
Group Theory, 2016

Exercise sheet 3 (solutions)

Exercise 1. (a) Consider the map φ : G → G, a 7→ an. Let us first see that this map is
a homomorphism. This follows from

φ(ab) = (ab)n = anbn = φ(a)φ(b).

Notice that we have used here the fact that G is abelian. By the first Isomorphism Theorem,
we have that imφ = Gn and kerφ = G[n] are subgroups of G, and that G/kerφ ∼= imφ. This
gives us G/G[n] ∼= Gn as required.

(b) If |r| > 1 then |r|n > 1 and if |r| < 1 then |r|n < 1. It follows that the only rationals
in Q∗ of finite order are 1,−1 of order 1 and 2 respectively. We consider two scenarios. If n
is even then G[n] = {−1, 1} and thus Gn ∼= G/{−1, 1}. If on the other hand n is odd then
G[n] = {1} and Gn ∼= G/{1} ∼= G. There are thus only two groups up to isomorphism

G ∼= G1 ∼= G3 ∼= ...

and
G/{−1, 1} ∼= G2 ∼= G4 ∼= .....

Notice that the two groups are not isomorphic as G has an element, namely −1, of order 2
whereas G2 has no element of order 2. (If φ : G → G2 was an isomorphism then φ(−1) would
be of order 2 in G2).

Notice that (C∗)n = C∗ and thus all powers of C∗ are the same group. (If u = resi then
for v = n
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i we have vn = u).

Exercise 2. (a) Let n = o(a). We have

(aN)n = anN = 1N = N

hence the order of aN divides n = o(a).

(b) By part (a), we have that o(aN) divides o(n). By Lagrange’s Theorem, o(aN) = |〈aN〉|
divides G/N . As G/N and o(n) are coprime this implies that o(aN) = 1. That is aN = N ⇔
a ∈ N .

Exercise 3. No they are not isomorphic. To see this we argue by contradiction and we suppose
that there is an isomorphism φ : Q→ Q+. Let a ∈ Q be such that φ(a) = 2. Then

2 = φ(a/2 + a/2) = φ(a/2)2

and 2 has a rational square root φ(a/2). This is however absurd. Hence the groups can’t be
isomorphic.

Exercise 4. (a) We prove this by induction on |G|. The induction basis |G| = 1 obviously
holds (as there is no prime that divides |G|!). Now suppose that |G| ≥ 2 and that the result



holds for all abelian groups of smaller order. Let a be a non-trivial element of G and let H = 〈a〉.
Now |G| = |H| · |G/H| and thus p divides either r = |H| or s = |G/H|. In the first case we
have clearly an element of order p in G, namely ar/p. Now consider the case when p divides
s = |G/H|. As s < n, we have by induction hypothesis an element [b] ∈ G/H of order p. Let m
be the order of b in G. Then [b]m = [bm] = [1] and thus the order of [b], namely p, divides m.
Now clearly the element bm/p is of order p in G. This finishes the proof of the induction step.
2.

(b) We prove this by induction on |G|. The induction basis |G| = 1 is clear since G itself
is a subgroup of order 1, the only m that divides |G|. Now suppose that |G| ≥ 2 and that the
result holds for all abelian groups of smaller order. Let m be a positive integer that divides |G|.
If m = 1 we know that H = {1} is a subgroup with m elements. Now suppose that m ≥ 2 and let
m = rp for some prime p. By part (a) there is a subgroup H with p elments. Then |G/H| < |G|
and r divides |G/H|. By the induction hypothesis and the Correspondence Theorem there is a
subgroup of G/H with r elements and this subgroup is of the form K/H where H ≤ K ≤ G.
Then |K| = |H| · |K/H| = p · r = m and we have found a subgroup K with m elements. This
finishes the proof of the induction step. 2.

Exercise 5. (a) We know that the set of all bijections from G to itself is a group. We show
that Aut (G) is a group by showing that it is subgroup of the former. We need id : G → G to
be an automorphism and Aut(G) to be closed under composition and taking inverses. But this
is easily checked and was done in lectures.

(b) Notice that φa is bijective with inverse φa−1 . Also

φa(xy) = axya−1 = axa−1 · aya−1 = φa(x) · φa(y)

that shows that φa is an automorphism. We next show that Inn(G) is a subgroup. To see this
first notice that we have that id = φe ∈ Inn(G). Then as

φa ◦ φb(x) = φa(bxb−1) = abxb−1a−1 = (ab)x(ab)−1 = φab(x)

and as φ−1
a = φa−1 we have that the required closure properties hold. So Inn(G) is a subgroup

of Aut(G). Finally to show that Inn (G) is a normal subgroup of Aut (G), notice that for any
ψ ∈ Aut (G) and any a ∈ G we have

ψ ◦ φa ◦ ψ−1(x) = ψ(aψ−1(x)a−1) = ψ(a)xψ(a)−1 = φb(x)

where b = ψ(a).

(c) We have
Ψ(a · b) = φab = φa ◦ φb = Ψ(a) ◦Ψ(b).

(d) Clearly Im(Ψ) = Inn(G). Then a ∈ Ker(Ψ) iff φa = id iff φa(x) = x for all x ∈ G. But this
holds iff axa−1 = x for all x ∈ G that is to say iff ax = xa for all x ∈ G. So a ∈ Ker(Ψ) iff
a ∈ Z(G). The 1st isomorphism theorem tells us that

Inn(G) = Im(Ψ) ∼= G/Ker(Ψ) = G/Z(G).


