
Group Theory, 2016

Exercise sheet 2 (solutions)

Exercise 1. Let h ∈ H and k ∈ K and consider the element

h−1k−1hk ∈ G.

Firstly this element is a product (h−1k−1h)k of a conjugate of k−1 and k and is thus in K.
Secondly this element is also a product h−1(k−1hk) of h−1 and a conjugate of h and is therefore
in H. So

h−1k−1hk ∈ H ∩K = {1}

and h−1k−1hk = 1⇔ hk = kh.

Exercise 2. (a) To show that Z(G) is a subgroup of G, we apply the usual subgroup criteria.
We need to show that the identity element 1 is in Z(G) and that Z(G) is closed under multipli-
cation and taking inverses. Clearly 1 commutes with everything. Now let a, b ∈ Z(G) and let
g ∈ G. Then using the fact that a, b commute with everything, we have abg = agb = gab, that
shows that ab ∈ Z(G). Then taking inverses on both sides in ag−1 = g−1a, we get ga−1 = a−1g
that shows that a−1 ∈ Z(G). As aZ(G) = Z(G)a for all a ∈ G, we also know that Z(G) is a
normal subgroup.

(b) Suppose that G/Z(G) = 〈aZ(G)〉. Then the cosets of Z(G) in G are

arZ(G) r ∈ Z.

So every element in G is of the form aru for some r ∈ Z and u ∈ Z(G). Suppose that aru and
asv are any two elements in G, where u, v ∈ Z(G) and r, s ∈ Z. Then

aru · asv = arasvu = asarvu = asvȧru

where we have used the fact that u, v commute with everything in G. Hence G is abelian. 2

Exercise 3. Let H be a subgroup of G. If H is the trivial subgroup then H = 〈1〉 is clearly
cyclic. Suppose now that H is not trivial and suppose am ∈ H for some m 6= 0. As H is a
subgroup we then also have a−m ∈ H and thus without loss of generality, we can assume that
m > 0. Let n be the smallest positive integer such that an ∈ H. As H is a subgroup, and thus
closed with respect to taking products and inverses, it is clear that 〈an〉 ≤ H. It now suffices
to show that H ≤ 〈an〉. To see this, let am be an arbitrary element in H. Using division with
remainer, we can write m = sn + r for some integer 0 ≤ r < n. As H is a subgroup and
an, am ∈ H we see that ar = am · (an)−s ∈ H. By the minimality of n we must have r = 0 and
thus am = (an)s ∈ 〈an〉.

Exercise 4. Notice first that

a∗b∗(ab) =
∑

fh=ab

a∗(f)b∗(h) = a∗(a)b∗(b) = 1

whereas for g 6= ab,
a∗b∗(g) =

∑
fh=g

a∗(f)b∗(h) = 0



as for each summand either f 6= a, that gives a∗(f) = 0, or h 6= b, that gives b∗(h) = 0. It
follows that a∗b∗ = (ab)∗.

In particular a∗(a−1)∗ = 1∗ = ε and a∗ is a unit. Also

φ(ab) = (ab)∗ = a∗b∗ = φ(a)φ(b)

that shows that φ is a homomorphism. It remains to see that φ is injective. However if b∗ = a∗

then b∗(a) = a∗(a) = 1 that can only happen if b = a. .

Notice that if α ∈ ZG and α(a) = na, then

α =
∑
a∈G

naa
∗.

Thus R = ZG =
∑

a∈G Za∗ and thus R is generated by G (i.e. the copy of G sitting inside R∗)
as a ring.

Exercise 5. (a) Clearly id ∈ N and as each element is its own inverse, N is closed under
taking inverses. Finally, inspection shows that if we multiply two of the elements together, then
the result is still in N . (If N = {e, a, b, c} then ab = c). To see that N is normal notice that
α(i j)(r s)α−1 swaps α(i) and α(j) as well as α(r) and α(s). Thus

α(i j)(r s)α−1 = (α(i)α(j))(α(r)α(s))

that is in N . An alternative way (tedious though)of showing that N is normal in S4, is to show
that the left cosest and the right cosets are the same. In part (b) the left cosets are determined
and one can similarly determine the right cosets.

(b) The cosets are
idN = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)},
(1 2)N = {(1 2), (3 4), (1 3 2 4), (1 4 2 3)},
(1 3)N = {1 3), (1 2 3 4), (2 4), (1 4 3 2)},
(2 3)N = {(2 3), (1 3 4 2), (1 2 4 3), (1 4)},
((1 2 3)N = {(1 2 3), (1 3 4), (2 4 3), (1 4 2)},
(1 3 2)N = {(1 3 2), (2 3 4), (1 2 4), (1 4 3)}.

Thus S4/N has 6 elements.

(c) We have that S4/N = {uN : u ∈ S3} and uN · vN = uvN . Thus this quotient group
is isomorphic to S3.


