A characterization of the Taylor expansion of λ-terms

CSL’ 2013

Fanny He
fanny.he.math@gmail.com

Pierre Boudes, Michele Pagani
boudes,pagani@lipn.
univ-paris13.fr

02 September 2013
Recall on quantitative semantics

\[\lambda \text{-calculus} \]

\[X \mapsto (F)X \]

\[\downarrow \beta^* \]

\[Y \]

\[x \mapsto f(x) \]

Semantics

is the Taylor expansion of \(f \)
Recall on quantitative semantics

λ-calculus

\[X \mapsto (F)X \]

\[\downarrow \beta^\ast \]

\[Y \]

\[\sum_{n=0}^{\infty} \frac{1}{n!} (\partial_x^n f \cdot x^n)0 \] is the *Taylor Expansion* of \(f \)

Semantics

\[x \mapsto f(x) \]

\[\sum_{n=0}^{\infty} \frac{1}{n!} (\partial_x^n f \cdot x^n)0 \]
\(\lambda\)-calculus \(\xrightarrow{\text{Taylor Expansion}}\) Resource calculus

\(\lambda\)-calculus

Grammar: \(\Lambda : T, U ::= x | \lambda x. T | (T)U\)

\[(\lambda x. T)U \xrightarrow{\beta} T[U/x]\]

Resource calculus

Grammar: \(\Delta : t, u ::= x | \lambda x. t | \langle t \rangle[u_1, \ldots, u_n]\)

\[\langle \lambda x. t \rangle[u_1, \ldots, u_n] \xrightarrow{r} \sum_{\sigma \in S_n} t\{u_{\sigma(1)}/x_1, \ldots, u_{\sigma(n)}/x_n\}\]

Substitutes each occurrence of \(x\) in \(t\) by only one \(u_i\)

Reduces to 0 otherwise

\(M \xrightarrow{\text{Taylor Expansion}} \sum_{t \in \text{taylor}(M)} \alpha_t t \xrightarrow{\text{NF}} \text{NF}(\sum_{t \in \text{taylor}(M)} \alpha_t t)\)

Goal: Characterize the image of this transformation
Theorem [Characterization]:

\[\exists M \\lambda \text{-term s.t. } \sum_{t \in \Delta} \alpha_t \cdot t = \text{NF}(\text{taylor}(M)) \text{ iff } \]

0 \ldots
1 \ldots
2 \ldots
3 \ldots
Theorem [Characterization]:

\[\exists M \lambda \text{-term s.t. } \sum_{t \in \Delta} \alpha_t \cdot t = \text{NF}(\text{taylor}(M)) \iff \]

0 Theorem [Ehrhard - Regnier]:
\[\forall \alpha_t \in \text{NF}(\text{taylor}(M)), \text{ if } \alpha_t \neq 0 \text{ then } \alpha_t = \frac{1}{m(t)} \]

1 \[\ldots \]
2 \[\ldots \]
3 \[\ldots \]
Theorem [Characterization]:

∀T ⊆ Δ, ∃M λ-term s.t. T = NF(τ(M)) iff

Theorem [Ehrhard - Regnier]:

∀α_t ∈ NF(taylor(M)), if α_t ≠ 0 then α_t = \frac{1}{m(t)}
Theorem [Characterization]:

\[\forall \mathcal{T} \subseteq \Delta, \exists M \text{ \(\lambda\)-term s.t.} \ \mathcal{T} = \text{NF}(\tau(M)) \text{ iff} \]

0 Theorem [Ehrhard - Regnier]:
\[\forall \alpha_t \in \text{NF}(\text{taylor}(M)), \text{ if } \alpha_t \neq 0 \text{ then } \alpha_t = \frac{1}{m(t)} \]

1 \(\text{FV}(\mathcal{T}) \) is finite
2 \(\mathcal{T} \) is r.e.
3 \(\ldots \)

Conditions 1 and 2: based on Barendregt’s theorem

Theorem [Barendregt]:

Let \(\mathcal{B} \) be a Böhm-like tree. There is a \(\lambda \)-term \(M \) such that \(\text{BT}(M) = \mathcal{B} \) if, and only if, \(\text{FV}(\mathcal{B}) \) is finite and \(\mathcal{B} \) is r.e.
Theorem [Characterization]:

∀\mathcal{T} \subseteq \Delta, \exists M \lambda\text{-term s.t. } \mathcal{T} = \text{NF}(\tau(M)) \text{ iff }

0 Theorem [Ehrhard - Regnier]:
 \forall \alpha_t \in \text{NF}(\text{taylor}(M)), \text{ if } \alpha_t \neq 0 \text{ then } \alpha_t = \frac{1}{m(t)}

1 \text{FV}(\mathcal{T}) \text{ is finite}

2 \mathcal{T} \text{ is r.e.}

3 \mathcal{T} \text{ is an ideal}
Theorem [Characterization]:

\[\forall \mathcal{T} \subseteq \Delta, \exists M \lambda\text{-term s.t. } \mathcal{T} = \text{NF}(\tau(M)) \text{ iff} \]

0. **Theorem [Ehrhard - Regnier]:**
 \[\forall \alpha_t \in \text{NF}(\text{taylor}(M)), \text{if } \alpha_t \neq 0 \text{ then } \alpha_t = \frac{1}{m(t)} \]

1. \(\text{FV}(\mathcal{T}) \) is finite

2. \(\mathcal{T} \) is r.e.

3. \(\mathcal{T} \) is an ideal

Resource calculus and Taylor expansion

Ideal

Two corollaries and further works
Plan

Resource calculus and Taylor expansion

Ideal

Two corollaries and further works
Resource calculus

Grammar: \(\Delta : t, u ::= x | \lambda x.t | \langle t \rangle[u_1, \ldots, u_n] \)

Relation \(\rightarrow^r \) (strongly normalizing, confluent):

\[
\langle \lambda x.t \rangle[s_1, \ldots, s_n] \rightarrow^r \begin{cases}
\{t[s_{\sigma(1)}/x_1, \ldots, s_{\sigma(n)}/x_n] \mid \sigma \in S_n \} \\
\emptyset \text{ if } \deg_x(t) \neq n
\end{cases}
\]

Unique normal form: \(\text{NF}(t) \)

\[
\text{NF}(\mathcal{T}) \triangleq \bigcup_{t \in \mathcal{T}} \text{NF}(t)
\]

Taylor expansion: \(\Lambda \longrightarrow \mathcal{P}(\Delta) \)

\[
\tau(x) \triangleq \{x\}
\]

\[
\tau(\lambda x. T) \triangleq \{\lambda x.t \mid t \in \tau(T)\}
\]

\[
\tau((T)U) \triangleq \{\langle t \rangle[u_1, \ldots, u_k] \mid t \in \tau(T); k \in \mathbb{N}; u_1, \ldots, u_k \in \tau(U)\}
\]
A first example : \(S \)

\[
S := \lambda xyz.((x)z)(y)z
\]

Böhm tree of \(S \):

```
    \lambda xyz.x
   / \  
  z   y
   \ /  
  y   z
```

Taylor expansion of \(S \):

\[
\tau(S) = \{ \lambda xyz.\langle x\rangle 11, \lambda xyz.\langle x\rangle [z, \ldots, z] [\langle y\rangle 1, \ldots, \langle y\rangle 1], \ldots \}
\]

\[
= \{ \lambda xyz.\langle x\rangle [z^n][\langle y\rangle [z^{n_1}] \ldots, \langle y\rangle [z^{n_k}]] ; k, n, n_1, \ldots, n_k \in \mathbb{N} \}
= \text{NF}\left(\tau(S)\right)
\]
Two other examples

\((S)II = ((\lambda xyz.((x)z)(y)z)\lambda x.x)\lambda x.x \overset{\beta^*}{\rightarrow} \lambda x.(x)x = \delta\)

\(\tau((S)II) = \{\langle\lambda xyz.<x>11\rangle11, \langle\lambda xz.<x>[z,\ldots,z][<y>1,\ldots,<y>1][I,\ldots,I][I,\ldots,I],\ldots\}\}

\(\text{NF}(\tau((S)II)) = \{\langle\lambda x.\lambda yz.<x>11\rangle11, \ldots\}\)
Two other examples

\[(S)II = ((\lambda xyz.((x)z)(y)z)\lambda x.x)\lambda x.x \xrightarrow{\beta^*} \lambda x. (x)x = \delta\]

\[\tau((S)II) = \{\langle \lambda xyz.\langle x\rangle 11\rangle 11, \langle \lambda xyz.\langle x\rangle [z, \ldots, z][\langle y\rangle 1, \ldots, \langle y\rangle 1]\langle I, \ldots, I\rangle[I, \ldots, I][I, \ldots, I], \ldots\}\]

\[\text{NF}(\tau((S)II)) = \{\langle \lambda x.\lambda yz.\langle x\rangle 11\rangle 11, \langle \lambda xyz.\langle x\rangle [z, \ldots, z][\langle y\rangle 1, \ldots, \langle y\rangle 1]\langle I, \ldots, I\rangle[I, \ldots, I][I, \ldots, I], \ldots\}\]
Two other examples

\[(S)\text{II} = ((\lambda xyz.((x)z)(y)z)\lambda x.x)\lambda x.x \xrightarrow{\beta^*} \lambda x.(x)x = \delta\]

\[\tau((S)\text{II}) = \{\langle\lambda xyz.\langle x\rangle11\rangle11, \langle\lambda xyz.\langle x\rangle[z, \ldots, z][\langle y\rangle1, \ldots, \langle y\rangle1]\rangle[I, \ldots, I][I, \ldots, I], \ldots\}\]

\[\text{NF}(\tau((S)\text{II})) = \{\langle\lambda x.\lambda yz.\langle x\rangle11\rangle11, \langle\lambda xyz.\langle x\rangle[z, \ldots, z][\langle y\rangle1, \ldots, \langle y\rangle1]\rangle[I, \ldots, I][I, \ldots, I], \ldots\} = \{\lambda x.\langle x\rangle[x^n], n \in \mathbb{N}\} = \tau(\delta)\]
Two other examples

\[(S)II = ((\lambda yz.((x)z)(y)z)\lambda x.x)\lambda x.x \xrightarrow{\beta^*} \lambda x. (x)x = \delta\]

\[\tau((S)II) = \{\langle \lambda yz. \langle x \rangle 11 \rangle 11, \langle \lambda yz. \langle x \rangle [z, \ldots, z] [\langle y \rangle 1, \ldots, \langle y \rangle 1] \rangle [I, \ldots, I][I, \ldots, I], \ldots\} \]

\[\text{NF}(\tau((S)II)) = \{\langle \lambda yz. \langle x \rangle [z, \ldots, z] [\langle y \rangle 1, \ldots, \langle y \rangle 1] \rangle [I, \ldots, I][I, \ldots, I], \ldots = \{\lambda x. \langle x \rangle [x^n], n \in \mathbb{N}\} = \tau(\delta)\]

\[\Omega = (\delta)\delta\]

\[\tau(\Omega) = \{\langle \lambda x. \langle x \rangle [x^{n_0}] \rangle [\lambda x. \langle x \rangle [x^{n_1}], \ldots, \lambda x. \langle x \rangle [x^{n_k}]]; k, n_0, \ldots, n_k \in \mathbb{N}\} \]

\[\text{NF}(\tau(\Omega)) = \emptyset\]
Plan

Resource calculus and Taylor expansion

Ideal

Two corollaries and further works
Ideal

Terms in normal form: $\Delta^{\text{NF}} : t ::= \lambda x_0 \ldots x_{m-1} \langle y \rangle \mu_0 \ldots \mu_{n-1}$

μ_i: finite multisets of simple terms in normal form

Uniform approximation \preceq

\[
\lambda x_0 \ldots x_{m-1} \langle y \rangle \mu_0 \ldots \mu_{n-1} \preceq t \text{ iff }
\]

(i) $t = \lambda x_0 \ldots x_{m-1} \langle y \rangle \nu_0 \ldots \nu_{n-1}$

(ii) $\forall i < n, |\mu_i| \neq \emptyset \implies \exists v \in |\nu_i|, \forall u \in |\mu_i|, u \preceq v$

\preceq-ideal

$\mathcal{T} \in \mathcal{P}(\Delta^{\text{NF}})$ ideal: downward closed, directed

- $\tau(S) = \{ \lambda x y z. \langle x \rangle [z^n][\langle y \rangle [z^{n_1}], \ldots, \langle y \rangle [z^{n_k}]]; k, n, n_1, \ldots, n_k \in \mathbb{N} \}$
- $\{ \langle x \rangle [y, z] \}$
- $\{ x[x] \}$
Ideal

Terms in normal form: Δ^{NF}: $t ::= \lambda x_0 \ldots x_{m-1}. \langle y \rangle \mu_0 \ldots \mu_{n-1}$

μ_i: finite multisets of simple terms in normal form

Uniform approximation \preceq

$\lambda x_0 \ldots x_{m-1}. \langle y \rangle \mu_0 \ldots \mu_{n-1} \preceq t$ iff

(i) $t = \lambda x_0 \ldots x_{m-1}. \langle y \rangle \nu_0 \ldots \nu_{n-1}$

(ii) $\forall i < n, |\mu_i| \neq \emptyset \implies \exists v \in |\nu_i|, \forall u \in |\mu_i|, u \preceq v$

\preceq-ideal

$\mathcal{T} \in \mathcal{P}(\Delta^{\text{NF}})$ ideal: downward closed, directed

- $\tau(S) = \{ \lambda xyz. \langle x \rangle [z^n] \langle y \rangle [z^{n_1}], \ldots, \langle y \rangle [z^{n_k}] \}; k, n, n_1, \ldots, n_k \in \mathbb{N}\}$
- $\{ \langle x \rangle [y, z] \}$
- $\{ x[x] \}, \{ x1, x[x] \}$
Ideal

Terms in normal form: $\Delta^{\text{NF}} : t ::= \lambda x_0 \ldots x_{m-1}. \langle y \rangle \mu_0 \ldots \mu_{n-1}$

μ_i: finite multisets of simple terms in normal form

Uniform approximation \preceq

$\lambda x_0 \ldots x_{m-1}. \langle y \rangle \mu_0 \ldots \mu_{n-1} \preceq t$ iff

(i) $t = \lambda x_0 \ldots x_{m-1}. \langle y \rangle \nu_0 \ldots \nu_{n-1}$

(ii) $\forall i < n, |\mu_i| \neq \emptyset \implies \exists \nu \in |\nu_i|, \forall u \in |\mu_i|, u \preceq \nu$

\preceq-ideal

$T \in \mathcal{P}(\Delta^{\text{NF}})$ ideal: downward closed, directed

- $\tau(S) = \{ \lambda x y z. \langle x \rangle [z^n][\langle y \rangle [z^{n_1}], \ldots, \langle y \rangle [z^{n_k}]] ; k, n, n_1, \ldots, n_k \in \mathbb{N} \}$
- $\{ \langle x \rangle [y, z] \}$
- $\{ x[x], \{ x1, x[x] \} \}$ $x[x, x] \preceq x[x]$
Ideal

Terms in normal form: \(\Delta^{\text{NF}} : t ::= \lambda x_0 \ldots x_{m-1}.\langle y \rangle \mu_0 \ldots \mu_{n-1} \)

\(\mu_i \): finite multisets of simple terms in normal form

Uniform approximation \(\preceq \)

\[\lambda x_0 \ldots x_{m-1}.\langle y \rangle \mu_0 \ldots \mu_{n-1} \preceq t \text{ iff } \]

(i) \(t = \lambda x_0 \ldots x_{m-1}.\langle y \rangle \nu_0 \ldots \nu_{n-1} \)

(ii) \(\forall i < n, |\mu_i| \neq \emptyset \implies \exists v \in |\nu_i|, \forall u \in |\mu_i|, u \preceq v \)

\(\preceq \)-ideal

\(\mathcal{T} \in \mathcal{P}(\Delta^{\text{NF}}) \text{ ideal: downward closed, directed} \)

- \(\tau(S) = \{ \lambda x y z.\langle x \rangle [z^n] [\langle y \rangle [z^{n_1}], \ldots, \langle y \rangle [z^{n_k}]], k, n, n_1, \ldots, n_k \in \mathbb{N} \} \)
- \(\{ \langle x \rangle [y, z] \} \)
- \(\{ x[x], \{ x1, x[x] \}? \text{ } x[x, x] \preceq x[x] \implies \{ x[x^n] | n \in \mathbb{N} \} \)
Theorem [Characterization]:

∀T ⊆ Δ, ∃M λ-term s.t. T = NF(τ(M)) iff

0 Theorem [Ehrhard - Regnier]:

∀α_t ∈ NF(taylor(M)), if α_t ≠ 0 then α_t = \frac{1}{m(t)}

1 FV(T) is finite

2 T is r.e.

3 T is an ideal
Plan

Resource calculus and Taylor expansion

Ideal

Two corollaries and further works
Corollary 1

Let $\mathcal{T} \in \mathcal{P}(\Delta^{\text{NF}})$.

There is a normalizable λ-term M such that $\text{NF}(\tau(M)) = \mathcal{T}$ iff

(i) $\text{height}(\mathcal{T})$ is finite

(ii) \mathcal{T} is a maximal clique

$\Delta^{\text{NF}} : t ::= \lambda x_0 \ldots x_{m-1}.\langle y \rangle \mu_0 \ldots \mu_{n-1}$, μ_i finite multisets of simple terms in normal form.

Coherence \preceq on Δ^{NF}:

$\lambda x_0 \ldots x_{m-1}.\langle y \rangle \mu_0 \ldots \mu_{n-1} \preceq t$ iff

(i) $t = \lambda x_0 \ldots x_{m-1}.\langle y \rangle \nu_0 \ldots \nu_{n-1}$

(ii) $\forall i < n, \forall u, u' \in |\mu_i \cdot \nu_i|, u \preceq u'$

Clique: subset of a \preceq-ideal

$\mathcal{T} \in \mathcal{P}(\Delta^{\text{NF}})$ clique: $\forall t, t' \in \mathcal{T}, t \preceq t'$
Corollary 2

Let $\mathcal{T} \in \mathcal{P}(\Delta^{NF})$.
There is a total λ-term M such that $NF(\tau(M)) = \mathcal{T}$ iff

1. $FV(\mathcal{T})$ is finite
2. \mathcal{T} is r.e.
3. \mathcal{T} is a maximal clique

Total terms

(i) $M \xrightarrow{h^*} \lambda x_0 \ldots x_{m-1}.(y)M_0 \ldots M_{n-1}$
(ii) M_0, \ldots, M_{n-1} are total
Further works

Bring the results to more expressive calculi:

- $\Lambda\mu$-calculus
 - Cannot use Barendregt’s theorem
- Non-Deterministic settings
 - Cannot use Ehrhard Regnier’s theorem
- ...