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Abstract

Minimax regret is an exact method for deriving a recommendation based on a small
sample. It can incorporate costs in its measurement of opportunity loss (regret) in
terms of not making the best choice. In this paper we present the methodolgy and
implement it in four examples from different fields: medicine, development policy,
experimental game theory and macro economics. We focus on the comparison between
two treatments with unknown response. Recommendations based on the binomial
average rule, the correlated binomial average rule and on the empirical success rule
are derived. Point estimates of the treatment effect round off the picture.

Key words: correlated binomial average rule, empirical success rule, estimation,
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1 Introduction

Recently there has been a growing attention of regret and of minimax regret. This
is a method for making decisions based on observations that does not rely on priors.
The difference to classical hypothesis testing is that the value of a decision is taken
into account. The statistician or decision maker does not only wish to learn which
treatment is better but takes the value of implementing a treatment into account. This
incorporation of values is captured by regret, the nonparametric or distribution-free
component is contained in the minimax quantifier. One may say that minimax regret
brings economics to statistics. This is because, superficially speaking, economics is
about cost and benefit.

More specifically, consider someone who has to evaluate the results from testing
a new treatment. The approach of hypothesis testing could be to test the null hy-
pothesis that the new treatment is at most as good as the old versus the alternative
hypothesis that the new treatment yields better results on average. The statistician
is worried about wrongly rejecting the null hypothesis which means wrongly recom-
mending the new treatment even if it is not better. So the statistician is very unhappy
when accepting the new treatment if it likely that the old treatment is better, however
small the margin may be (wrongly rejecting the null hypothesis). Minimax regret on
the other hand can incorporate the cost of the new treatment. The statistician does
not care which recommendation is made if the benefits, when taking cost into account,
are very similar. Instead, focus is on not recommending the new treatment when the
old was substantially better or vice versa, not keeping the old treatment when the
new one is substantially better.

Regret goes back to Savage (1951) who was interpreting the ideas of Wald (1950)
and has its foundations in the axioms of Milnor (1954). Recently there has been a
revival of regret in statistics starting with Manski (2004). Manski (2004) considers a
specific rule for evaluating treatments called the empirical success rule and uses this
to investigate how one should deal with covariate information. Schlag (2006b) derives
the minimax regret rule with and without covariate information, the rule is called the
binomial average rule. The binomial average rule is a randomized rule and as such
typically does not yield a unique recommendation. However it needs much less data
to obtain the same performance as the empirical success rule.

We derive recommendations based on this methodology in four examples. The
outset of this paper is to demonstrate the particular value of the binomial average
rule. However, Karl Schlag recently also discovered an alternative randomized rule
called the correlated binomial average rule which turns out to be superior in the ap-
plications. This alternative rule also attains minimax regret but typically involves
less variance in the recommendation. We also demonstrate how to use these random-
ized rules to derive a deterministic recommendation at the cost of increasing maximal
regret, a useful method if the recommendation is already close to being determinis-



tic. Everything is compared to the performance of the deterministic empirical success
rule. Point estimates of the treatment effect round off the picture.

We have selected four examples from very different areas for this demonstration
that have the common feature that sample sizes are small by nature of the application.
We have a medical example in which computer equipment is tested as an alternative
means for diagnosis. In the Indian school example two alternative policies are tested
in order to improve learning of children. Our data on experimental game theory
concerns a cross country comparison of generosity. Finally, in our fourth example we
look at the design of institutions for achieving economic performance.!

The paper starts with an extensive informal presentation of treatment choice un-
der minimax regret. We purposely refrain from as much jargon as possible to make
this paper accessible to a wide audience from different disciplines. An important
supplement of this paper is the matlab program we provide at the following adress
<http://www.iue.it /Personal /Schlag/Welcome.html#research> to allow users to de-
rive recommendations under the binomial average rule and the correlated binomial
average rule on their own data sets.

The paper is organized as follows. We first present an extensive introduction to
the methodology. Then we separately present the four examples. Finally we conclude.

2 Informal Introduction to Minimax Regret

In the following we give a brief summary of the method and underlying theory that
is being applied in this paper to four specific examples. The approach itself is called
choice under minimazx regret. The presentation is kept as basic as possible to facilitate
first time reading of this topic.

Consider a statistician who has to choose between two alternative options given
a set of data sampled. For better illustration, consider a more specific scenario in
which a medical statistician has to recommend one of two methods (or treatments)
to doctors for examining their future patients. Let us call these method X and method
Y. In a later example we compare manual location to computer-assisted navigation
to determine where to apply a shock wave therapy against pain.

We organize this introduction along the following items:

1) sample and outcomes,

2) being a better method,

3) measuring outcomes and cost,

4) setting the outcome range,

5) hypothetical recommendation,

6) empirical success rule,

IThese four data sets come from Sabeti-Aschraf (2005), Banerjee et al.(2005), Roth et al. (1991)
and Acemoglu et al. (2001) respectively.



7) regret,
8) minimax regret,
9) binomial average rule - motivation,
10) transforming data,
11) binomial average rule in an example,
12) binomial average rule and minimax regret,

13) the empirical success rule.
1. Sample and Outcomes

The data or sample available to the statistician results from testing patients who
are randomly drawn from the pool of potential patients (the procedure is also called
a randomized experiment). On each patient one of the two methods has been tested
and the outcome of each test recorded where the assignment of methods to patients
was not systematic.

We first consider the setting in which each method has been tested on the same
number of patients, the sample is called balanced.

The outcome can be in terms of success or failure of the treatment or it can be a
more differentiated. One may want to measure the level such as the grade on a school
exam or the change in level such as change in pain due to treatment.

2. Being a Better Method

Each method does not achieve the same outcome on each patient. As the doctor
is assumed not to know a priori how any given patient responds we choose to evaluate
each method according to the average outcome it generates. So we call one method
better than the other if its average outcome is higher. This average refers to the
average outcome that it would achieve if we would apply the method to all patients in
the world. In this paper it is assumed that there is a large, essentially infinite number
of potential patients. So the statistician will never actually know which method is
better. Hence, his recommendation will go hand in hand with a measurement error
that here will be formulated in terms of “regret” (more on this later).

3. Measuring Outcomes and Cost

In order to measure average outcomes we have to associate outcomes with numbers
(values) where better outcomes receive higher numbers. Moreover, these numbers
have to be such that higher averages are preferred without any concern for difference
in the variation. The specific assignment of numbers results from how the statistician
chooses to compare different outcomes.

Often outcomes are already presented in the appropriate format given by the
underlying question. For instance, the statistician may be interested in the average
school grade. A minor adjustment has to be made if lower average outcomes are
preferred (such as less pain after the treatment). In this case one has to simply invert
the scale. For instance if the original scale measures the degree x of pain on a scale
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from 0 to 100, so x is the outcome of the treatment, then associate outcome x with the
number 100 — x, thus associating higher numbers with better outcomes (less pain).

In other cases we have to construct the numbers associated to outcomes from
scratch. When there are only two outcomes such as success and failure then we can
associate success with value 1 and failure with value 0. Typically however there are
other events too like partial success or success with some side effects.

Method specific costs have to be incorporated into these numbers. Different meth-
ods may be associated to different costs. The simplest way to incorporate costs is to
calculate a unit cost per patient, measured on the same scale as outcomes are, and
subtract this cost from the numerical value of the outcome. So if method X is more
costly than method Y then subtract a unit cost ¢ from the numerical outcome of the
method X .2

In the following we will assume that outcomes are directly specified in terms of
such numbers.

4. Setting and Normalizing the Outcome Range

In order to apply the method of this paper the statistician must provide a range
of outcomes that contains any outcome that can possibly occur. Let a be the lowest
possible outcome and b the highest possible outcome, a,b € R. The statistician may
not derive this range by looking at the data gathered or making some wild guess.
Instead this range has to be a consequence of the setting itself. For the education
example grades belong by definition to a fixed scale ranging from 0 to 100 so we set
a = 0 and b = 100. In the medical example of this paper pain is measured on a
scale [0, 100] so if we wish to measure the change in pain then the range is given by
[—100, 100] . If we also subtract a unit cost ¢ from one of the two methods then the
range becomes [—c, 100] or [—100 — ¢, 100] respectively.

Once the outcome range [a, b] has been set it simplifies the presentation to normal-
ize outcomes so that we only deal with ranges given by [0, 1]. In order not to change
any of the further results it is important that this normalization is linear (actually,
affine). Hence, normalize outcome y by transforming it into 4—.

5. Hypothetical Recommendation

As we mentioned at the outset, the statistician has to recommend which method
to use, X or Y. Let EX be the true average (formally, expected) outcome of method
X if method X would be applied infinitely often to some random patient (without the
same patient being called twice) and let E'Y respectively be the true average outcome
of Y. So if the statistician would know that £ X > EY then he would recommend

2 A standard procedure in decision theory for constructing such numerical values when there is a
best and a worst outcome is as follows. Assign value 1 to the best and 0 to the worst outcome. For
any other outcome assign the value x such that you do not care if this outcome occurs or instead if
you receive outcome 1 with probability « and outcome 0 with probability 1 — z.



method X to the entire population. However the statistician does not know which
method is better. He may have some hunch, however the method of this paper does
not allow for incorporation of such a hunch. Instead it considers a statistician who
has genuine uncertainty about which of the two methods is better.

6. Empirical Success Rule

A natural recommendation would be to recommend the method that achieved a
higher average outcome in this data sample. This recommendation rule will be called
the empirical success rule.® Let X and Y denote the respective average outcomes of
each method observed in the sample. So method X is recommended if X > Y. If
there is a tie then each method is recommended equally likely. This paper is about
demonstrating the advantages of an alternative rule called the binomial average rule.
Before we present it we have to describe how we compare rules. This is where regret
comes in.

7. Regret

Regret is a measure of lost opportunity. It compares what you get with what
would have been best if you knew the truth. If you choose method X but method
Y is better so EY > EX then the difference FY — EX is called the regret. More
generally, if z = 1 indicates that method X is recommended and z = 0 that method Y
is recommended then regret r is defined by r = max {EX, EY } —z2EX — (1 — z) EY.
In particular, regret is equal to 0 if the statistician has actually recommended the
truly best method. Sometimes we refer to regret as the error of the recommendation.
So if both methods are equally good then regret r is equal to 0.

8. Minimax Regret

Of course the statistician will never be able to calculate regret as he will never
know the true average outcomes. Hence the statistician resorts to theory to find a
recommendation for which it is known that regret is never too large. How is this done?
The idea is that a worst case analysis is undergone. For each rule describing how the
statistician makes a recommendation based on the data one derives the maximal
possible regret without making any assumption on how effective each method is.
Since the statistician only knows that each method will yield an outcome in [0, 1] the
maximum is taken over all possible methods with this property. Maximum regret is
then taken as a measure of how good the recommendation rule is. The next step is to
search for a rule that achieves the lowest such maximal regret. Theory shows that the
binomial average rule will have this property, we say that it attains minimaz regret.

Up to here this seems very mysterious. How should one protect oneself against
the worst case without knowing anything? The statistician does know something as
he has data to base his recommendation on. Let us assume the statistician observes

3Results relating to the empirical success rule are based on Manski (2004).



in the sample that method X was always very extremely successful and achieved
outcome 1 each time while method Y only yielded failures in the form of outcome
0. Two different things he can conclude. It could be that method X is better than
method Y. It can also be that method Y is better than method X, only the data was
not representative. It just turned out that the few patients that do not react well to
the method Y (that is better on average) were tested. However, the larger the data
sample the more likely it is to have tested the methods on a representative sample
and hence on average it seems like recommending the method that yielded higher
outcomes in the sample is the right thing to do.

Consider now an alternative sample in which X = 0.7 and Y = 0.67 given bounds
[0,1]. Of course method X achieved a higher average in the sample than method Y
but the difference is only very small, it seems like both are equally good. As regret
is zero if both methods are equally good regardless of what is recommended the
statistician is not worried about this case. Instead one has to think about whether X
could be much better or Y could be much better. Since we have no strong evidence
in either way, we can protect ourself by recommending each method approximately
equally likely.

To make this last point clearer consider briefly the recommendation without any
sample. The maximal regret of recommending method X is equal to 1, a regret
arising when FX = 0 and FY = 1. On the other hand, the maximal regret of
recommending each method equally likely is equal to 1/2, this bound on regret is
achieved when £ X = 0 and FY = 1. With probability 1/2 the worse method X is
recommended which yields regret of 1 while with probability 1/2 the better method
Y is recommended which yields regret 0. On average (or in expectation), we obtain
regret equal to %143 %0 = 1.

So on the one hand it is natural to recommend the method that achieved higher
outcomes in the sample. On the other hand we want to take the differences in
observations into account and recommend each method approximately equally likely
when there is no strong evidence in favor of one of the two methods. This intuition is
the first step to understanding that the empirical success rule might not be as good as
it originally sounded. It disregards the magnitude of the observed differences between
the two methods. Of course if the sample is very large then the empirical success rule
will most likely pick up the better method due to the law of large numbers. However
we have no indication of how large actually the sample has to be for this to be true.
The strength of the methodology of this paper is that it already yields good results
for very small samples.

9. Binomial Average Rule (BAR) - Motivation
The binomial average rule builds on the intuition that when outcomes are binary,
so any outcome is either a success or a failure, then recommending the method that
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was more successful seems the right thing to do.* Of course this also means that
method X is recommended if X = 0.4 and Y = 0.35. The difference is very small.
When we mentioned the problem of small differences we did not know where these
differences came from. Were outcomes lower or were there fewer successes? How
should one compare method X that always achieved outcome 0.4 to method Y that
achieved a success in 35% of the tests and a failure in 65%7 However, as we are now
briefly considering the case where there are only two outcomes we are comparing one
method that yielded a success 40% of the time to one that yielded a success 35% of
the time. When there are only two outcomes then it is quite natural to recommend
the method that yielded more successes as recommended by the empirical success
rule. Theory underlines this intuition that actually the empirical success rule is the
unique way to minimize maximum regret when outcomes are binary.

So is there a way to eliminate the issue of comparing many different outcomes? The
idea underlying the binomial average rule is that one first transforms each outcome
to create a new data set containing only the extreme values 0 and 1. After this
transformation it is as if the statistician is facing binary outcomes only and hence can
recommend the more successful method. It is important to keep in mind that more
successful refers to outcome after this transformation, not in terms of the original
data set.

10. Transforming Data

So how is this transformation done? What should we do if outcome 1/3 has been
observed for one patient who received method Y. The idea is to replace this observation
1/3 by either 1 or 0 and to do this probabilistic. Replace it by 1 with probability
1/3 and by 0 with probability 1 — 1/3 = 2/3. The procedure is to do this for each
outcome in the sample, always using the outcome observed as the probability that it
is replaced by 1. Notice that this transformation treats similar outcomes similarly, it
respects levels as the level determines the probability of being replaced by 1.

At this point we have to step back a bit and discuss the role of randomization.
A naive approach would be to transform all data in this way and then to recom-
mend based on the transformed data. While this approach is not incorrect it does
ignore the fact that the data transformation involved randomization. The data could
have been transformed differently as the transformation was probabilitistic. To see
this assume that all outcomes in the sample are in the interior of the range (0, 1).
Thus it is possible yet unlikely that the transformation results in method X having
only Os while method Y only has 1s in which case Y is recommended. The oppo-
site is similarly possible, yielding a recommendation of method X. To include this
multiplicity of recommendations explicitly the binomial average rule is defined by
taking the expected recommendation based on this transformation procedure. The

4Results relating to the binomial average rule are due to Schlag (2006b).
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computer program available from the authors online® simply does this transformation
many times and takes the average recommendation. Thus the recommendation will
typically be random, e.g. recommend method X with probability 0.8 and recommend
method Y with probability 0.2.

A common objection is that a randomized recommendation (as typically made
by the binomial average rule) is not very easy to implement. However this is not
necessarily the case. One simply can recommend method X to 80% of the doctors
and 20% to the remaining doctors.® For instance one need not convince all to use
say the new method Y. However one is not allowed to let the patients choose as then
the methods would not be assigned at random. For those seeking an alternative we
describe below a way to create a deterministic (i.e. non randomized) recommendation
at the cost of increasing the error.

It is important to point out that randomness is inherent to any recommendation
based on data. Data itself has been gathered at random. Inviting a new set of patients
and testing the two methods again will typically result in different outcomes.

11. Binomial Average Rule in an Example

Let us show how the binomial average rule is implemented in a simple example.
Assume that two observations are available for each method. Say method X yielded
0 and 1 while method Y yielded 1/3 and 1/3. Since the data of X is already binary we
need not transform it. The following table shows the outcome of the transformation
of the data of Y together with the probability that this occurs and the consequent
recommendation.

Table 1: Binomial Average Rule

Transformed data for Y ‘ Probability ‘ Recommendation

0,0 4/9 X
0,1 2/9 X and Y equally likely
1,0 2/9 X and Y equally likely
1,1 1/9 Y
Consequently, the method X is recommended with probability g + %% + %% +0 = %

while method Y is recommended with probability 1— % = 3.

12. Binomial Average Rule and Minimax Regret

It turns out the binomial average rule is the best one can do for a given sample size
in the sense that it attains minimax regret. In other words, it guarantees the lowest
value of maximal regret possible. If one prefers a different rule such as the empirical
success rule because it is simpler and deterministic then one should take into account

5 At http://www.iue.it/Personal/Schlag/Welcome.html#tresearch
6To recommend methods to doctors or hospitals instead of letting each doctor randomize can be
a way to ensure that the allocation of methods is truly random.



how much worse it performs. The binomial average rule provides a benchmark on
how low maximal regret can be pushed for a given number of observations.

We present the lowest value of maximal regret, achievable by the binomial average
rule. This value will be independent of the specific data gathered and only depend on
the size of the sample. Of course the specific data will influence the recommendation
but not the error in terms of maximal regret of this recommendation. While there
is an exact expression for the value of minimax regret, the following simple formula
is correct up to three decimals. Let n be the number of outcomes observed for each
method. Then regret under the binomial average rule is bounded above by

017 (b—a)

2n — 0.2 1)

There is no rule that can ensure a strictly lower value of maximal regret. So if n = 6
observations of each method are available then maximal regret is bounded above by
0.05 % (b — a), i.e. by 5% relative to the range of the outcomes.

13. The Empirical Success Rule

Unfortunately the maximal regret of the empirical success rule is not known.
Simulations show that at least n = 10 observations of each method are needed to
ensure maximal regret below 5%. Notice that simulations are not very trustworthy
for deriving an upper bound on maximal regret given the large number of possible
outcome distributions. An analytic upper bound for general sample size on regret
under the empirical success rule is given by

b—a
\V2n

without any indication of how good this bound is for a given number of observations.

e

N[

(2)

Accordingly, one can only ensure a maximal regret of 5% under the empirical
success rule by obtaining n = 74 observations of each method. If we compare the two
bounds in (1) and (2) we find that more than 12 times the number of observations
are needed (provided n > 2) to be sure that the empirical success rule achieves the
same error or lower than the binomial average rule.

Gathering more data reduces the error. Notice however that this reduction is very
slow, n = 145 observations of each method are needed at least to push maximal regret
below 1% of the range when using the binomial average rule (the bound in (2) yields
n = 1840 for the empirical success rule). As the error is reduced with more data
gathered, the more likely the statistician will recommend the better method under
either of the two rules. Using the language of statistics, both the binomial average
rule and the empirical success rule are uniformly consistent estimators of the better
method.
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2.1 Comparison to Hypothesis Testing

At this point it is important to step back and briefly compare the minimax regret
approach to the more standard methodology of hypothesis testing. We only present
a flavor of the argument.

Should the statistician be worried about making a bad choice or about making the
wrong choice? Under minimax regret the statistician is worried about making a bad
choice where bad refers to the fact that there is a large difference between the average
outcome of the better method and the average outcome of the chosen method. A bad
choice means the statistician would have a large regret if he knew the truth. So bad
does not refer to the size of the average outcome but to the comparison between own
recommendation and the best possible recommendation if true outcome distributions
were known.

On the other hand, in classical statistical hypothesis testing the statistician is
worried about making the wrong choice, about saying that method X is better than
Y while in reality method X is worse than method Y. To make the difference clearer,
assume that EX = 0.6 and EY = 0.57 given range [0,1]. Now assume that we
repeatedly gather a sample of 2n observations and let the statistician make a rec-
ommendation. Assume that in 80% of the data samples the statistician recommends
method Y. Then the statistician has made the wrong choice in 20% of the cases while
the regret of his choice is very small as it is equal to 0.2 % 0.03 = 0.006. So the clas-
sic statistician who uses hypothesis testing is very unhappy as 20% is typically not
acceptable as a mistake while the statistician using minimax regret is quite happy,
achieving an expected regret of only 0.6%.

We believe this example nicely shows how adding value to a choice and not only
being worried about finding the best choice is very natural. Being worried with a
bad choice means that the statistician only has to try to learn which method is best
when the methods are quite different which means that these are situations in which
it is easier to learn. Consequently, the minimax regret approach allows to achieve low
levels of maximal regret already in small samples sizes (e.g. 6 observations of each
method ensures maximum regret below 5%).

Notice that an additional difference between the two approaches is how to behave
when there is no evidence that one method is better than the other. Hypothesis
testing will recommend the status quo given by the null hypothesis while minimax
regret behavior will recommend each method approximately equally likely.

2.2 Extensions

Given that the basics have been explained above we comment on the following mod-
ifications and extensions:
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e what to do if we do not have the same number of observations of each method,

e an alternative rule that does better at putting more weight on one recommen-
dation,

e an alternative to the empirical success rule for achieving a deterministic recom-
mendation,

e what to do if the outcomes come in pairs where each method has been tested
on the same source (e.g. patient), and

e estimating the treatment effect of each method and how the two methods X
and Y differ.

2.2.1 Unbalanced Samples

So far we assumed that an equal number of data was observed for each of the two
methods X and Y. The sample was balanced. However, often data is not balanced.
In this case there are two options.

As the binomial average rule needs a balanced sample, one option is to simply
drop randomly some of the data points of the method that was observed more often.
Here it is important that the observations are dropped at random independent of the
particular outcomes. So if method X was tested nx times and Y tested ny times
with ny > ny then ny — nx outcomes are dropped from method Y and then the
binomial average rule is applied to yield maximal regret of

0.17 % (b — a)
V2min {nx,ny} —02

The computer program provided by the authors drops different data points in each

loop of the simulation. This procedure does not attain minimax regret, below we
investigate the induced increase in maximal regret.

The alternative is to derive the best rule for unbalanced samples in terms of min-
imizing maximum regret. The explicit rule is quite intricate and would unnecessarily
complicate our presentation. When the sample is not too unbalanced, like in our ex-
amples, then the best rule is not that much better than our method described above
of dropping observations. To see this we provide an analytic upper bound on how
much regret can be further reduced by using the best rule for the unbalanced case
without actually knowing the rule. Assume method X was tested nx times and Y
tested ny times with ny > ny. Then the best method for the unbalanced sample can
never be better than the best method when we add more observations of method X
to obtain a balanced sample with ny observations of each method. Hence the value
of minimax regret in the unbalanced sample is bounded below by

0.17 % (b — a)

QTLY —0.2
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If
017 (b—a) 0.17x%(b—a)

V2nx —02  2ny —0.2

is small then our more conservative approach of dropping observations to create a

balanced sample is not that bad. In all our examples the samples are nearly balanced,
the resulting errors of dropping observations negligible, e.g. if ny = 26 and ny = 30
then the increase in maximal regret due to dropping four observations is bounded
above by 0.0017 (b — a).

The empirical success rule can also be applied to unbalanced samples. So here
there is no need to drop data. The upper bound on regret can be adjusted to accom-
modate for the unbalancedness and is now given by

1
(o)
nx ny

It is useful to observe that this bound is identical to the one we gave above when

D=

1
—e
2

nNx = Ny.

2.2.2 The Correlated Binomial Average Rule (CBAR)

The binomial average rule was introduced as a rule that is able to attain minimax
regret. However it is not the unique rule. In the following we present a variant we
call the correlated binomial average rule that also attains minimax regret.”

The binomial average rule creates a lot of variance in the recommendation due
to the fact that it transforms each data point independently into the most extreme
outcomes. This transformation was done in order to create a rule that is more sen-
sitive to levels. However, the disadvantage for practitioners is that this rule tends
to recommend each method with some probability. In the following we present a
rule that creates less variance when data is transformed which tends to reduce the
degree of randomization in the recommendation itself. E.g. in the education example
below the new program is recommended under the binomial average rule in 73% of
the schools. This number is increased to 90% under the correlated binomial average
rule.

For the analytic proof that the binomial average rule attains minimax regret it is
very important that the transformation does not change the expected value of each
observation. However, the binomial average also assumes that this transformation is
done independently for each data point. There is no need for this. It is natural not
to add correlation between different observations of the same method as the entire
strength of the data lies in the independence of the different data points underlying

"This is the first appearance of this rule in the literature.
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the same method. However, nothing per se should speak against correlating the trans-
formation across data from different methods. This is what the correlated binomial
average rule does.

The correlated binomial average rule is implemented as follows. First the data is
randomly matched in pairs, one observation for each method. Now consider one such
pair (y1,ys). Pick randomly a number in [0, 1] where each number is chosen equally
likely. Say z has been chosen. Then transform any outcome y; in this pair into 0 if
y; < z and transform it into 1 if y; > z, i = 1,2. Apply this method independently to
each pair and then proceed as under the binomial average rule (and hence as in the
empirical success rule as now all observations are binary).

For illustration how this works assume that there is only a single observation of
each method, assume X yielded 1/4 while Y yielded 1/3. We illustrate the trans-
formation for the correlated method as well as for the original method in the table
below.

Table 2: Correlated Binomial Average Rule

Transformed Probability under Probability under
Data for Correlated Binomial Binomial Average Recommendation
X and Y Average Rule Rule
0,0 2/3 1/2 X and Y equally likely
0,1 1/12 1/4 Y
1,0 0 1/6 X
1,1 1/4 1/12 X and Y equally likely

It is easily argued that the correlated binomial average rule also attains minimax
regret. In practical examples we find that it shifts the recommendation away from
the mid point, thus yielding a recommendation with lower variance.

Little more is known about how the correlated binomial average rule compares to
the binomial average rule. We make two observations.

1. If the outcomes underlying the two methods take only the maximum and the
minimum value in the range then the two rules yield the same recommendation
as the underlying transformations do not change the data.

2. It is well known for minimax regret rules that any probabilistic combination
of two such rules will also attain minimax regret. The reasoning is as follows.
Since each rule attains the same value of maximal regret on its own, the max-
imal regret obtained by mixing between the two rules cannot be strictly above
this maximal value. Consequently, by combining the recommendations of the

8Notice that whenever there are only two data points, as in this example, both rules make the
same average recommendation. Here X is recommended with probability 11/24.
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binomial average rule and of the correlated binomial average rule we get a con-
fidence interval for minimax regret recommendation. However it is still an open
question whether this interval is tight in the sense that any combination outside
will not be a minimax regret recommendation.

2.2.3 Deterministic Recommendation

We acknowledge the fact that sometimes it is simply not feasible to have a probabilistic
recommendation. One solution is to use the empirical success rule at the cost of the 12
fold larger sample size needed to guarantee the same error. An alternative approach
is to adjust the recommendation of the correlated binomial average rule at the cost
of increasing maximal regret. Assume that the recommendation is 95% on method
X and 5% on method Y, associated to maximal regret of 2% in terms of the range
of the outcomes. Then one can instead recommend method X to all but this means
that maximal regret is increased by 5% to 7%.

The idea is as follows. If method X is recommended to all then in 5% of the cases,
namely when the minimax regret solution is to recommend method Y, then you do
not do what you are supposed to do. The maximal regret due to recommending
something different is equal to the range of the interval of outcomes. Hence, in 5% of
the cases the increase is maximaly (b — a) .

Formally, let px be the probability of recommending method X given by a rule
that attains minimax regret r* (in percent of range). Then

max {EX,EY} — EX = max{EX,EY} — pxEX — pyEY + py (EY — EX)
< r(b—a)+py(b—a).

2.2.4 Paired Experiments

Sometimes the data is gathered by testing each method on the same patient, possibly
at different times. When data comes in pairs where each observation contains two
outcomes, one for each method, we speak of a paired experiment. This situation arises
naturally when comparing the outcome before and after some treatment, for instance
a treatment aimed at reducing pain. So method X could correspond to the state of
the patient before the treatment and Y to the state after the treatment. Method
X is better if the treatment is not effective (on average). Method Y is better if the
treatment is effective. Notice that there are two observations for the same patient,
hence observations are not independent. The specific characteristics of the patient will
influence both outcomes simultaneously. Our approach so far assumed independence
of all observations. So what should we do?

An interesting theoretical insight for paired experiments is that we can eliminate
one observation for each patient without increasing maximal regret. We only have to
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make sure that the sample is balanced after this elimination. We are throwing away
data it is inconsequential for maximal regret.

One only has to be careful when computing the value of minimax regret in paired
examples. If there are 60 observations resulting from 30 patients then after elimination
we obtain 15 independent observations of each method which yields a maximal regret
of \/% ~ 3.1%. If the number of patients is odd, say 25, then a balanced sample of
12 independent observations can only be achieved. The computer program provided

at 77 has an option for dealing with paired experiments.

3 Point Estimation

We remind the reader that the minimax regret approach described above is aimed
at choosing a method that achieves the highest true average outcome. However, this
approach does not provide insight either on how large the average outcome of the
method chosen will be nor on the difference between the average outcomes of the two
methods. In the following we show how one can estimate these two values.

Any such estimate is of course prone to some error and the estimate will depend
on how the error is measured. The classic approach is to punish wrong estimates
by the square of the difference between the estimate and the true value (quadratic
loss), taking the average (or expectation) over all possible data sequences that can be
generated. Notice that quadratic loss punishes estimates that are very wrong. With
this measure of error one then proceeds as above, choosing for each estimate the
maximum error and then finding the estimate that minimizes this maximum error.
An estimate that results from this procedure is said to attain minimaz risk.?

A common approach in statistics is to confine attention to estimates that are
unbiased. Accordingly, one searches for the estimate that attains minimax risk among
all unbiased estimates. An estimate is called unbiased if on average it equals the true
value, otherwise it is called biased. Unbiasedness would be the obvious feature of
choice if one would make an estimate on infinitely many different samples. As the
statistician is facing a single sample, adding unbiasedness will typically increase the
error as he has less estimates to choose from. This contradicts his aim to minimize
the maximum error. Hence it is important to quantify the loss due to considering
only unbiased estimates.

3.1 Average Outcome

Consider a sample of n independent observations of method X. Then the sample
average X attains minimax risk among all unbiased estimates of £X.'° If one instead

9Results on biased estimates in this section are based on (Hodges and Lehmann, 1950).
10This is proven in Schlag (2006a).
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does not restrict attention to unbiased estimators then it is natural that the range
of the variable will also play a role. If the sample average X is close to one of the
borders then given that very bad estimates are punished severely under quadratic
loss one is tempted to shift the estimate towards the median of the range. Of course
this bias should decline as the sample size increases. This is actually what happens
for the estimate that attains minimax risk, the estimate of F.X being

1
14+ +/n

Note how the bias to the mid point % (a + b) decreases in the sample size, for n > 16

(\/ﬁX + % (a+ b)> : (3a)

it is always less than 10% of the range, for n > 81 it is always less than 5% of the
range. So there is a non negligible bias for sample sizes that are not too large.

3.2 Average Difference between Outcomes

Consider a balanced sample of 2n independent observations of method X and method
Y, so n of each. We are now interested in estimating how different the two methods are
in terms of true average outcomes. So we are now interested in estimating £ X — EY.
While X — Y remains an unbiased estimator of EX — EY its properties in terms
of whether it is best are not known. However we can present the biased estimate of
EX — EFY that attains minimax risk, it is given by

N
m(x—y). (4)

Notice that the difference between the two biased estimators of £EX and EY is not
equal to the biased estimator of the difference EX — EY. Again the bias of the
estimate is non negligible for small sample sizes, e.g. the sample difference is scaled
down by more than 10% when n < 40.

3.3 Choice and Estimate

Can it happen that method Y is chosen with positive probability but method X is
estimated to be better? Yes. The binomial average rule will typically be random and
hence each method will be recommended with positive probability. On the other hand,
the estimate for the difference is deterministic. Is this a conflict? No, as the objectives
are different, estimating which method is best versus estimating the magnitude of the
difference between the two methods. In fact, there is a more consistent way of solving
both objectives by selecting a randomized estimate of EX — EY.1!

See Schlag (2006a).
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4 Medical Data

We consider the following data collected from a medical randomized study (Sabeti-
Ashraf et al. 2005) aimed at comparing two diagnosis methods. Fifty patients par-
ticipated in a study trial and were randomly divided into two balanced groups. All
patients were suffering from shoulder tendinitis.!? Before and after the treatment
sessions, all patients were clinically tested with the visual analog scale (VAS) to mea-
sure their pain level. Both groups were exposed to the same low-energy shock wave
treatment 3 times in weekly intervals during 12 weeks. An important aspect of the
shock wave treatment process is the precision of the location of the shock wave focus
point. In group 1 (feedback group), the patient and the therapist determined the
location point by palpation (manual location) while in group 2 (navigation group), a
radiographically guided 3-D, computer-assisted navigation system was used.

We consider a decision maker concerned about reducing the level of pain reported
by the patient where pain is measured by VAS. We address two questions: 1) Does
shock wave therapy reduce pain? 2) Is there a difference between the two methods for
locating the shock wave focus point? VAS 1 and VAS 2 measure the pain before and
after the treatment. The following table give the descriptive statistics of our sample.

Table 3: Descriptive Statistics

Outcome ‘ Mean ‘ St.Dev
Feedback Group (25 patients)

VAS 1 68 15
VAS 2 33 20
VAS 2 - VAS 1| —35 23
Navigation Group (25 patients)

VAS 1 66 22
VAS 2 18 21
VAS 2- VAS 1| —48 28

VAS 1 measures the pain before the shock wave treatment.
VAS 2 measures the pain after treatment.
Both Measures range from 0 (no pain) to 100.

We examine the first question. We use an inverted scale in order to make higher
outcomes better for the patient. The outcome of shock therapy method is recorded
by 100 — V AS 2. No treatment is associated to the alternative method, the outcome
is recorded by 100 — VAS 1. The statistician has to recommend one of these two
methods, treatment or no treatment.

12More specifically, patients all suffered from calcific tendinitis of the suprasinatus tendon.
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This is a paired experiment since every patient reports both VAS 1 and VAS
2. While outcomes are independent across patients they are not so across methods.
Therefore, as discussed above, we need to randomize over our sample in such a way
that for each patient we use only one of the two values VAS 1 or VAS 2, putting
equally many patients in each category.

We separately investigate each group. We do not provide an estimate using the
empirical success rule as the associated upper bound on regret is equal to 12%.

Table 4: Effect of Shock Wave Therapy

Mini ; Treatment Treatment
inimax regre
Decision Rules | N , g probability probability

in VAS scale ‘ ‘

(bin. average) (corr. bin. average)

Probability of choosing Shock Wave Therapy
Feedback group 25 3.3 0.97 0.99
Nawvigation group | 25 3.3 ~1 ~1

No recommendation can be made that ensures regret less than 3.3 on the VAS
scale. The lowest value of maximal regret can be sustained by recommending shock
wave therapy by using palpation on 99% of the patients or by using the computer
assisted diagnosis on practically 100% of the patients (a more precise estimate is
99.8%).

As the probability for the recommendation to treat using palpation is so close
to the border, we can instead recommend the treatment to all, increasing maximal
regret by (1 —0.99) x 100 = 1 on the VAS scale .

Thus, we find that in either group the decision maker can recommend shock
therapy to all patients and achieve a maximal regret of at most 4.0 on the VAS
scale.!® Shock therapy works.

Notice that the point estimate in the change in pain in the feedback group is equal
to —1 (@(—35) + % * 100) ~ —21 while in the navigation group it is equal to

1++/25
—32.

Next we turn to the second question and examine how the shock wave focus point
should be located. Now one method is associated to the feedback and the other to
navigation. We do this in two scenarios. First, outcomes are measured by the level
of not having pain after the treatment 100 — V' AS 2. Second, outcomes are measured
in terms of change in pain VAS 1 — VAS 2. The results for the recommendations
are reported below:

13(_047 -
(s +0.0062) 100 ~ 3.97.
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Table 5: Choice of the Location Method

Vini ; Probability Probability
inimax regre
Decision rules | N _ J of navigation of navigation ESR*

in VAS scale . .

(bin. average) (corr. bin. average)

Navigation versus Feedback
(100 - VAS 2) | 50 2.4 0.92 0.97 1(8.6)
VAS 1 -VAS 2| 50 4.8 0.7 0.82 1(17.2)

*For the empirical success rule the upper bound on the
mazimal regret is given in brackets.

The value of minimax regret given 50 observations equals \/% ~ 0.024 in
percentage of the range. For the analysis of pain after the treatment this means
approximately 2.4 points on the VAS scale as the range is equal to [0, 100] . Regarding
change in pain we obtain maximal regret equal to 200 * 0.024 = 4.8 on the same
scale as the outcome range now equals [—100, 100] . The larger range naturally makes
the recommendation less extreme, now only recommending that 82% of the patients
should use computer assisted navigation.

We can recommend the computer assisted navigation to all patients at a maximal
regret of 2.4 4+ 0.03 * 100 = 5.4 on the VAS scale.

We calculate the point estimates of the difference between the success of the
navigation and of the feedback group. The navigation group is estimated to perform
better than the feedback group, in terms of levels by /50 (33 — 18) ~ 13 points

1++/50
while in terms of change in pain by 11 points on the VAS scale.

We summarize:

1. We find that both location procedures are effective in reducing pain. Maximal
regret of this recommendation is 4 points on the VAS scale. This is despite
the fact that this statement is only based on 25 observations as we do not pool
the data. Pain reduction was substantial, the point estimate being 21 points
(feedback) and 32 points (navigation) on the VAS scale.

2. For the comparison between methods we have double the sample size but the
difference was not so pronounced.

When only looking at the absolute pain levels after the treatment we find large
success of the computer assisted navigation. It can be recommended to all at
4.8 maximal regret on the VAS scale.

When interested in change of well being and hence in change in pain, then the
increased outcome range makes the recommendation less pronounced. Now only
82% should use computer assisted navigation at a maximal regret of 4.8 points
on VAS scale.
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5 Remedying Education Data

Two randomized experiments designed to assess means to improve education were
conducted in major Indian cities (Baroda and Bombay) between 2001 and 2003
(Banerjee et al., 2005). First, a remedial education program (BAL) was implemented.
A tutor was assigned to teach basic literacy and numeracy skills to children lagging
behind in public schools.!* Second, a computer-assisted learning (CAL) program
was run. Two hours of shared computer time per week were provided to 4th grade
students (two students per computer).

During the experiment, which lasted two years, all children from 3rd and 4th grade
were given a test at the beginning of the year (pre-test) to assess their language and
math skills. Then, some schools were randomly assigned to receive the programs, and
children were again exposed to a test at the end of the year (post-test). While in
the BAL treatment only a minority of students within each treated schools received
a tutor, all students were exposed to the computer assisted learning program in the
CAL treatment.'® Finally, while assistance was provided both for language and math
skills in the BAL program, the CAL program was instead focused on developing
mathematical skills only.! The annual cost per student for the tutorial was 2.25$
while for the computer assisted learning it was 15$.

We illustrate how one can draw conclusions based on this randomized experiment.
We select Baroda 4th grade students during the second year of the experiment (2002-
2003). We choose this subset of students because they constitute the only cohort for
which both programs were implemented, and hence the only cohort that allows us to
compare the two programs. Our random sample is composed of 111 schools and it is
structured as follows:

Table 6: Indian Data Structure

Number of Schools ‘ CAL (Computer) ‘ No CAL
BAL (Tutorial) 28 (group 1) 26 (group 2)
No BAL 27 (group 3) 30 (group 4)

We present the descriptive statistics together with the point estimate of the treat-
ment effect of each group 1-3 compared to the untreated group 4. We do this sepa-
rately for post-test grades and for the difference between post-test and pre-test grades.

14The program was labelled “Balsakhi”, meaning “child friend”.

5 For the BAL treatment, only those students lagging behind were selected according to their pre-
test score. They were then removed from classroom during two hours per week to receive tutorial
assistance.

16Two hours of shared computer time per week (two students per computer) were provided under
the supervision of an instructor. Students were exposed to a variety of computer games designed to
emphasize basic comptencies in the mathematic curriculum.
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Table 7: Post-Test Grades (range [0, 100])
‘ Mean Score ‘ St.Dev ‘ Point Estimate of Effect

Group 1 (BAL+CAL) 58 9 10
Group 2 (BAL) 55 11 7.2
Group 38 (CAL) 49 7.8 2.5
Group 4 47 10 —

Table 8: Difference between Post- and Pre-Test Grades (range [—100, 100])
‘ Mean Difference ‘ St.Dev ‘ Point Estimate of Effect

Group 1 (BAL+CAL) 24 7.3 8.5
Group 2 (BAL) 21 10 5.6
Group 3 (CAL) 19 7.5 3.5
Group 4 15 8.8 —

In the following we investigate the impact of the BAL and CAL programs. Moti-
vated both by the lower costs and the higher estimated effect of the tutorial program
as compared to computer assisted learning we consider the choice whether or to in-
troduce the tutorial program.

Notice that we do not have a balanced sample. We accomodate for this by re-
peatedly randomly dropping observations from the larger sample. In this case, as we
are investigating the effect of the BAL treatment (group 2 versus group 4), we create
a balanced sample by repeatedly randomly dropping 4 observations from group 4.

The table below shows that maximal regret of 2.4 can be ensured by introducing it
to 90% of the schools (resulting from the correlated binomial average rule). However
this recommendation is based on post test grades only. If we consider the change in
performance then the increased range raises maximal regret and makes the recom-
mendation less pronounced. Maximal regret in terms of grade points is now equal to
4.7, implemented by the recommendation to introduce tutorials to 74% of the schools
(again using CBAR).

Next we assume that tutorial program has been introduced and decide whether or
not to implement the computer treatment. Here we find that 72% should also receive
the computers while the remaining 28% should only receive the tutorials.
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Table 9: Decision Rules

B Minimaz Regret Treatment Treatment
Decision Rules | N i Points Probability Probability ESR*
( Bin. Average) | (Corr. Bin. Avg)

Tutorial Program (BAL) vs None

“level 52 2.4 0.73 0.9 1(8.4)
- differences | 52 4.7 0.59 0.74 1(17)
Tutorial and Computer Program (BAL + CAL) vs Tutorial Program only (BAL)

- levels 52 2.4 0.6% 0.727% 1(8.4)
- differences | 52 4.7 0.567 0.627 1(17)

* For the empirical success rule, upper bound on maximal regret given in brackets.
# Probability of recommending both treatments.

As these programs are costly and the recommendation for either package is not
that pronounced we add a cost ¢ of implementing the computer treatment. While we
know the monetary cost per student of the computer program, the variable ¢ has to
be measured in units of grade points. Below we compare different values for c.

Again we compare implementing both treatments to implementing only the tu-
torials. We consider evidence based on post-test grades only due to the initial high
levels of maximal regret for the analysis of change in performance. Notice that this
cost increases the range to [—c, 100].

Consider first the empirical success rule. Looking at the table above we see that
if ¢ > 3 then only the tutorials will be recommended to all. The associated upper
bound on maximal regret in terms of grades is equal to 0.084 x (100 + ¢) .

Consider now the correlated binomial average rule. We find that ¢ = 20 yields
0.017 probability of recommending both treatments. So not recommending both
yields maximal regret in terms of grade points of (0.024 4+ 0.017) x 120 = 4.92. For
the same cost but using the binomial average rule we obtain 0.16 weight on both
treatments which is too large to be able to replace the random recommendation by a
deterministic one and still ensure sensible levels of maximal regret.

To summarize, only minimal cost will lead to dismissal of the computer program
with maximal regret being bounded above by 9 grade points. This is reached by
evaluating the empirical success rule. Lower maximal regret can be achieved with
the correlated binomial average rule, however only substantial costs will result in
completely abandoning the computer program. This reflects the hetergeneous recom-
mendation instrinsic in the random nature of the correlated binomial average rule.
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6 Four Nations play the Ultimatum (Game

Roth et. al. (1991) tested experimentally the bargaining behavior of subjects from
four different countries (Israel, Japan, USA and Yugoslavia) using the Ultimatum
Game. The Ultimatum Game is a simple game in which two players have to agree
on how to share a given amount of money 7. In this game, one of the players (the
proposer) proposes how much of this money = the other player (responder) should
receive, keeping the rest T' — x to himself. Given this proposal the responder has to
decide whether to accept or to reject this proposal. If the responder accepts then
each player gets the amount resulting from the proposal, so the proposer gets T' — x
while the responder gets x. If the respondent rejects the proposal then both players
get no money.

In the experiment, the participants played this game anonymously ten times with
the same partner via computers. The proposer remained proposer throughout and
similarly the responder remained responder throughout.

Consider how selfish players interested only in their own payoffs should play the
Ultimatum Game. It is in the best interest of the responder to accept any offer x > 0
from the proposer. Knowing this the proposer should only offer very little to the
responder as she knows that the responder will accept anything. The prediction of
Game Theory is for the proposer to offer 0 and the respondent to accept any offer.

As reported by Roth et. al. (1991) and many other experimental papers that deal
with the Ultimatum Game, this prediction is almost never fulfilled by the agents.
Typically around half the money is offered to the responder. The new aspect is that
Roth et. al. (1991) found that there are differences across countries in the way players
behave. However, due to small numbers they could not statistically compare mean
proposals.

We do not statistically compare proposals either. Instead, we apply the method-
olgy of this paper and formulate the country comparison in terms of a choice problem.
If you want to select a country in which mean proposals are highest, i.e. where sub-
jects are most generous, which country would you choose?

To asses this question, we make pairwise comparisons between countries selecting
only proposals in the first round. Each of the two selected countries is associated to
a method and the outcome measured is the proposal x.

We first present the descriptive data.
Table 10: Round 1 Data

‘ Israel ‘ Yugoslavia ‘ Japan ‘ USA

Average Proposal on scale 0,..,1000 | 363 442 446 447
Standard Deviation 157 85.5 211 | 95.7

Consider the recommendation under the empirical success rule. USA has the

highest mean proposal and hence is selected in any pairwise comparison. The regret



24

of this recommendation is bounded above by around 78 — 81 units on the proposal
scale. This does not seem to be a very effective recommendation in light of the fact
that the point estimates for the difference between Israel and any other country is
around 70 while for any pair not including Israel it is less than 4.4.

Tables 11 and 12 report the probability of choosing the row country under the
binomial average rule and under the correlated binomial average rule. Maximal regret
was either 0.022 or 0.023.

Table 11: Pairwise Comparison Using Binomial Average Rule

Prob. of choosing the row country ‘ Israel ‘ Yugoslavia ‘ Japan ‘ USA

Tsrael (30) X 0.26 0.24 | 0.26
Yugoslavia (30) 0.74 X 0.5 | 049

Japan (29) 0.76 0.5 X 0.5

USA (27) 0.74 0.51 05 | x

Notice that we choose sample size N = 59 for comparing any pairs not containing
USA while we choose N = 55 when comparing USA with others.

Table 12: Pairwise Comparison Using Correlated Binomial Average Rule

Prob. of choosing the row country ‘ Israel ‘ Yugoslavia ‘ Japan ‘ USA

Israel X 0.094 0.1 0.11

Yugoslavia 0.9 X 0.46 0.47

Japan 0.9 0.54 X 0.53
USA 0.89 0.53 0.47 b

In both cases we find a very similar estimate of the comparison of Israel with any
other country (0.25 or 0.1) while choices are very close to 50% among the pairwise
comparisons of Japan, Yugoslavia and USA.

The recommendation under both the binomial average rule and the correlated
binomial average rule identifies two groups of countries which already shows up when
looking at the descriptive statistics. On the other hand, the empirical success rule
identifies a unique choice irrespective of the variance of the data.

7 Colonization

Following Acemoglu et al. (2001) we ask whether the large cross-country differences
in income per capita (as of 1995) can be explained by differences in the quality
of institutions. Institution quality is measured by how good property rights are
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protected.'” The problem in determining the impact of institutions on growth is that
there is also a reverse causal effect, economic growth can also influence institutions.

To get around this issue we follow the authors and include in our investigation a
third variable. Ideally this so-called instrumental variable should influence the quality
of the institution but should not directly influence economic growth. In this paper the
chosen instrumental variable is the mortality rate faced by European settlers between
the 17th and the 19th century. The underlying argument is that the mortality rates
faced by European settlers in early colonization times influences institutions set up
then and carried over to today but clearly will not directly determine economic growth
today.

Our objective is to investigate the influence of institution quality on economic
growth. We formulate this in a choice problem using the third variable of mortality.
We run a comparison between countries with high mortality and with low mortality
as follows. The sample of 64 countries is separated above and below the median of
the mortality rates faced by European settlers, defining the “high-mortality” method
versus the “low mortality” method. We then consider a decision maker choosing
between these two methods according to minimax regret. We consider two cases, first
using economic growth as outcome, then using institution quality as outcome.

If high quality institutions tend to induce better economic performance then we
should find similar recommendations in terms of mortality method for inducing high
quality institution ad for inducing high economic growth.

In this application there are no exogenous bounds on log GDP. We assess an upper
bound by considering the logarithm of twice the largest GDP among those countries
that were not colonized (Germany). As lower bound we set log GDP to 1.

First we present the descriptive statistics.

Table 13: Descriptive Statistrics
‘ Mean Risk ‘ Std Dev Risk | Mean Log GDP | Std Dev log GDP

Low Mortality 7.097 1.42 8.618 0.990
High Mortality 5.934 1.28 7.483 0.764

This means that low mortality would be chosen to maximize expected risk or
to maximize log GDP under the empirical success rule with an associated maximal
regret in both cases bounded above by 7.6% in terms of the range.

1"The index comes from the Political Risk Services, and it ranges from 0 (low protection against
expropriation) to 10 (high protection against expropriation).
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Table 14: Decision Rules

Minimaz Regret Treatment Treatment
Outcome N in Percentage Probability Probability
( Bin. Average) | (Corr. Bin. Avg)
Log GDP | 32 2.13% 0.8302 0.9726
Institution | 32 2.13% 0.8439 0.9683

The table gives the probability of choosing countries with low mortality

Whether the outcome of interest is income or institutions, according to the cor-
related binomial average rule the decision maker will choose the “low mortality”
countries with a very high probability. For the given sample size of N = 32, these
decision rules yield an upper bound on regret of 2.13%. Moreover, if low mortality is
chosen with certainty then maximal regret in terms of institution is bounded above
by 0.0213 + 1 — 0.9683 = 0.053 and on log GDP by 0.049 (in terms of range).

We consider a decision maker who tries to uncover the relationship between insti-
tution on the one side and high income on the other by comparing countries with low
and high mortality. The result is that choosing a random country with low mortality
is a good way to both select a high quality institution and to achieve high income
with maximal regret bounded above by 5.3%. This gives a nonparametric indication
that good economic performance can be achieved with good institutions. Hopefully
this thought experiment will trigger more research investigating minimax regret when
there is an issue of causality.

8 Conclusion

There has been a growing theoretical interest in minimax regret treatment choice
with recent results presenting minimax regret rules. The main value of this paper lies
in the demonstration of how to bring these rules to the data.

In addition we present new methodologies for the analysis. The first and important
innovation is the introduction of the correlated binomial average rule that is based
on a very similar transformation of the data as the binomial average rule. This
alternative minimax regret rule involves less variance in the data transformation which
typically leads to “less random” recommendations. The second innovation concerns
how to create deterministic recommendations. Recommendations that are almost
deterministic are easily transformed into deterministic ones, increasing maximal regret
by the weight on the treatment chosen less often.

Finally, Hodges and Lehmann (1950) estimates are included to round off the
picture. These are useful as minimax regret rules give no indication of the magnitude
of treatment response.
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