Group Theory, 2016
Exercise sheet 9 (solutions)

Exercise 1. (a) We know that if n(p) = n(q) = 1 then the unique Sylow p-subgroup P and the
unique Sylow g-subgroup @ are normal in G. (Follows in fact from the 2nd Sylow Theorem as
the Sylow p-subgroups and the Sylow g-subgroup form each a single conjugacy class). As |[PNQ)|
divides |P| = p and |Q| = ¢ it follows that P N @ = {1}. Finally we know from lectures that
|PQ| = |P|-|Q|/|PNQ| = pq/1 = |G| and thus G = PQ is the internal direct product of P and Q.

(b) Using the Sylow Theorems, we know that n(5) = (1 + 5r)|3 and n(3) = (1 + 3s)|5 for
some non-negative integers r,s. The only possible values for r and s, where this holds, are
r=s=0. Thus n(5) =n(3) = 1 and by (a) we know that G = Zs & Zz = Z15. (The last fact
that Zs @ Zs is cyclic follows from Question 4 on Sheet 5).

Exercise 2. Let P be a Sylow 3-subgroup of G. The core of P, Pg, is a subgroup of P
that is normal in G. As P is not normal in G it follows that Pg = {1}. Theorem 5.10 from
lectures tells us then that G is isomorphic to a subgroup of S of order 12. This is then a
subgroup of index 2 in S4 and thus normal in S4. From Exercise 5 on Sheet 5 we know that the
only normal subgroup in S4 of order 12 is A4. Hence G =2 Ay.

Exercise 3. (a) We have that 36 = 32 - 22. By the 1st Sylow theorem, there is a Sylow 3
subgroup which here has order 9 and therefore index 4. If G were simple then by Poincaré’s
lemma, we would have that GG is isomorphic to a subgroup of Sy. But then

36 = G| < |84 = 24
which is absurd. Hence G can’t be simple.

(b) Without loss of generality we can assume that p < ¢. By the 3rd Sylow Theorem we
have

n(q) = 1+qr|p’
for some non-negative integer r. If G is simple then n(q) > 1 and must be either p or p?. As
q > p this can only happen if n(q) = p?>. So we have

gr=p-1)pE+1).

As ¢ > p we then must have that ¢ divides p + 1 and thus equal to p + 1 (as ¢ > p). This can
only happen if p = 2 and ¢ = 3. But then the order of G is 2% - 32 = 36. By (a) we know that
G can’t be simple. O

Exercise 4. For both parts we apply the 2nd isomorphism theorem PN/N = P/P N N.
As the orders of the two groups is then the same we get in particular |[PN|-|P N N| = |N|- |P|
and thus

[N:PAN]=[PN: P

(a) As PN N < P it is clearly a p-group. Furthermore [N : NN P] = [PN : P] and as
[PN : P] divides [G : P] =[G : PN]-[PN : P] it is not divisible by p. (Notice that as P is a
Sylow p-subgroup of G, [G : P] is coprime to p). It follows that NN P is a Sylow p-subgroup of N.



(b) As PN/N = P/N N P, it is a p-group. Furthermore [G/N : PN/N| = [G : PN] that
divides [G : P] = [G : PN]-[PN : P]. Hence |[G/N : PN/N] is coprime to p and PN/N is a
Sylow p-subgroup of G/N.

Exercise 5. (a) The elements of Ay are

order 1: id
order 2: (1 2)(3 4),

(13)(24), (14)(23)
order 3: (12 3), (132) ,

2), (124), (142), (134), (143), (234), (243)

The Sylow 3-subgroups are of order 3 and thus cyclic. These are clearly
Hy=((123)), Hy=((124)), Hy=((134)), Hi=((234))

Notice that the number of these is 4 = 1 + 3 - 1 which is in accordance with the third Sylow
theorem. They also form a single conjugacy class as Ho = Hl(1 2@ 4), H; = Hfl DD and
H,=H fl Y3 There are only 4 elements that are of 2-power order which means that we have

only one Sylow 2-subgroup
Ky ={id, (12)(34), (13)24), (1 923)}.
(b) The extra 12 elements of Sy, i.e. the odd elements are

order 2: (12), (13), (14), (23), (24), (34)
order 4: (1234), (1243), (1324), (1342), (1423), (1432)

Notice that none of these elements have order that is a power of 3. Hence the Sylow 3-subgroups
remain the same as in (a). Notice that |Ss| = 3 - 8 and so the Sylow 2-subgroups should have
order 8. First let us see that every Sylow 2-subgroup must contain the normal subgroup Ky of
Sy as a subgroup. Let G be any subgroup of order 8. Then GK4/K, = G/G N K4. This implies
that

IGI- [Kal

|G N K4

which is a power of 2. Since G < GKj it follows that GK4y = G and thus K4y < G. By the
correspondence theorem we now only need to find all subgroups in S4/K4 of order 2. But these
are the cyclic groups of order 2 that correspond to the elements of 2-power order that are not in
K. These are all the cosets a4 where a runs through those 12 extra odd elements. Inspection
shows that we get the following groups:

|GKy| = |GKy/ Kyl - [Ka| =

R =K,UK412)=K,U{(12), (34), (1423), (1324)}
Ro=FK,UK(13)=KiU{(13), (24), (1432), (1234)}
Ry=K,UK414)=K;U{(14), (23), (1342), (1243)}

Notice that the number of these is 3 =1+ 21 in accordance with the third Sylow theorem and
that they form a single conjugacy class as

Ry =R%Y Ry=RrPY.



