
Group Theory, 2016

Exercise sheet 6 (solutions)

Exercise 1.(a) Let e be the identity element in G. Firstly as x = xe, we have that the re-
lation is reflexive. If y = xg then x = yg−1

that shows that ∼ is symmetric. Finally if y = xa

and z = yb. Then z = yb = (xa)b = xab that shows that ∼ is transitive. Hence we have an
equivalence relation and the equivalence classes form a pairwise disjoint partition of G. Now
observe that the equivalence class containing x is the conjugacy class xG.

(b) Let a ∈ N then, as N � G, we have aG ⊆ N . This shows that N =
⋃

a∈N aG and thus N is
the union of some conjugacy classes in G.

Exercise 2. As every subgroup of an abelian group is normal, to say that G is simple is
the same as saying that the only subgroups are {1} and G itself. As G 6= {1} there is some
1 6= a ∈ G. As {1} < 〈a〉 ≤ G and G is simple, it follows that G = 〈a〉. Thus G is cyclic. Next
we claim that G is of finite order. If not, 〈a2〉 would be a non-trivial, proper subgroup of G.
Thus G = 〈a〉 is finite. If o(a) was not a prime, say o(a) = rs for some integers r, s ≤ 2, then
〈ar〉 is again a non-trivial proper subgroup that contradicts simplicity of G. Hence |G| is a prime.

Conversely if |G| is a prime and H a subgroup of G then by Lagrange’s Theorem |H| divides
|G| = p. As p is a prime we then either have |H| = 1, and H = {1} or |H| = p = |G| and
H = G. Hence G is simple.

Exercise 3. (a) We have xSn = xAn ∪ xaAn = xAn ∪ (a−1xa)An = xAn ∪ xAn = xAn .

(b) For a contradiction, suppose that there is a common element. This means that we have
xa = xb where a is even and b is odd. Then xba−1

= x and we get the contradiction that x
commutes with the odd element ba−1.

Exercise 4. Let Hn = G. By Exercise 4 on sheet 3, there exists a subgroup Hn−1 of G
that is of order p1 · · · pn−1 (as p1 · · · pn−1 is a divisor of |G|). Similarly there exists a subgroup
Hn−2 of Hn−1 of order p1 · · · pn−2. continuing in this manner gives us the sequence we want.
Notice that

|Hi+1/Hi| = |Hi+1|/|Hi| =
p1 · · · pipi+1

p1 · · · pi
= pi+1

and it follows that Hi+1/Hi is a group of order pi+1. As pi+1 is a prime, we know from lecturers
that, up to isomorphism, there is only one group of order pi+1, namely Zpi+1 .

Notice that it follows from this in particular that for any given positive integer n, all abelian
groups of order n have the same composition factors.



Exercise 5. (a) A non-trivial element in S4 can have the following possible cycle structures

(r s), (r s t), (r s t u), (r s)(t u).

From lectures that we know if a is of one of these types, thhen aG = {ax : x ∈ G}, that consists
of all elements in S4 that have the same cycle structure. In this case the cycle structures give
us the following partition of G

Elements Size
B1 id 1
B2 (1 2)G

(
4
2

)
= 6

B3 (1 2 3)G 4 · 2 = 8
B4 (1 2 3 4)G 3! = 6
B5 [(1 2)(3 4)]G 3

Notice that these add up to 24 = 4! = |S4| elements. Now a subset N of S4 is a normal
subgroup if and only if it is a union of some of the Bi’s, including B1, and this union is a
subgroup. By Lagrange’s Theorem the number of elements in such a union would then have to
divide 24 = |S4|. Inspection shows that the only possibilities are the following unions with sizes
1, 4, 12 and 24

{1} = B1, K4 = B1 ∪B5, A4 = B1 ∪B5 ∪B3, S4 = B1 ∪ · · · ∪B5.

One can check that K4 is closed under multiplication and taking inverses and thus a subgroup
so all these are normal subgroups of S4.

(b) One composition series is

{id} < 〈(1 2)(3 4)〉 < K4 < A4 < S4

with composition factors Z2, Z2, Z3 and Z2.


