Group Theory, 2016 Exercise sheet 6

Exercise 1. Let G be a finite group. For $a \in G$ we refer to the subset $a^G := \{a^g : g \in G\}$ as the *conjugacy class* containing $a \in G$. Define a binary relation on G as follows:

 $x \sim y$ iff $y = x^g$ for some $g \in G$.

- (a) Show that \sim is an equivalence relation on G and deduce that G is the union of pairwise disjoint conjugacy classes.
- (b) Show that if $N \leq G$, then N is the union of some conjugacy classes in G.

Exercise 2. Let G be an abelian group. Show that G is simple if and only if G is cyclic of prime order. (Notice that we are not assuming that G is finite to start with).

Exercise 3. Let $x \in A_n$. Notice that if $a \in S_n$ is odd then $x^{S_n} = x^{A_n} \cup (x^a)^{A_n}$.

- (a) Suppose x commutes with some odd element $a \in S_n$. Show that $x^{S_n} = x^{A_n}$.
- (b) Suppose that x commutes with none of the odd elements of S_n . Show that the conjugacy classes x^{A_n} and $(x^{(12)})^{A_n}$ are disjoint.

Exercise 4. Let G be a finite abelian group of order $p_1 \cdots p_n$ where p_1, \ldots, p_n are the prime factors in some order. Show that there exists a composition series

$$H_0 = \{1\} \le H_1 \le \dots \le H_n = G$$

where $H_{i+1}/H_i \cong \mathbb{Z}_{p_{i+1}}$ for $0 \le i \le n-1$. (Hint. Use Exercise 4(b) on Sheet 3).

Exercise 5. Consider the group S_4 .

- (a) Find all the normal subgroups of S_4 .
- (b) Write down a composition series for S_4 and deduce that S_4 is solvable.

Course webpage: http://people.bath.ac.uk/gt223/MA30237.html