
Group Theory, 2016

Exercise sheet 5 (solutions)

Exercise 1. (a) Notice first that the scalar multiplication is well defined as if [m] = [n] then
m = n+rp for some r ∈ Z and thus mg = (n+rp)g = ng +r(pg) = ng +r ·0 = ng for all g ∈ G.

Let us then go through the vector space axioms. Firstly (G, +) is an abelian group by as-
sumptions. Turning to the scalar multiplication, we have [1] · x = 1x = x (where the latter
identity follows from the definition of nx). Then

[r] · ([s] · x) = [r] · sx = r(sx) = (rs)x = [rs] · x,

([r] + [x]) · x = [r + s] · x = (r + s)x = rx + sx = [r] · x + [s] · x

and
[r] · (x + y) = r(x + y) = rx + ry = [r] · x + [r] · y.

(b) Suppose first that H is a subgroup of the group G. Then 0 ∈ H and H is closed under
addition and taking additive inversers. It follows then as well that G is closed under scalar
multiplication as [m] · x = mx ∈ H. Thus H is a subspace of G.

Conversely, suppose that H is a subspace of G. Then 0 ∈ H and H is closed under addi-
tion. As −x = [−1] · x, we also have that H is closed under taking additive inverses. Thus H is
a subgroup of the group G.

Exercise 2.(a) Consider any finite number r of rationals. As these are finitely many we can rep-
resent these as fractions having the same denominator n ≥ 1. Suppose these are m1/n, . . . ,mr/n.
Notice that

Z(m1/n) + · · ·+ Z(mr/n) ≤ Z(1/n) 6= Q
as for example 1/(n + 1) is not in Z(1/n) or 1/p 6∈ Z(1/n), where p is any prime that doesn’t
divide n. Hence Q can’t be finitely generated.

(b) Let r/s and n/m be two rationals where r, n are integers and n, m positive integers. If
one of these is zero, say r/s then 1 · (r/s) + 0 · (n/m) = 0. If neither of these are zero then
sn(r/s)−mr(n/m) = 0.

Exercise 3. (a) We have 144 = 24 · 32. The possible partitions of 24 and 32 into factors
in increasing order are:

(16), (2, 8), (4, 4), (2, 2, 4), (2, 2, 2, 2)

and
(9), (3, 3).

There are thus 5 · 2 = 10 abelian groups of order 144,

Z16 ⊕ Z9, Z2 ⊕ Z8 ⊕ Z9, Z4 ⊕ Z4 ⊕ Z9, Z2 ⊕ Z2 ⊕ Z4 ⊕ Z9,
Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z9, Z16 ⊕ Z3 ⊕ Z3, Z2 ⊕ Z8 ⊕ Z3 ⊕ Z3,
Z4 ⊕ Z4 ⊕ Z3 ⊕ Z3, Z2 ⊕ Z2 ⊕ Z4 ⊕ Z3 ⊕ Z3,
Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3.



The abelian groups of order up to 15 are {0}, Z2, Z3, Z4, Z2 ⊕ Z2, Z5, Z2 ⊕ Z3, Z7, Z8,
Z2⊕Z4, Z2⊕Z2⊕Z2, Z9, Z3⊕Z3, Z2⊕Z5, Z11, Z4⊕Z3, Z2⊕Z2⊕Z3, Z13, Z2⊕Z7, Z3⊕Z5.

(b) Write A and B as a direct sum of cyclic groups of prime power order. By the Funda-
mental Theorem, it suffices to show that the cyclic summands for A and B are the same up to
order. In other words that we have the same number of cyclic summands of order q for any prime
power q. Suppose A has a(q) cyclic summands of order q and that B has b(q) such summands.
As A⊕ A and B ⊕ B are isomorphic, they have the same number of cyclic summands of order
q. That is 2a(q) = 2b(q). If follows that a(q) = b(q).

Exercise 4. First suppose o(x1), . . . , o(xn) are pairwise coprime. Consider the element x =
x1 + · · ·+ xn and let m be the order of this element in G. As

0 = m(x1 + · · ·+ xn) = mx1 + · · ·+ mxn,

it follows from Proposition 2.2 that mx1 = · · · = mxn = 0. Therefore o(xi)|m for i = 1, . . . , n.
As o(x1), . . . , o(xn) are coprime, it follows then that their product o(x1) · · · o(xn) = |G| divides
m = o(x). By Lagrange o(x) divides |G| and thus o(x) = |G| which implies that G = Zx.

Now suppose that some two of the orders have a common prime divisor. Let m be the least
common multiple of o(x1), o(x2), . . . , o(xn), then m < o(x1) · · · o(xn) = |G|. As o(xi)|m for all
i = 1, . . . , n it follows that mx1 = mx2 = . . . = mxn = 0. Hence for any a1x1 + · · · + anxn in
Zx1 + · · ·+ Zxn, we have

m(a1x1 + · · ·+ axn) = 0.

It follow that o(y) ≤ m < |G| for all y ∈ Zx1 + · · · + Zxn and so the group has no element of
order |G|. Thus it can’t be cyclic.

Exercise 5. We argue by contradiction and suppose that F ∗ is not cyclic. Using the Fun-
damental Theorem for finite abelian groups we know that F ∗ is an internal direct product,

F ∗ = 〈x1〉 · · · 〈xn〉,

with cyclic factors of prime power order. By Exercise 4, some two of these must have orders that
are power of the same prime. Without loss of generality suppose o(x1) = pr and o(x2) = ps.
Let y1 = xpr−1

1 and y2 = xps−1

2 . Then o(y1) = o(y2) = p and we get at least p2 elements of order
p, namely

yr
1y

s
2, 0 ≤ r, s ≤ p− 1.

But then we have got at least p2 roots for the polynomial xp−1 in F [x] and this is absurd as there
are at most p roots. (If say a1, . . . , ap are any p of the roots, then xp − 1 = (x− a1) · · · (x− ap).
But then ap = 1 iff (a− a1) · · · (a− ap) = 0 iff a is one of a1, . . . , ap).


