
Group Theory, 2016

Exercise sheet 4 (solutions)

Exercise 1. Suppose first that HK is a subgroup of G. Then as HK is invariant under
taking inverses (and every element in HK is an inverse a = (a−1)−1), we see that

HK = (HK)−1 = K−1H−1 = KH.

Conversely, suppose HK = KH. We check that the subgroup criteria hold. Firstly, 1 = 1 · 1 ∈
HK. Also if a = hk ∈ HK with h ∈ H and k ∈ K, then

a−1 = k−1h−1 ∈ KH = HK.

Finally if a = h1k1 and b = h2k2 are in HK with h1, h2 ∈ H and k1, k2 ∈ K. Then

ab = h1k1h2k2 ∈ HKHK = HHKK ⊆ HK.

Thus all the subgroup criteria hold and HK ≤ G.

Exercise 2. Consider the map

φ : H1 × · · · ×Hn → G, (x1, . . . , xn) 7→ x1 · · ·xn.

By Proposition 2.2 from lectures, we know that this map is bijective. Using part (b) of Propo-
sition 2.2, we also have

φ((x1, . . . , xn) · (y1, . . . , yn)) = φ(x1y1, . . . , xnyn)
= (x1y1) · · · (xnyn)
= x1 · · ·xny1 · yn

= φ(x1, . . . , xn) · φ(y1, . . . , yn).

Hence φ is a homomorphism and thus an isomorphism.

Exercise 3.(a) As there are at most |Hi| ways of picking xi in x1 · · ·xn ∈ H1 · · ·Hn, there
is a limit of |H1| · · · |Hn| of elements in H1 · · ·Hn. Thus |H1 · · ·Hn| ≤ |H1| · · · |Hn|. For the
reverse inequality notice that, by Lagrange, each |Hi| divides |H1 · · ·Hn| as Hi ≤ H1 · · ·Hn. As
the numbers |H1|, . . . , |Hn| are pairwise coprime it follows that their product divides |H1 · · ·Hn|.
But then it follows in particular that |H1| · · · |Hn| ≤ |H1 · · ·Hn|.

(b) We need to show that Hi ∩
∏

j 6=iHj is trivial. We do this by showing that its order is
1. By Lagrange’s Theorem this order must divide both |Hi| and |

∏
j 6=iHj |. By part (a) we

know that latter number is equal to
∏

j 6=i |Hj | that is coprime to |Hi|. As |Hi∩
∏

j 6=iHj | divides
both, it follows that it must be 1.

Exercise 4. First consider the map θ : G → G, g 7→ g · φ(g)−1. We first show that θ is
injective. If θ(a) = θ(b), then aφ(a)−1 = bφ(b)−1 and thus b−1a = φ(b)−1φ(a) = φ(b−1a). But 1



is the only element fixed by φ and thus b−1a = 1, i.e. a = b. This shows that θ is injective and
as G is finite it follows that θ is bijective.

Now let x ∈ G. As θ is bijective we have that x = θ(a) = aφ(a)−1 for some a ∈ G. Then

φ(x) = φ(a · φ(a)−1) = φ(a) · φ2(a)−1 = φ(a)a−1 = x−1.

As φ is a homomorphism, we have ab = (b−1a−1)−1 = φ(b−1a−1) = φ(b−1)φ(a−1) = ba for all
a, b ∈ G. Hence G is abelian.

Exercise 5. Consider some Hi, i = 1, . . . , n. Now Hi is not abelian so in particular there
is some a ∈ Hi that is not contained in Z(G). So there must be some j = 1, . . . ,m such that a
does not commute with all the elements of Kj . Let b ∈ Kj such that a and b do not commute.
Then the element 1 6= a−1b−1ab ∈ Hi ∩Kj . Then Hi ∩Kj is a normal subgroup of G that is a
subgroup of both Hi and Kj . In particular Hi ∩Kj is a non-trivial normal subgroup of both Hi

and Kj and as Hi,Kj are simple, it follows that Hi = Hi ∩Kj = Kj . This argument shows that

{H1, . . . ,Hn} ⊆ {K1, . . . ,Km}.

By symmetry we have that a similar argument shows that

{K1, . . . ,Km} ⊆ {H1, . . . ,Hn}.

Hence n = m and we have the same set of subgroups.

This result does not hold without the extra assumption that the simple factors are non-abelian.
Take for example the group G = Z2 ⊕ Z2. Here G can be written as direct sum of two abelian
sugroups of order 2 in three different ways:

G = Z(1, 0) + Z(0, 1)
= Z(1, 0) + Z(1, 1)
= Z(0, 1) + Z(1, 1).


