
Group Theory, 2016

Exercise sheet 1 (solutions)

Exercise 1. Suppose we have some group multiplication on G. Let x ∈ G. As the map
u 7→ xu is bijective (with inverse u 7→ x−1u), we know that each row of the multiplication table
must have three different elements. Similarly as the map u 7→ ux is bijective (with inverse
u 7→ ux−1), we know that each column of the multiplication table must have three different
elements. We will make use of this ‘Sudoko property’. As e is the identity element we get the
partial multiplication table

e a b

e e a b
a a
b b

Now there is only one possible ‘sudoku completion’ of this table. We must have that a · b
is different from a · e = a as well as e · b = b and this forces a · b = e. Now there is only one slot
left in the 2nd row and thus a · a = b. Finally there is only one slot left in both column 2 and 3
and we must have b · a = e and b · b = a. So we have shown that there is a unique multiplication
table. Notice that there is a group with three elements (namely (Z3,+)) and thus there is a
group multiplication on {e, a, b} and we have seen that it is unique. 2.

Exercise 2. The roots of the polynomial are x1 = −1/2 + (
√

3/2)i, x2 = −1/2 − (
√

3/2)i
and x3 = 1. As we saw in lectures, any automorphism φ : C→ C must fix 1 and thus the only
candiate for the Galois group apart from id is the permutation that swaps x1 and x2. In fact
there is an automorphism that does this namely z 7→ z̄. So the Galois group is G = {id, (1 2)}.
2.

Exercise 3. Let r be the 90 degrees rotation counterclockwise around the centre. The permu-
tations (1 2 3 4), (1 3)(2 4) and (1 4 3 2) correspond to r, r2 and r3. Apart from these and id
there are also reflections in the four symmetry axes of the square namely

(1 4)(2 3), (1 2)(3 4), (1 3), (2 4)

One can convince oneself that these are the only 8 permutations in the symmetry group of
the square. (One way of arguing is to consider what an isometry does with {x1, x3}. The re-
sulting two points must have the same distance and this can only happen if the set {x1, x3}
is fixed or mapped to {x2, x4}. So any isometry either fixes the sets {x1, x3} and {x2, x4} or
swaps them. Both these cases lead to further division as the there are two possibilites for the
value of each of x1 and x2. Hence for each case we have 4 possibilites and thus at most 8 in total).

Exercise 4. It remains to show that e is also a left identity and that every right inverse is
also a left inverse.

Step 1. Every right inverse is also a left inverse.

To see this let b a right inverse of a. Let also c be a right inverse of ba. Now using the
fact that b is a right inverse of a and e is a right identity, we have

baba = b(ab)a = (be)a = ba.



Then using the fact that c is a right inverse of ba and again that e is a right identity we see from
this that

e = bac = babac = bae = ba.

Hence b is also a left inverse of a.

Step 2. The right identity e is also a left identity.

To see this let a ∈ G and let b be a right invese of a. By Step 1 we know that b is also a
left inverse. Then, using the fact that e is a right identity, we have

ea = (ab)a = a(ba) = ae = a.

Hence e is also a left identity. 2

Exercise 5. First we show that (ZG,+) is an abelian group. As the addition in Z is both
commutative and assocative the same is true of ZG. Let 0̄ ∈ ZG be the map that maps every
group element in G to 0. Clearly 0̄ is an additive identity in ZG. If φ ∈ ZG and φ̄ ∈ ZG is the
map given by φ̄(g) = −φ(g) then [φ + φ̄](g) = 0 and thus φ + φ̄ = 0̄ that shows that φ̄ is an
additive inverse of φ.

Next we show that ε is a muliplicative identity and that the multiplication in R is associa-
tive. Let φ ∈ ZG. Then

[φ · ε](g) =
∑

f,h∈G

fh=g

φ(f)ε(h) = φ(g)ε(1G) = φ(g)

that shows that φ ·ε = φ. Similarly ε ·φ = φ and we have shown that ε is a multiplicatve identity.
For the associative law let α, β, γ ∈ ZG let φ = α · β and ψ = β · γ. Then, using the fact that Z
is a ring, we have

[(α · β) · γ](g) = [φ · γ](g)

=
∑

f,c∈G

fc=g

φ(f)γ(c)

=
∑

a,b,c∈G

abc=g

α(a)β(b)γ(c)

=
∑

a,h∈G

ah=g

α(a)ψ(h)

= [α · ψ](g)
= [α · (β · γ)](g).

It remains to see that the distributive laws hold. We only show that (φ+ ψ)γ = φγ + ψγ. The
other distributive law is proved similarly. We use the fact that Z is a ring. We have

[(φ+ ψ)γ](g) =
∑

f,h∈G

fh=g

[φ+ ψ](f)γ(h)

=
∑

f,h∈G

fh=g

(φ(f)γ(h) + ψ(f)γ(h))

=
∑

f,h∈G

fh=g

φ(f) · γ(h) +
∑

f,h∈G

fh=g

ψ(f) · γ(h)

= [φ · γ](g) + [ψ · γ](g).


