UV-Vis spectroscopy

Basic theory
Importance of UV-Vis in catalysis

Number of publications containing *in situ*, *catalysis*, and respective method
Source: ISI Web of Knowledge (Sept. 2008)
The electromagnetic spectrum

source: Andor.com
Typically, the wavelength (nm) is used
the distance over which the wave's shape repeats

\[x \text{ nm} = 10'000'000 / x \text{ cm}^{-1} \]
\[y \text{ cm}^{-1} = 10'000'000 / y \text{ nm} \]
Is UV-vis spectroscopy popular?

pros
- economic
- non-invasive (fiber optics allowed)
- versatile (e.g. solid, liquid, gas)
- extremely sensitive (concentration)

cons
- Broad signals (resolution)
- Time resolution (S/N)
What is UV-vis spectroscopy?

- Use of ultraviolet and visible radiation
- Electron excitation to excited electronic level (electronic transitions)
- Identifies functional groups (-(C=C)\textsubscript{n}, -C=O, -C=N, etc.)
- Access to molecular structure and oxidation state
Electronic transitions

Organic molecule

Empty states

Lone pairs

Occupied states

$E = h\nu$

$\lambda = c/\nu$

High e^- jump \rightarrow high E

High E \rightarrow high ν

High ν \rightarrow low λ
Electronic transitions

\[\sigma \rightarrow \sigma^* \]
- high \(E \), low \(\lambda \) (<200 nm)

\[n \rightarrow \sigma^* \]
- 150-250 nm, weak

\[n \rightarrow \pi^* \]
- 200-700 nm, weak

\[\pi \rightarrow \pi^* \]
- 200-700 nm, intense

Condition to absorb light (200-800 nm):
\[\pi \] and/or \(n \) orbitals

CHROMOPHORE
The UV spectrum

λ\text{max} = 217 nm

no visible light absorption

Q: How many signals do you expect from CH₃-CH=O?
The UV spectrum

$n \rightarrow \pi^*$ $\pi \rightarrow \pi^*$

σ^* π^* $n (O)$ π

absorbance

wavelength (nm)
	no visible light absorption
The UV spectrum

- **Conjugation effect**

 delocalisation

 λ_{max} λ ν E

 171 217 258

Conjugation

- C_2H_4
- C_4H_6
- C_6H_8
The UV spectrum

- **Conjugation effect:** β-carotene

![Chemical structure of β-carotene](image)

![UV spectrum graph](image)

- **White light**
The UV spectrum

- Complementary colours

If a colour is absorbed by white light, what the eye detects by mixing all other wavelengths is its complementary colour.
Inorganic compounds

- UV-vis spectra of transition metal complexes originate from

 - Electronic $d-d$ transitions

 ![Diagram showing electronic transitions in transition metal complexes](image)

 - Degenerate d-orbitals
 - Transition metal (TM) + ligand
 - e_g to t_{2g} transition
 - Energy difference Δ
 - d_{σ} and d_{π} orbitals

- ...
Inorganic compounds

- **Crystal field theory (CFT) - electrostatic model**
 - same electronic structure of central ion as in isolated ion
 - perturbation only by negative charges of ligand

\[
\Delta = \text{crystal field splitting}
\]

- Atom in spherical field
- Gaseous atom
- \(d_{xy}, d_{xz}, d_{yz}\)
- \(d_{x^2-y^2}, d_{z^2}\)
- \(d_{xy}, d_{xz}, d_{yz}\)
- \(d_{x^2-y^2}, d_{z^2}\)
- \(d_{xy}\)
- \(d_{xy}, d_{xz}, d_{yz}\)
- \(d_{y^2}, d_{xz}\)
- \(d_{yz}\)
- \(d_{x^2-y^2}, d_{z^2}\)
- \(\Delta\)
Inorganic compounds

- **d-d transitions**: \(\text{Cu(H}_2\text{O)}_6^{2+} \)

Yellow light is absorbed and the Cu\(^{2+}\) solution is coloured in blue (ca. 800 nm)

The greater \(\Delta \), the greater the \(E \) needed to promote the e\(^-\), and the shorter \(\lambda \)

\(\Delta \) depends on the nature of ligand, \(\Delta_{\text{NH}_3} > \Delta_{\text{H}_2\text{O}} \)
Inorganic compounds

- **TM(H₂O)₆ⁿ⁺**

<table>
<thead>
<tr>
<th>elec. config. TM</th>
<th>gas complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d⁴</td>
<td>Cr(H₂O)₆³⁺</td>
</tr>
<tr>
<td>3d⁵</td>
<td>Mn(H₂O)₆²⁺</td>
</tr>
<tr>
<td>3d⁶</td>
<td>V⁴⁺</td>
</tr>
<tr>
<td>3d⁷</td>
<td>Cu(H₂O)₆²⁺</td>
</tr>
<tr>
<td>3d⁸</td>
<td>Ti(H₂O)₆³⁺</td>
</tr>
<tr>
<td>3d⁹</td>
<td>Ti(H₂O)₆³⁺</td>
</tr>
</tbody>
</table>

d-d transitions: $\epsilon_{\text{max}} = 1 - 100 \text{ Lmol}^{-1}\text{cm}^{-1}$, weak
Inorganic compounds

d-d transitions: factors governing magnitude of Δ

- **Oxidation state of metal ion**
 - Δ increases with increasing ionic charge on metal ion

- **Nature of metal ion**
 - Δ increases in the order 3d $<$ 4d $<$ 5d

- **Number and geometry of ligands**
 - Δ for tetrahedral complexes is larger than for octahedral ones

- **Nature of ligands**
 - spectrochemical series

 $I^- < Br^- < S^{2-} < SCN^- < Cl^- < NO_3^- < N_3^- < F^- < OH^- < C_2O_4^{2-} < H_2O < NCS^- < CH_3CN < py < NH_3 < en < bipy < phen < NO_2^- < PPh_3 < CN^- < CO$
Inorganic compounds

- **d-d transitions**: selection rules

- **Spin rule**: \(\Delta S = 0 \)
 - On promotion, no change of spin

- **Laporte's rule**: \(\Delta l = \pm 1 \)
 - \(d-d \) transition of complexes with center of symmetry are forbidden

- Because of selection rules, colours are faint (\(\varepsilon = 20 \text{ Lmol}^{-1}\text{cm}^{-1} \)).
Inorganic compounds

- UV-vis spectra of transition metal complexes originate from
 - Electronic d-d transitions

 - Charge transfer
Inorganic compounds

- **Charge transfer complex**
 - no selection rules → intense colours ($\varepsilon=50\,000 \text{ Lmol}^{-1}\text{cm}^{-1}$, strong)
 - Association of 2 or more molecules in which a fraction of electronic charge is transferred between the molecular entities. The resulting electrostatic attraction provides a stabilizing force for the molecular complex

- **Electron donor**: source molecule
- **Electron acceptor**: receiving species

- CT much weaker than covalent forces

- **Ligand field theory** (LFT), based on MO
 - Metal-to-ligand transfer (MLCT)
 - Ligand-to-metal transfer (LMCT)
Inorganic compounds

- **Ligand field theory (LFT)**
 - involves AO of metal and ligand, therefore MO
 - what CFT indicates as possible electronic transitions ($t_{2g} \rightarrow e_g$) are now: $\pi_d \rightarrow \sigma_{dz^2}^*$ or $\pi_d \rightarrow \sigma_{dx^2-y^2}^*$

$\Delta = \text{crystal field splitting}$
Inorganic compounds

- **Ligand field theory (LFT)**
 - LMCT
 - ligand with high energy lone pair
 - or, metal with low lying empty orbitals
 - high oxidation state (laso d\(^0\))
 - M-L strengthened
 - MLCT
 - ligands with low lying \(\pi^*\) orbitals (CO, CN\(^-\), SCN\(^-\))
 - low oxidation state (high energy d orbitals)
 - M-L strengthened, \(\pi\) bond of L weakened

back donation!!!

CO adsorption on precious metals
UV-Vis spectroscopy

Instrumentation
Examples for catalysis

Dr. Davide Ferri
Empa, Lab. for Solid State Chemistry and Catalysis
☎ 044 823 46 09
✉ davide.ferri@empa.ch
Instrumentation

- **Dispersive instruments**

 Measurement geometry:
 - transmission
 - diffuse reflectance

 ![Diagram of a double beam spectrometer](image1.png)

 ![Diagram of a single beam spectrometer](image2.png)
In situ instrumentation

- Diffuse reflectance (DRUV)
 - 20% of light is collected
 - gas flows, pressure, vacuum
 - long meas. time
 - spectral collection (λ after λ)
 → different parts of spectrum do not represent same reaction time!!!

- Fiber optics
 - time resolution (CCD camera)
 [spectra collected at once]
 - coupling to reactors
 - no NIR (no optical fiber > 1100 nm)
 - long term reproducibility (single beam)
 - Limited high temperature (ca. 600°C)

In situ instrumentation

- Integration sphere

White coated integration sphere (MgO, BaSO$_4$, Spectralon®)

- > 95% light is collected
- high reflectivity
- wide range of λ
- only homemade cells

For example, for cat. synthesis

Examples

- **Determination of oxidation state: 0.1 wt% Cr⁺⁺/Al₂O₃**

![Table showing coordination geometry and oxidation state of various compounds with their absorption bands and colors.]

- Cr⁶⁺ (250, 370 nm)
- Reduction in CO atmosphere

Examples

- Determination of oxidation state: 0.1 wt% Crn+/Al\textsubscript{2}O\textsubscript{3}

Weckhuysen et al., Catal. Today \textbf{49} (1999) 441
Examples

- Determination of oxidation state: 0.2 wt% Crn+/SiO\textsubscript{2}

* decomposition into pure components (including noise)

Examples

- Determination of oxidation state: 0.5 wt% Crn+/SiO\textsubscript{2}

DRUV, 350°C, 2% isobutane-N\textsubscript{2}

pure components

Examples

- **Determination of oxidation state: 4 wt% Cr\(^{n+}/\text{Al}_2\text{O}_3**

K-M intensity

- **Hydrated** calcined 550°C reduced 550°C
- **C\(_3\)H\(_8\)**, 21 sec
- **C\(_3\)H\(_8\)**, 6 min

K-M intensity

- **Cr\(^{6+}\)**
- **Cr\(^{3+}\)**

Wavenumber (cm\(^{-1}\))

- **Calc. 850°C, O\(_2\)**
- **He**
- **C\(_3\)H\(_8\)**, 21 sec
- **C\(_3\)H\(_8\)**, 6 min

in situ DRS

- 20 scans, 50 msec

Examples

- Comparison of techniques: x wt% Crn+/support

Examples

- Reactivity of V/TiO₂ after oxidative treatment

Brückner et al., Catal. Today 113 (2006) 16
Examples

- Reactivity of V/TiO$_2$ after oxidative treatment

UV-vis: V$^{5+}$ CT (UV)
V$^{4+}$ d-d transitions (vis)

Examples

- Determination of speciation: Fe species in Fe-ZSM5

hydrated samples
- isolated Fe$^{3+}$
- oligomeric Fe$_x$O$_y$
- extended F$_2$O$_3$-like clusters

calcination @ 600°C