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Abstract

We show that in large elections where there is correlated information and the possibil-

ity, however small, of misinformation (i.e. that information is non-informative), informa-

tion aggregation fails if voters have a non-zero, potentially negligible, idiosyncratic bias

towards either party. The mechanism in play is that if a voter is pivotal, then the poste-

rior on information is that the most likely event is that information is non-informative,

regardless of how its prior probability might have been. Thus, a voter is better off voting

following the bias even if it is arbitrarily small.
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1 Introduction

Information correlation in elections is endemic, whether because voters consult the same

sources of information (newspapers, TV channels, websites, etc.) or because these sources

of information themselves gather their information from the same news agencies (Associated

Press (US), Press Association (UK), Reuters, etc.). The purpose of this paper is to study

information aggregation in elections where there is information correlation.

We consider an election where voters choose between two candidates such that the most

appropriate candidate is not known. Voters each have access to information in the form of a

signal that is, conditionally on the appropriate candidate, correlated across voters. On top of
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that, voters have an idiosyncratic bias towards either candidate, and thus value candidates

based on both which one is the most appropriate one and the voters’ own bias.

We find that even if the bias is arbitrarily small, then regardless of the correlation across

signals, if there is the possibility, however small, of misinformation (i.e., there is a chance

that players’ signals are not informative), then information aggregation fails in large elec-

tions. That is, correlation with an arbitrarily small possibility of misinformation coupled

with an arbitrarily small bias stops information aggregation, allowing the least appropriate

candidate to win the election with probability 1. None of these two factors by themselves

make information aggregation fail.

The key to the result is the following. In elections, rational voters behave as if pivotal,

i.e., as if their vote determined the outcome of the election. Thus, in simple majority elec-

tions if voters vote following their signal (or informatively as in Austen-Smith and Banks

(1996)), then signals in the population are split 50/50 between both candidates. If signals

are correlated and there is the possibility of misinformation, then misinformation is the most

likely event by an exploding factor on the number of voters, however small its prior proba-

bility is. This means that, conditional on being pivotal, a voter learns that with probability

approaching 1 his own signal, and that of the other voters, is not informative, and thus is

better off voting following is own bias however small such bias may be.

Following the literature on voting with correlated information, an assumption we make

about correlation of information is that of exchangeability, first introduced in statistics by

Johnson (1924). In our context, exchangeability means that the identity or labelling of

voters does not matter. Using exchangeability, de Finnetti (1997) shows that in settings with

a sequence of correlated Bernoulli random variables, then there is an underlying random

variable such that conditional on this variable the sequence of Bernoulli random variables is

iid. Our main result shows that conditional on a voter being pivotal when all other voters

vote following their signal this random variable is such that all Bernoulli signals have a 50%

probability of pointing towards either candidate, and are thus not informative. This means

that the bias alone determines the behaviour of the voters.

Previous work focusing on correlation information but when voters ignore such correlation

can be found in Levia and Razin (2015) (see also De Marzo et al (2003), Glaeser and Sunstein

(2009) and Ortoleva and Snowberg (2015)). They show that correlation neglect can improve

information aggregation in some settings. In our paper, without correlation of information

there is information aggregation if voter bias is sufficiently low. Therefore, correlation, even

if negligible, causes information aggregation to fail.

This paper contributes to the literature on information aggregation in elections (Austen-
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Smith and Banks (1996) and Feddersend and Pessendorfer (1996), see also Mengel and Rivas

(2017) and references therein) focusing on the largely unexplored case of correlated infor-

mation. The closest work to ours is that of Mandler (2011), who presents a setting with

correlated signals and exchangeability and finds that information aggregation fails. The dif-

ference between Mandler (2011) and our paper is that we make no assumption about the

particular correlation on signals other than allowing for misinformation. Mandler (2011), on

the other hand, considers the case where the iid distribution of signal qualities obtained from

applying de Finetti (1995) have a particular slope (similar to what is found on Acemoglu et

al (2016)). That is, Mandler (2011) imposes requirements on the behaviour of the underly-

ing random variable that governs the distribution of the Bernoulli signals, whereas we only

require that it’s domain includes, with an arbitrarily small probability, an arbitrarily small

interval around 1/2.

Another related paper is Ladha (1993), who analyses correlated information with ex-

changeable signals but with non-strategic voters. Ladha (1993) finds that information aggre-

gation holds.

The rest of the paper is organized as follows. Section 2 presents the model whereas Section

3 present our main results. Finally, section 4 concludes the paper.

2 The Model

There is a pool of infinitely many potential voters, each voter i characterized with a bias

bi ∈ R drawn from some distribution such that P (bi ̸= 0) > 0 for all i. A subset N + 1 ≥ 2,

with N even, of them have to decide between two candidates c ∈ {0, 1} by simultaneously

casting a vote for either candidate. The candidate that the receives the most votes wins the

election where in case of a tie the winner is determined by the toss of a fair coin.

There is a state of nature that can take two values s ∈ {0, 1} both equally likely a priori.

The utility of each voter i when candidate c wins the election and the state is s is given by

ui(c, s) = cs+ (1− c)(1− s) + (2c− 1)bi

Thus, the voter receives one unit of utility whenever the winner of the election coincides

with the state of nature plus a bias dependent payoff. If bi < 0, then voter i receives −bi

if candidate 0 wins and bi if candidate 1 wins. On the other hand, if bi > 0, then voter i

receives bi if candidate 1 wins and −bi if candidate 0 wins.

Before the election, each voter i receives a signal θi ∈ {0, 1} with quality qi ∈ [0, 1] such

that

P (θi = s|s) = qi.
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Each voter observes his own signal but ignores the quality of such signal. Given the state

of nature, signals and signal qualities received by different voters are correlated. The fact

that signals and signal qualities are correlated is common knowledge. Thus, before voting

each voter knows his own signal but ignores his signal quality, and he also knows the fact

that signals and qualities are correlated and how. However, he ignores the state of nature,

the signals received by other voters, and the quality of such signals.

We assume that the signals received by voters are anonymous, i.e., they do not depend

on the particular identity of the voter. This implies that the signals received by each player

are exchangeable (Johnson (1924)):

Definition 1 (Exchangeability). A sequence of signals {θi}∞i is exchangeable if for any finite

number of voters N + 1 and any two sequences of voters j1, . . . , jN+1 and k1, . . . , kN+1 we

have that

P
(
θj1 , . . . , θjN+1

)
= P

(
θk1 , . . . , θkN+1

)
According to de Finetti’s theorem, exchangeability implies that there exist some random

variable q with probability distribution f such that given the value of q the distribution of

signals {θi} conditional on the state s and on q is iid, and for all i we have P (θi = s|s, q) = q.

We assume that correlation between signals is such that it is possible that de Finetti’s

density distribution f is non-vanishing in any right-neighbourhood of 1
2 . That is, there is

a non-zero probability that signals are all non-informative. We refer to this by saying that

misinformation is possible.

Assumption 1 (Misinformation). There exists a κ > 0 and a δ > 0 such that for all α < δ

we have that infq∈[ 12 ,
1
2
+α) f(q) ≥ κ.

A strategy for each voter is a map v : {0, 1} × R → {0, 1} where v(θi, bi) is the action

of voter i who receives signal θi and has a bias bi. Note that we are assuming symmetric

strategies. Finally, for simplicity, assume that if a voter is indifferent between voting for party

0 or party 1 he votes for party 1.

3 Results

When a voter decides whether to vote for 0 or 1, he compares the payoff he obtains under

these two actions given the actions of all other voters. However, a voter can influence his own

payoff only when his vote can change the outcome of the election (i.e., he is pivotal). This

can happen if and only if candidates 0 and 1 are tied when counting the votes of the other N
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voters. Thus, a voter is pivotal if and only if exactly N
2 voters vote for 0 and N

2 voters vote

for 1. Let π(s) be the probability that a voter is pivotal when the state of nature is given by

s. Note that in an abuse of notation we are omitting the strategies of the other N voters as

an argument in π, this should not cause any confusion.

The expected increase in utility of voter i when he votes for candidate 0 as opposed to

candidate 1 when he receives signal θi is given by

∆ui(θi) = P (pivotal|θi) [P (s = 0| pivotal ∪ θi)− P (s = 1| pivotal ∪ θi)− 2bi] . (1)

Since P (s = 1| pivotal ∪ θi) = 1− P (s = 0| pivotal ∪ θi) we have that a voter votes for

0 if and only if

∆ui(θi) ∝ P (s = 0| pivotal ∪ θi)−
1

2
− bi ≥ 0.

If θi = 0 we have P (s = 0| pivotal ∪ θi) = P (θi = s| pivotal ∪ θi). Moreover, if θi = 1,

then P (s = 0| pivotal ∪ θi) = P (θi ̸= s| pivotal ∪ θi) = 1 − P (θi = s| pivotal ∪ θi). Thus,

the term P (θi = s| pivotal ∪ θi), i.e. the probability that the voter’s signal is correct given

the event that he is pivotal, contains all the information we need to determine how such voter

behaves given the bias.

We say that a voter votes informatively if his votes coincides with his signal. A voter

votes following is bias if he votes 0 whenever b > 0 and votes 1 whenever b < 0, irrespective

of the signal he receives.

Our first result establishes that if voters vote informatively, then conditional on being

pivotal, the probability that a voter’s signal is correct tends to 1
2 as the number of voters N

increases.

Lemma 1. If all voters other than i vote informatively, then for all ε > 0 there exists a N

such that

P (θi = s| pivotal ∪ θi) ∈
(
1

2
− ε,

1

2
+ ε

)
Proof. Since the signals of voters are exchangeable, then By de Finetti’s theorem and using

Bayes rule we have that there exists a distribution function F with density f such that

P (θi = s| pivotal ∪ θi) =

∫ 1
0 q

N
2
+1(1− q)

N
2 f(q)dq∫ 1

0 q
N
2 (1− q)

N
2 f(q)dq

=

∫ 1
0 q (4q(1− q))

N
2 f(q)dq∫ 1

0 (4q(1− q))
N
2 f(q)dq

.
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Fix any ρ ∈ (0, 12) and define the set Aρ = {q ∈ [0, 1]∖
[
1
2 − ρ, 12 + ρ

]
}. We have that

P (θi = s| pivotal ∪ θi) =

∫ 1
0 q (4q(1− q))

N
2 f(q)dq∫ 1

0 (4q(1− q))
N
2 f(q)dq

=

∫ 1
2
+ρ

1
2
−ρ

q (4q(1− q))
N
2 f(q)dq +

∫
Aρ

q (4q(1− q))
N
2 f(q)dq∫ 1

2
+ρ

1
2
−ρ

(4q(1− q))
N
2 f(q)dq +

∫
Aρ

(4q(1− q))
N
2 f(q)dq

≤

∫ 1
2
+ρ

1
2
−ρ

q (4q(1− q))
N
2 f(q)dq∫ 1

2
+ρ

1
2
−ρ

(4q(1− q))
N
2 f(q)dq

+

∫
Aρ

q (4q(1− q))
N
2 f(q)dq∫ 1

2
+ρ

1
2
−ρ

(4q(1− q))
N
2 f(q)dq

≤
(
1

2
+ ρ

)
+

∫
Aρ

(4q(1− q))
N
2 f(q)dq∫ 1

2
+ρ

1
2
−ρ

(4q(1− q))
N
2 f(q)dq

.

Notice now that for all q ∈ [0, 1] the expression q(1 − q) has a maximum at q = 1
2 , is

symmetric around this point, and is monotonically increasing for q < 1
2 and decreasing for

q > 1
2 . Furthermore, define f(q) = supq∈(0, 12−ρ) f(q) and f(q̄) = supq∈( 1

2
+ρ,1) f(q), and also

f(q̂) = max{f(q), f(q̄)}. Given this, we have∫
Aρ

(4q(1− q))
N
2 f(q)dq =

∫ 1
2
−ρ

0
(4q(1− q))

N
2 f(q)dq +

∫ 1

1
2
+ρ

(4q(1− q))
N
2 f(q)dq

≤
[
1

2
− ρ

] [
4

(
1

2
− ρ

)(
1

2
+ ρ

)]N
2

f(q)

+

[
1−

(
1

2
+ ρ

)][
4

(
1

2
+ ρ

)(
1

2
− ρ

)]N
2

f(q̄)

≤
[
1

2
− ρ

] (
1− 4ρ2

)N
2 f(q) +

[
1

2
− ρ

] [
1− ρ2

]N
2 f(q̄)

≤ [1− 2ρ]
(
1− 4ρ2

)N
2 f(q̂).

Similarly, using Assumption 1 there exists a κ > 0 and δ > 0 such that for any α < δ if

we define f(q̃) = infq∈( 1
2
, 1
2
+α) f(q) we have that f(q̃) ≥ κ and thus is non-zero, and

∫ 1
2
+ρ

1
2
−ρ

(4q(1− q))
N
2 f(q)dq ≥

∫ 1
2
+ρ

1
2

(4q(1− q))
N
2 f(q)dq

≥ f(q̃)

∫ 1
2
+ρ

1
2

(4q(1− q))
N
2 dq

≥ f(q̃)

∫ 1
2
+ρ2

1
2

(4q(1− q))
N
2 dq

≥ ρ2
(
1− 4ρ4

)N
2 f(q̃).
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Therefore, we have∫
Aρ

(4q(1− q))
N
2 f(q)dq∫ 1

2
+ρ

1
2
−ρ

(4q(1− q))
N
2 f(q)dq

≤
[1− 2ρ]

(
1− 4ρ2

)N
2 f(q̂)

ρ2 (1− 4ρ4)
N
2 f(q̃)

≤ (1− 2ρ) f(q̂)

ρ2f(q̃)

(
1− 4ρ2

1− 4ρ4

)N
2

.

Since 1−4ρ2

1−4ρ4
< 1 for all ρ ∈ (0, 12) and all the terms in (1−2ρ)f(q̂)

ρ2f(q̃)
are independent of N , we

have that for all δ there exists a N such that∫
Aρ

(4q(1− q))
N
2 f(q)dq∫ 1

2
+ρ

1
2
−ρ

(4q(1− q))
N
2 f(q)dq

< δ.

Thus, we have just shown that given ρ for all δ > 0 there exists a N such that

P (θi = s| pivotal ∪ θi) <
1

2
+ ρ+ δ.

Since ρ and δ can be chosen as small as desired, we have that for all ε > 0 there exists a

N such that

P (θi = s| pivotal ∪ θi) <
1

2
+ ε.

Finally, proceeding as above it can be shown that for all ε > 0 there exists a N such that

P (θi = s| pivotal ∪ θi) >
1
2 − ε.

The intuition behind lemma 1 is the following. Conditional on being pivotal and all other

N voters voting informatively, it must be that the split of signals in the population is N
2 for

candidate 0 and N
2 for candidate 1. By de Finetti’s theorem there exists a random variable

q such that, given the realization of q, all signals are correct with probability q (de Finetti’s

theorem applied to our setting implies that although signals are correlated, by exchangeability

there exists a random variable q such that conditional on q all signals are iid). Given that q is

not known but its distribution is, the pivotal voter infers that with a large number of voters

if he is pivotal it must be that q is arbitrarily close to 1
2 , as otherwise one of the candidates

would have received exponentially (in the number of votes) more votes than the other and

the voter would not have been pivotal.

Given lemma 1 we have the following result:

Proposition 1. If all other voters vote informatively, then if a voter’s bias is non-negative,

there exits an N̂ such that for all N > N̂ it is a strictly dominant strategy for this voter to

vote following his bias.
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Proof. For any non-negative bias level bi fix any ε > 0 such that ε < |bi|. According to the

result in lemma 1 and equation (1) we have that if N is large enough

∆ui(θi) > P (pivotal|θi) [−2ε− 2bi] .

Hence, if bi < 0, then the voter votes for candidate 0. Similarly,

∆ui(θi) < P (pivotal|θi) [2ε− 2bi] .

Which means that if bi > 0, then the voter votes for candidate 1.

The intuition for the result in proposition 1 is that given lemma 1, when other voters vote

informatively a voter has no incentive to vote following his signal if his bias is non-negative.

This is because, however small the bias, since the voter’s (and other voters’) signal contains

no information when the voter is pivotal, the only factor affecting the voter’s expected payoff

is the bias.

Our final result shows that the candidate that does not coincide with the state of nature

can win with probability one.

Proposition 2. If the number of voters with positive bias is at least as high as the number of

voters with negative bias, then candidate 1 wins the election regardless of the state of nature.

If the number of voters with negative bias is less than the number of voters with positive bias,

then candidate 0 wins the election regardless of the state of nature.

Proof. Define bm as a bias level such that half the voters have a bias of at most bm and half

the voters have a bias of at least bm. Note that this value need not be unique. Assume that

the number of voters with positive bias is higher than number of voters with negative bias.

This implies bm > 0. The proof for the case where the number of voters with positive bias is

lower than number of voters with negative bias follows the same logic as what follows and is

thus omitted.

From equation (1) we have that the increase in utility from voting to candidate 0 as

opposed to voting for candidate 1 is proportional to P (s = 0| pivotal ∪ θi)− 1
2−bi. Therefore,

for any voting strategy employed by other voters we have that there exists a cut-off b∗(θ)

such that if bi < b∗(θ), then the voter i votes for 0 and if bi ≥ b∗(θ), then voter i votes for

1. Note that b∗(0) ≥ b∗(1). Note that voters with bias bi < b∗(1) always vote for 0 regardless

the signal they receive, voters with bias bi ≥ b∗(0) always vote for 1 regardless of the signal

they receive, whereas voters with bias b∗(1) ≥ bi < b∗(0) vote informatively, i.e. according to

their signal.
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We now distinguish three cases:

1) If bm ≥ b∗(0), then there are at least half the voters with bias bi ≥ b∗(0). If not exactly

half, then this means that candidate 1 always wins, and no voter is ever pivotal, which as

above means that if s = 0 information aggregation fails. If instead there are equal numbers,

then a voter is only ever pivotal if all those with a bias bi < b∗(0) receive signal 0, which since

N is large implies the state is 0 and all voters should vote for 0 regardless of their signal.

This contradicts the fact that bm > b∗(0), i.e. there are voters with bias such that they vote

1.

2) If bm < b∗(1), then there are at least than half the voters with bias bi < b∗(1), if

not exactly half, then candidate 0 always wins, no voter is ever pivotal, and as above this

implies that if s = 1 information aggregation fails. If instead there are equal numbers, then

a voter is only ever pivotal if all those with a bias bi ≥ b∗(1) receive signal 1, which since N

is large implies the state is 1 and all voters should vote for 1 regardless of their signal. This

contradicts the fact that bm < b∗(1), i.e. there are voters with bias such that they vote 0.

3) Finally, consider the case with b∗(1) ≤ bm < b∗(0) and assume there are voters with

bias in (bm, b∗(0)) (otherwise proceed as in the case where bm > b∗(0)) and voters with bias

(b∗(1), bm) (otherwise proceed as in the case where bm < b∗(1)). Let N− be the number of

voters with bias (b∗(1), bm) and N+ be the number of voters with bias (bm, b∗(0)).

If N+

N++N− > (<) N−

N++N− , then as N becomes large if a voter is pivotal it must be that

the state is 0 (1), in which case the best response is to vote 0 (1), thus contradicting the fact

that b∗(1) ≥ bm ≥ b∗(0).

Finally, if N+

N++N− = N−

N++N− , then the result in lemma 1 can be applied to the population

N−+N+ to show that the posterior on signal quality is arbitrarily close to 1
2 . This means that

a voter votes following his bias only, which contradicts the fact that b∗(1) ≥ bm ≥ b∗(0).

4 Conclusions

This paper studies an election where there is correlated information with the possibility of

misinformation and voter bias. We find that for any arbitrarily small levels of misinformation

and bias information fails to aggregate if the electorate is large enough. The key to the

result is that conditional on being pivotal a voter infers that signals are not informative and

thus he is better off voting following his bias. The paper contributes to the large literature

on information aggregation in large elections by studying the less explored setting where

there is correlated information and being novel in the introduction of a small probability of

misinformation.
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