Group Theory, 2016
Exercise sheet 5 (solutions)

Exercise 1. (a) Notice first that the scalar multiplication is well defined as if [m] = [n] then
m = n+rp for some r € Z and thus mg = (n+1rp)g = ng+r(pg) =ng+r-0=mng forall g € G.

Let us then go through the vector space axioms. Firstly (G,+) is an abelian group by as-
sumptions. Turning to the scalar multiplication, we have [1] - x = la = x (where the latter
identity follows from the definition of nz). Then

1]~ (Is] - 2) = [1] - sz = r(sw) = (rs)a = [rs] -

(rj+z]) - z=[r+s]-z=F+s)r=rc+se=[r]-x+[s]-x

and
[rl-(z+y)=r@+y)=ret+ry=1[] -2+ y.

(b) Suppose first that H is a subgroup of the group G. Then 0 € H and H is closed under
addition and taking additive inversers. It follows then as well that G is closed under scalar
multiplication as [m] - = ma € H. Thus H is a subspace of G.

Conversely, suppose that H is a subspace of G. Then 0 € H and H is closed under addi-
tion. As —z = [—1] - x, we also have that H is closed under taking additive inverses. Thus H is
a subgroup of the group G.

Exercise 2.(a) Consider any finite number r of rationals. As these are finitely many we can rep-
resent these as fractions having the same denominator n > 1. Suppose these are mi/n, ..., m,/n.
Notice that

LZ(my/n) + -+ Z(my/n) < L(1/n) # Q

as for example 1/(n + 1) is not in Z(1/n) or 1/p & Z(1/n), where p is any prime that doesn’t
divide n. Hence Q can’t be finitely generated.

(b) Let r/s and n/m be two rationals where r,n are integers and n,m positive integers. If
one of these is zero, say r/s then 1-(r/s) 4+ 0- (n/m) = 0. If neither of these are zero then
sn(r/s) —mr(n/m) = 0.

Exercise 3. (a) We have 144 = 2% .32, The possible partitions of 2* and 3% into factors
in increasing order are:
(16), (2,8), (4,4), (2,2,4), (2,2,2,2)
and
(9), (3,3).

There are thus 5 -2 = 10 abelian groups of order 144,

L D Lo, Lo ® Ly ® Ly, Ly ® Ly ® Ly, Lo ® Lo ® Ly © Lo,

Lo ® Lo ® Ly ® L ® Lo, Lne® L3 D L3, Lo® Ls D L3 Ls,

Ly ® Ly ® Ly ® Lz, Ly ® Ly ® Ly ® Lz L,
Lo ® Uy Dl DLy ® L D Zs.



The abelian groups of order up to 15 are {0}, Zqo, Zs, Ly, Lo ® Lo, Ly, Lo ® L3, L7, Ls,
Loy @ oy, Ly ® Lo ® Ly, Lag, L3 D g, Ly ® sy, vy, Lo D g, Ly D Ly ® i3, L3, Lug ® Ly, Lz ® L.

(b) Write A and B as a direct sum of cyclic groups of prime power order. By the Funda-
mental Theorem, it suffices to show that the cyclic summands for A and B are the same up to
order. In other words that we have the same number of cyclic summands of order ¢ for any prime
power ¢. Suppose A has a(q) cyclic summands of order ¢ and that B has b(q) such summands.
As A® A and B & B are isomorphic, they have the same number of cyclic summands of order
g. That is 2a(q) = 2b(q). If follows that a(q) = b(q).

Exercise 4. First suppose o(x1),...,0(x,) are pairwise coprime. Consider the element z =
z1 + -+ x, and let m be the order of this element in G. As

0=m(x1 4+ -+ 2,) =may + - + may,,

it follows from Proposition 2.2 that mxz; = --- = ma,, = 0. Therefore o(x;)|m for i =1,...,n.
As o(z1),...,0(xy,) are coprime, it follows then that their product o(z1) - - - o(z,) = |G| divides
m = o(x). By Lagrange o(z) divides |G| and thus o(z) = |G| which implies that G = Zz.

Now suppose that some two of the orders have a common prime divisor. Let m be the least
common multiple of o(x1),0(x2),...,0(zy), then m < o(z1)---o(xy,) = |G|. As o(x;)|m for all
i=1,...,n it follows that mx, = mxe = ... = mz, = 0. Hence for any a1z1 + --- + a,x, in
Zaxy + -+ ZLx,, we have

m(aix; + -+ + axy) = 0.

It follow that o(y) < m < |G| for all y € Zxy + - - - + Zx,, and so the group has no element of
order |G|. Thus it can’t be cyclic.

Exercise 5. We argue by contradiction and suppose that F™* is not cyclic. Using the Fun-
damental Theorem for finite abelian groups we know that F* is an internal direct product,

= (1) - (),

with cyclic factors of prime power order. By Exercise 4, some two of these must have orders that
are power of the same prime. Without loss of generality suppose o(z1) = p" and o(x3) = p°.
Let y; = x{ﬂ and yo = xgkl. Then o(y1) = o(y2) = p and we get at least p? elements of order
p, namely

Yiys, 0<rs<p-—1.

But then we have got at least p? roots for the polynomial 2P —1 in F'[x] and this is absurd as there
are at most p roots. (If say a1, ...,a, are any p of the roots, then ¥ — 1= (z —a1)--- (z — ap).
But then a? =1 iff (a —a1)---(a —ap) =0 iff a is one of ay, ..., ap).



