \Box

Exercise 4. For both parts we apply the 2nd isomorphism theorem $PN/N \cong P/P \cap N$. As the orders of the two groups is then the same we get in particular $|PN| \cdot |P \cap N| = |N| \cdot |P|$ and thus

$$[N:P\cap N] = [PN:P].$$

(a) As $P \cap N \leq P$ it is clearly a *p*-group. Furthermore $[N : N \cap P] = [PN : P]$ and as [PN : P] divides $[G : P] = [G : PN] \cdot [PN : P]$ it is not divisible by *p*. (Notice that as *P* is a Sylow *p*-subgroup of G, [G : P] is coprime to *p*). It follows that $N \cap P$ is a Sylow *p*-subgroup of *N*.

(b) As $PN/N \cong P/N \cap P$, it is a *p*-group. Furthermore [G/N : PN/N] = [G : PN] that divides $[G : P] = [G : PN] \cdot [PN : P]$. Hence [G/N : PN/N] is coprime to *p* and *PN/N* is a Sylow *p*-subgroup of G/N.

Exercise 5. (a) The elements of A_4 are

order 1: id order 2: $(1\ 2)(3\ 4)$, $(1\ 3)(2\ 4)$, $(1\ 4)(2\ 3)$ order 3: $(1\ 2\ 3)$, $(1\ 3\ 2)$, $(1\ 2\ 4)$, $(1\ 4\ 2)$, $(1\ 3\ 4)$, $(1\ 4\ 3)$, $(2\ 3\ 4)$, $(2\ 4\ 3)$

The Sylow 3-subgroups are of order 3 and thus cyclic. These are clearly

$$H_1 = \langle (1 \ 2 \ 3) \rangle, \ H_2 = \langle (1 \ 2 \ 4) \rangle, \ H_3 = \langle (1 \ 3 \ 4) \rangle, \ H_4 = \langle (2 \ 3 \ 4) \rangle$$

Notice that the number of these is $4 = 1 + 3 \cdot 1$ which is in accordance with the third Sylow theorem. They also form a single conjugacy class as $H_2 = H_1^{(1\ 2)(3\ 4)}$, $H_3 = H_1^{(1\ 3)(2\ 4)}$ and $H_4 = H_1^{(1\ 4)(2\ 3)}$. There are only 4 elements that are of 2-power order which means that we have only one Sylow 2-subgroup

$$K_4 = \{ \text{id}, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3) \}.$$

(b) The extra 12 elements of S_4 , i.e. the odd elements are

order 2: $(1 \ 2)$, $(1 \ 3)$, $(1 \ 4)$, $(2 \ 3)$, $(2 \ 4)$, $(3 \ 4)$ order 4: $(1 \ 2 \ 3 \ 4)$, $(1 \ 2 \ 4 \ 3)$, $(1 \ 3 \ 2 \ 4)$, $(1 \ 3 \ 4 \ 2)$, $(1 \ 4 \ 2 \ 3)$, $(1 \ 4 \ 3 \ 2)$

Notice that none of these elements have order that is a power of 3. Hence the Sylow 3-subgroups remain the same as in (a). Notice that $|S_4| = 3 \cdot 8$ and so the Sylow 2-subgroups should have order 8. First let us see that every Sylow 2-subgroup must contain the normal subgroup K_4 of S_4 as a subgroup. Let G be any subgroup of order 8. Then $GK_4/K_4 \cong G/G \cap K_4$. This implies that

$$|GK_4| = |GK_4/K_4| \cdot |K_4| = \frac{|G| \cdot |K_4|}{|G \cap K_4|}$$

which is a power of 2. Since $G \leq GK_4$ it follows that $GK_4 = G$ and thus $K_4 \leq G$. By the correspondence theorem we now only need to find all subgroups in S_4/K_4 of order 2. But these are the cyclic groups of order 2 that correspond to the elements of 2-power order that are not in K_4 . These are all the cosets aK_4 where a runs through those 12 extra odd elements. Inspection shows that we get the following groups:

 $R_1 = K_4 \cup K_4(1\ 2) = K_4 \cup \{(1\ 2), \ (3\ 4), \ (1\ 4\ 2\ 3), \ (1\ 3\ 2\ 4)\}$ $R_2 = K_4 \cup K_4(1\ 3) = K_4 \cup \{(1\ 3), \ (2\ 4), \ (1\ 4\ 3\ 2), \ (1\ 2\ 3\ 4)\}$ $R_3 = K_4 \cup K_4(1\ 4) = K_4 \cup \{(1\ 4), \ (2\ 3), \ (1\ 3\ 4\ 2), \ (1\ 2\ 4\ 3)\}$

Notice that the number of these is $3 = 1 + 2 \cdot 1$ in accordance with the third Sylow theorem and that they form a single conjugacy class as

$$R_2 = R_1^{(2\ 3)}, \ R_3 = R_1^{(2\ 4)}$$