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1 Introduction

The essence of the twistor programme is to encode the differential geometry of a manifold
by holomorphic data on some auxiliary complex space (a twistor space). Thus problems in
(pseudo) Riemannian Geometry are converted into (hopefully soluble) problems in Complex
Analysis or Algebraic Geometry. As examples of such constructions, let us mention:

• The Penrose fibration CP 3 → HP 1 = S4 encodes a large part of the geometry of the
4-sphere. For instance, instanton solutions to the Yang-Mills equations on S4 pull back to
holomorphic bundles on CP 3 [30]. This forms the basis of the Atiyah-Drinfeld-Hitchin-
Manin classification of the instantons [1]. Again, horizontal curves in CP 3 project onto
branched minimal surfaces in S4. Using this Bryant [7] was able to establish the existence
of embedded minimal surfaces of arbitrary genus in S4.

• In a similar vein, consider the homogeneous fibrations

U(n+ 1)
U(r)×U(1)×U(n− r)

−→ U(n+ 1)
U(1)×U(n)

of flag manifolds over projective spaces. Again horizontal holomorphic curves in the flag
manifolds project onto branched minimal surfaces (harmonic maps) in CPn. Further, all
minimal 2-spheres in CPn arise in this way. This is the starting point of the classification
theorem for harmonic 2-spheres in complex projective spaces [9, 14, 16, 18].

• Finally we briefly consider an example with a different flavour. The space of geodesics
in R3 may be identified with the holomorphic line bundle T 1,0CP 1. Then magnetic
monopoles on R3 can be shown to correspond to certain algebraic curves (spectral curves)
in T 1,0CP 1 [20]. Somewhat more transparently, minimal surfaces in R3 correspond to al-
gebraic curves (essentially without restriction) in T 1,0CP 1 and this provides a geometrical
interpretation of the Weierstrass representation formulae [20, 27].

In this article we shall concentrate on the construction of twistor spaces rather than their
applications. We shall describe fibrations of complex manifolds over Riemannian manifolds
that generalise those in the first two of the preceding examples. For applications to the theory
of harmonic maps, the Reader is referred to the survey articles [10, 11, 29].

2 The bundle of almost complex structures

The first two examples listed above have much in common: in both cases the twistor space
is a complex manifold fibred over the Riemannian manifold of interest. The fibration is not
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holomorphic (even when this makes sense) but the fibres are complex submanifolds of the
twistor space. Let us now see how we might build such fibrations over more general Riemannian
manifolds.

So let N be a 2n-dimensional Riemannian manifold. We may at least construct such a fibration
of an almost complex manifold over N as follows: let π:J(N) → N be the bundle of almost
Hermitian structures of N . Thus the fibre at x ∈ N is

Jx(N) = {j ∈ End(TxN): j2 = −1, j skew-symmetric}.

This bundle is associated to the orthonormal frame bundle of N with typical fibre J(R2n) =
O(2n)/U(n) which is a Hermitian symmetric space (in fact it is two disjoint copies of the
compact irreducible Hermitian symmetric space SO(2n)/U(n)). In particular, the typical fibre
has an O(2n)-invariant complex structure and thus the vertical distribution V = kerdπ inherits
an almost complex structure JV . The Levi-Civita connection on the orthonormal frame bundle
induces a horizontal distribution H on J(N) so that we have a splitting

TJ(N) = V ⊕H

with dπ giving an isomorphism between H and π−1TN . This enables us to define a tautological
almost complex structure JH on H by

JHj = j

and adding this to JV gives us an almost complex structure J = JV ⊕ JH on J(N). By
construction, the fibres of π are almost complex submanifolds with respect to J .

Before going any further, let us remark that if we make a conformal change of metric on N , the
bundle J(N) remains unchanged although the horizontal distribution H will vary. However,
despite this, it can be shown that the almost complex structure J is independent of the choice
of metric within a conformal class. Thus our construction may be viewed as one in Conformal
Geometry but we shall not pursue this here.

Having got our almost complex structure, it is natural to ask whether or not it is integrable so
that J(N) is an honest complex manifold. For this, of course, it is necessary and sufficient that
the Nijenhuis tensor NJ of J vanish. The obstruction to this vanishing lies in the curvature
tensor of N [22] :

Theorem 2.1 Let j ∈ J(N) with
√
−1-eigenspace T+ ⊂ Tπ(j)N

C. Let R denote the Riemann
curvature tensor of N . Then NJ vanishes at j if and only if

R(T+, T+)T+ ⊂ T+. (1)

Thus J is integrable if (1) holds for all maximally isotropic subspaces T+ of TNC. This is a
condition on the curvature tensor that can be analysed in terms of the representation theory
of O(2n) on the space of curvature tensors and one concludes:

Corollary 2.2 J is integrable if and only if the Weyl tensor of R vanishes identically (i.e. N
is locally conformally flat).

Thus J(N) is a complex manifold only in extremely restricted circumstances. The moral to
be drawn from this is that J(N) is “too big” in general for J to be integrable. It is therefore
appropriate to seek subbundles of J(N) picked out by the geometry of N in the hope that some
of these are complex manifolds. One way to do this is is to restrict attention to those elements
of J(N) that are compatible with the holonomy of N . It is to this that we now turn.
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3 Reduction to the holonomy group

So let our 2n-dimensional manifold N have holonomy group K and let P → N denote the
holonomy bundle i.e the reduction of the orthonormal frame bundle of N to K. The typical
fibre J(R2n) of J(N) decomposes into a disjoint union of K-orbits and, correspondingly, J(N)
decomposes into a disjoint union of subbundles, each one associated to P with such an orbit as
typical fibre. We now investigate whether any of these subbundles are complex manifolds with
respect to J .

There are two aspects to this question: firstly, we are doomed to failure unless our subbundle is
J -invariant i.e is an almost complex submanifold of (J(N),J ). Since our subbundles are asso-
ciated to the holonomy bundle P , their inclusion into J(N) preserves horizontal distributions
which are therefore J -invariant. Thus, for our subbundle to be J -invariant, it is necessary
and sufficient that the fibres be J -invariant or, equivalently, that the corresponding K-orbit in
J(R2n) be a holomorphic submanifold. Secondly, once we have a J -invariant subbundle, we
must ascertain whether the induced almost complex structure thereon (also called J ) is inte-
grable. According to O’Brian-Rawnsley [22], this happens precisely when the Nijenhuis tensor
of J vanishes on the subbundle. In view of (2.1), this is a condition that can be analysed
in terms of the representation theory of K on the space of curvature tensors of metrics with
holonomy K. This last topic is dealt with in some detail in the book [25] which is our source
for most of the information about holonomy groups that we need below.

We begin by assuming that N is orientable so that K ⊆ SO(2n). Of course, SO(2n) acts
transitively on connected components of J(R2n) and so we have two orbits both of which are
complex submanifolds. The corresponding subbundles are denoted J+(N) and J−(N) with
J+(N) consisting of those almost Hermitian structures j compatible with the orientation in
the sense that x1 ∧ jx1 ∧ . . . ∧ xn ∧ jxn is a non-negative multiple of the volume form for any
vectors x1, . . . , xn ∈ Tπ(j)N . We may now examine the integrability of J on J+(N) and J−(N)
separately. If 2n ≥ 6, we get nothing new and J is integrable precisely when the Weyl tensor
vanishes [15, 22]. However, when N is 4-dimensional, it is a celebrated result of Singer-Thorpe
[26] that the Weyl tensor splits into two parts under the action of SO(4) and then each part
constitutes the obstruction to the integrability of J on one of J+(N) or J−(N) [2]. In summary,
we have

Theorem 3.1 If 2n ≥ 6, J is integrable on J+(N) or J−(N) if and only if N is locally
conformally flat. If 2n = 4, J is integrable on J+(N) if and only if N is anti-self-dual and on
J−(N) if and only if N is self-dual.

To go further, we must consider N with holonomy strictly contained in SO(2n). To simplify
matters, we shall suppose that N is simply-connected, oriented and irreducible. If N is not
a symmetric space, the classification of Berger [4] tells us that the only possiblities for K
are SO(2n), U(n), SU(n), Sp(1)Sp(n2 ), Sp(n2 ) or Spin(7) (this last acting on R8 via the spin
representation). Before discussing each of these in turn, let us establish some generalities about
K-orbits in J(R2n).

Firstly, an analysis of the complex structure of J(R2n) (c.f. [22]) provides us with the following
criterion for the holomorphicity of a K-orbit.

Lemma 3.2 The K-orbit of j ∈ J(R2n) is a complex submanifold of J(R2n) if and only if the
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Lie algebra k ⊂ so(2n) of K satisfies

[[k, j], j] = [k, j]

The second fact we use about a holomorphic K-orbit is

Proposition 3.3 If the K-orbit of j is a holomorphic submanifold then the stabiliser of j is
the centraliser of a torus in K and, in particular, contains a maximal torus in K.

To prove this, observe that a connected component of the Kähler manifold J(R2n) is an adjoint
orbit of SO(2n) and the inclusion may be regarded (after identifying so(2n) with its dual) as the
moment map for the (isometric, holomorphic and hence symplectic) action of SO(2n). Now
a holomorphic K-orbit acquires a K-invariant Kähler structure from J(R2n) and hence, by
the functoriality of the moment map construction, is an adjoint orbit of K. This suffices to
establish (3.3).

For our first application of these results, let us suppose that N is a Kähler manifold with
K = U(n). We start by considering the situation in a typical fibre: let j0 ∈ J(R2n) be the
complex structure corresponding to the Kähler structure. Then j0 lies in the centre of u(n) and
so lies in any maximal toral subalgebra of u(n). It is now easy to conclude from (3.2) and (3.3)
that the U(n) orbit of j is a holomorphic submanifold of J(R2n) if and only if j commutes with
j0. This provides us with a simple geometric interpretation of the holomorphic orbits: let T be
the
√
−1-eigenspace of j0; if j commutes with j0 then we have an orthogonal decomposition of

T into eigenspaces of j so that
T = T ′ ⊕ T ′′

with j = j0 on T ′ and j = −j0 on T ′′. Conversely, an such splitting of T determines a j
commuting with j0 by the above prescription. Thus the holomorphic U(n)-orbits are just the
Grassmannians Gr(T ) of r-dimensional complex subspaces of T for r = 0, 1, . . . , n.

The corresponding subbundles are just the Grassmannian bundles Gr(T 1,0N) embedded in
J(N) by the map

W 7−→ jW =

{ √
−1 on W ⊕ (W⊥ ∩ T 0,1N)
−
√
−1 on W ⊕ (W⊥ ∩ T 1,0N).

These Grassmannian bundles with the almost complex structure J inherited from J(N) where
considered by O’Brian-Rawnsley (op. cit.) who showed that for 1 ≤ r ≤ n− 1, J is integrable
on Gr(T 1,0N) if and only if the Bochner tensor of N vanishes. Of course, G0(T 1,0N) and
Gn(T 1,0) are just the images of the sections of J(N) defined by the Kähler structure and its
negative and so always have integrable J .

As an example of this development, let us take N to be a complex projective space CPn. In
this case the Bochner tensor vanishes so that J is integrable on each Gr(T 1,0CPn). In fact,
Gr(T 1,0CPn) is naturally isomorphic to the flag manifold U(n+1)/U(r)×U(1)×U(n− r) and
the bundle projection is just the homogeneous fibration discussed in the introduction .

Finally we remark that the Grassmannian bundles always acquire an integrable complex struc-
ture from the holomorphic frame bundle of N . For this complex structure the bundle projection
is holomorphic and so does not coincide with our J unless the fibres are zero-dimensional (i.e.
r = 0 or n).
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If N is Ricci-flat Kähler so that K = SU(n) we get nothing new: the only holomorphic orbits
are the Grassmannian orbits we have already discovered. However, in this case, the Bochner
tensor constitutes the whole of the curvature tensor and so unless N is flat, J is not integrable
for 1 ≤ r ≤ n− 1.

Examples Let us illustrate the situation by considering the two 4-dimensional symmetric
spaces. Firstly, let N = S4 with holonomy SO(4). Of course S4 is conformally flat so that
both J+(S4) and J−(S4) are both complex manifolds with respect to J . Indeed, both these
spaces are isometrically biholomorphic to SO(5)/U(2) ∼= CP 3 and the projections are just the
Penrose fibration and its post-composition with the antipodal map.

Now let N = CP 2 which has holonomy U(2) and is self-dual but not conformally flat. From
(3.1) we conclude that J is integrable on J−(CP 2) but not on J+(CP 2). In fact, we may deduce
this result from the above discussion since it is easy to show that j ∈ J−(R4) if and only if
[j0, j] vanishes and j 6= ±j0. This provides an isomorphism of J−(R4) with G1(T ) ∼= CP 1 and
so we may identify J−(CP 2) with the flag manifold P (T 1,0CP 2). The integrability of J−(CP 2)
now follows from the fact that the Bochner tensor of CP 2 vanishes (for a Kähler surface, this is
the same as being self-dual). In J+(CP 2) on the other hand, the only subbundles on which J
is integrable are the two copies of CP 2 corresponding to the Kähler structure and its negative.

Consider now the case of quaternionic Kähler manifolds, that is manifolds with holonomy
contained in Sp(1)Sp(k) [24] where 2n = 4k. Geometrically, this means that there is a parallel
subbundle C of End(TN) locally spanned by sections I, J , K which satisfy the familiar identities

I2 = J2 = K2 = −1, IJ = −JI = K etc. (2)

Following [24], we identify the representation of Sp(1)Sp(k) on a complexified tangent space T
as follows

T ∼= H ⊗C E

where H and E are the 2 and 2k complex dimensional representations of Sp(1) and Sp(k)
respectively. In this setting the real structure on T is the tensor product of the quaternionic
structures jH and jE on H and E.

Let us now suppose that K = Sp(1)Sp(k) and consider K-orbits in J(R4k). We begin by
recalling that H and E carry invariant complex symplectic forms ωH and ωE whose tensor
product gives the metric on T . Using (3.2) and (3.3), one may now deduce that there are three
kinds of holomorphic orbit: the first and most important of which arise by choosing a complex
line H+ ⊂ H and considering the almost complex structure with

√
−1-eigenspace

T 1,0 = H+ ⊗ E.

This is Hermitian since ωH necessarily vanishes on H+. These almost complex structures
comprise a single orbit P (H) ∼= Sp(1)/U(1) which can also be described as the elements in a
fibre of C with square −1. This is just the sphere of radius 2 (with respect to the trace norm)
in C.

Dual to this orbit is one composed of almost complex structures with
√
−1-eigenspace

T 1,0 = H ⊗ E+

where E+ ⊂ E is a Lagrangian subspace. Sp(k) acts transitively on such E+ and we get a
single orbit isomorphic to Sp(k)/U(k). Finally, there is a class of holomorphic orbits obtained
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by mixing these constructions. Pick H+ ⊂ H and E+ ⊂ E with E+ isotropic for ωE but not
maximally isotropic (Lagrangian). Then we have a jE invariant decomposition

E = E+ ⊕E0 ⊕ E−

with E0 stable under jE and jEE
+ = E−. Then the orbit of the j with

√
−1-eigenspace

(H+ ⊗ E0) ⊕ (H ⊗ E+)

is holomorphic and is isomorphic to Sp(1)×Sp(k)/U(1)×U(r)×Sp(k−r) where dimCE
+ = r.

These three kinds of orbit exhaust the holomorphic orbits of Sp(1)Sp(k) in J(R4k).

Turning to the integrability of J on the corresponding subbundles, the first orbit considered
corresponds to the radius 2 sphere bundle of C and it is a theorem of Salamon [24] that J is
always integrable on this bundle. As for the remaining subbundles, the analysis in [25] of the
curvature of quaternionic Kähler metrics can be used to show that J is integrable precisely
when N is locally symmetric and so locally isometric to quaternionic projective space.

In case that K = Sp(k), the bundle C is flat and so spanned by global parallel sections I, J , K
satisfying (2). Such manifolds are called hyper-Kähler manifolds and have been the object of
much recent study (c.f. [25]). From our point of view though, we get nothing new. Sp(k) acts
trivially on H and so the sphere bundle of C decomposes into the images of the global parallel
sections aI + bJ + cK where a2 + b2 + c2 = 1 and, of course, J is integrable on all of these. As
for the remaining subbundles, J is not integrable on any of these unless N is flat.

Finally, we must consider the case K = Spin(7) acting on R8 by the spin representation. It
turns out that there are two holomorphic orbits in J(R8) isomorphic to SO(7)/U(3) and the
5-quadric SO(7)/SO(2) × SO(5). However, the form of the curvature tensor prevents J from
being integrable on either of the corresponding subbundles.

This concludes the analysis of J(N) when N is not locally symmetric. We have seen that
with the notable exception of the quaternionic Kähler manifolds, honest complex submanifolds
of J(N) are pretty hard to come by. However, the situation is quite different for symmetric
spaces. Indeed, using (2.1), (3.2) and (3.3), one can prove

Lemma 3.4 If N is locally symmetric and irreducible, then the K-orbit of j ∈ J(R2n) is a
complex submanifold if and only if the Nijenhuis tensor of J vanishes on the corresponding
subbundle of J(N).

Thus in this situation our subbundle has integrable J as soon as it is an almost complex
manifold and one would expect to find a good supply of complex submanifolds of J(N). This
is indeed the case as we shall now see.

4 Flag manifolds and symmetric spaces

We now suppose that N is an irreducible 2n-dimensional Riemannian symmetric space. Thus
we may realise N as a coset space N = G/K with Gτ ⊂ K ⊂ (Gτ )0 for some involution τ of G.
Now K is (a covering of) the holonomy group of N and similarly the coset fibration G→ G/K
covers the holonomy bundle P → N . In this setting, J(N) is associated to G:

J(N) ∼= G×K J(R2n)
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and if K/H is a K-orbit in J(R2n) then the corresponding subbundle is G ×K K/H = G/H
and the projection is just the coset fibration. Thus we see that the subbundles of J(N) that
we are considering are just the orbits of G in J(N). We may now rephrase (3.4) as follows:

Proposition 4.1 Let j ∈ J(N). Then G · j is an almost complex submanifold of J(N) on
which J is integrable if and only if j lies in the zero-set of the Nijenhuis tensor NJ .

This focusses our attention on the zero-set of NJ which we denote by Z. In favourable cir-
cumstances, the structure of this set can be completely described. We begin by assuming
that N is of compact type so that G is compact and semi-simple. We also assume that N
is inner i.e. that τ is an inner involution of G or, equivalently, that rankG = rankK. The
class of inner symmetric spaces include the even-dimensional spheres, the Hermitian symmet-
ric spaces, the quaternionic Kähler symmetric spaces and indeed all symmetric G-spaces for
G = SO(2n+1), Sp(n), E7, E8, F4 and G2. Moreover, all inner symmetric spaces are necessarily
even-dimensional and so fit into our framework.

Our assumption that N be inner can also be motivated by (3.3): the stabiliser in G of j ∈ Z is
the centraliser of a torus in K and so contains a maximal torus of K; if N is inner, this torus
is also maximal in G from which it follows that the stabiliser is the centraliser of a torus in G.
Thus, for N inner, our orbit is of the form G/C(T ) for some torus T ⊂ G and is therefore a
flag manifold (c.f. [31]). According to Borel [5], these exhaust the compact Kählerian G-spaces
for G semi-simple. We now have the following remarkable theorem:

Theorem 4.2 ([12]) Let N = G/K be a simply-connected inner Riemannian symmetric space
of compact type. Then Z consists of a finite number of connected components on each of which
G acts transitively. Moreover, any G-flag manifold is realised as such an orbit for some N .

Remark A similar result for a certain subset of Z has been proved by Bryant [8].

The proof of (4.2) requires a detour into the geometry of flag manifolds and reveals an interesting
interaction between the complex geometry of flag manifolds and the real geometry of inner
symmetric spaces. For this, we begin by noting that a coset space of the form G/C(T ) admits
several invariant Kählerian complex structures in general [6]. To fix attention on just one of
these, we use a complex realisation of G/C(T ) as follows: having fixed a complex structure,
the complexified group GC acts transitively on G/C(T ) by biholomorphisms with parabolic
subgroups as stabilisers. Conversely, if P ⊂ GC is a parabolic subgroup then the action of
G on GC/P is transitive and G ∩ P is the centraliser of a torus in G. Let us examine the
infinitesimal situation: let F = G/C(T ) be a flag manifold and let o ∈ F . We have a splitting
of the Lie algebra of G

gC = h⊕m

with m ∼= ToF and h the Lie algebra of the stabiliser of o in G. An invariant complex structure
on F induces an ad h-invariant splitting of mC into (1, 0) and (0, 1) spaces

mC = m+ ⊕m−

with [m+,m+] ⊂ m+ by integrability. One can show that m+ and m− are nilpotent subal-
gebras of gC and in fact hC ⊕m− is a parabolic subalgebra of gC with nilradical m−. If P
is the corresponding parabolic subgroup of GC then P is the stabiliser of o and we obtain a
biholomorphism between the complex coset space GC/P and the flag manifold F .
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Conversely, let P ⊂ GC be a parabolic subgroup with Lie algebra p and let n be the conjugate
of the nilradical of p (with respect to the real form g). Then H = G∩P is the centraliser of a
torus and we have orthogonal decompositions (with respect to the Killing inner product)

p = hC ⊕ n, gC = hC ⊕ n⊕ n

which define an invariant complex structure on G/H realising the biholomorphism with GC/P .

The relationship between a flag manifold F = GC/P and an inner symmetric space comes
from an examination of the central descending series of n. Recall that this is a filtration
0 = nk+1 ⊂ nk ⊂ . . . ⊂ n1 = n of n defined by

ni = [n,ni−1] .

We orthogonalise this filtration using the Killing inner product by setting

gi = n⊥i+1 ∩ ni

for i ≥ 1 and extend this to a decomposition of gC by setting g0 = hC = (g∩p)C and g−i = gi
for i ≥ 1. Then

gC =
∑

gi

is an orthogonal decomposition with

p =
∑
i≤0

gi, n =
∑
i>0

gi .

The crucial property of this decomposition is that

[gi,gj ] ⊂ gi+j

which can be proved by demonstrating the existence of an element ξ ∈ h with the property
that, for each i, ad ξ has eigenvalue

√
−1i on gi. This element ξ (necessarily unique since

g is semi-simple) was shown to exist by Burstall-Rawnsley [12] who called it the canonical
element of p. Since ad ξ has eigenvalues in

√
−1Z, Ad expπξ is an involution of g which we

exponentiate to obtain an inner involution τξ of G and thus an inner symmetric space G/K
where K = (Gτξ)0. Clearly, K has Lie algebra given by

k = g ∩
∑
i

g2i

and so contains H whence we obtain a homogeneous fibration G/H → G/K of our flag man-
ifold over our inner symmetric space. Moreover, this fibration is essentially unique: the only
ambiguity in the prescription is that several points in the symmetric space might have the same
stabiliser K (e.g. antipodal points on a sphere). However, the number of such points is finite
and so we only get a finite number of such fibrations. We call these fibrations the canonical
fibrations of F . To summarise:

Theorem 4.3 Let F = GC/P be a flag manifold. Then there is a unique inner symmetric
space G-space N associated to F together with a finite number of homogeneous fibrations F →
N .

Let us emphasise that this construction depends on nothing but the conjugacy class of p ⊂ gC

and the choice of compact real form g. Equivalently, it depends solely on the choice of invariant
complex structure on F .
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We have now seen that every flag manifold fibres over an inner symmetric space. Conversely, it
is straightforward to show [12] that every inner symmetric space is the target of the canonical
fibrations of at least one flag manifold. Let us now see how this story relates to the geometry
of J(N).

So let p:F → N be a canonical fibration. By construction, the fibres of p are complex sub-
manifolds of F and this allows us to define a fibre map ip:F → J(N) as follows: at f ∈ F we
have an orthogonal splitting of TfF into horizontal and vertical subspaces both of which are
invariant under the complex structure of F . Then dp restricts to give an isomorphism of the
horizontal part with Tp(f)N and therefore induces an almost Hermitian structure on Tp(f)N :
this is ip(f) ∈ Jp(f)N . Such a construction is possible whenever we have a Riemannian sub-
mersion of a Hermitian manifold with complex submanifolds as fibres. In the case at hand we
have:

Proposition 4.4 ip:F → J(N) is a G-equivariant holomorphic embedding.

This implies that ip(F ) is an almost complex submanifold of J(N) on which J is integrable.
Thus as a corollary of (4.1) and (4.4) we have

Corollary 4.5 ip(F ) is a G-orbit in Z ⊂ J(N).

In particular, this guarantees that Z 6= ∅. Moreover, it turns out that the converse to (4.5) is
true.

Theorem 4.6 ([12]) If j ∈ Z ⊂ J(N) then G · j is a flag manifold canonically fibred over N .
In fact, G · j = ip(F ) for some canonical fibration p:F → N of a flag manifold F .

For this, the main observation is the following: at π(j), we have the symmetric decomposition

g = k⊕ q

with q ∼= Tπ(j)N . If q− is the (0, 1)-space for j then

[q−,q−]⊕ q−

is the nilradical of a parabolic subalgebra p. One can then show that G · j is equivariantly
biholomorphic to the corresponding flag manifold GC/P as described in (4.6).

We are now in a position to complete the proof of (4.2). We have seen each canonical fibration
of a flag manifold gives arise to a G-orbit in Z for some inner symmetric G-space N and
that all such orbits arise in this way. But, for fixed G, there are only a finite number of
biholomorphism types of flag manifold (they are in bijective correspondence with the conjugacy
classes of parabolic subalgebras of gC) and each flag manifold admits but a finite number of
canonical fibrations. Thus Z is composed of a finite number of G-orbits all of which are closed
and (4.2) follows. It is interesting to note that in this way we obtain a geometric interpretation
of the purely algebraic construction of the canonical fibrations: they are just the restrictions
of the projection π: J(N)→ N to the various realisations of F as an orbit in Z.
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Examples To fix ideas, let us describe the flag manifolds and their canonical fibrations for
two simple Lie groups of rank 3. In each case there are 7 = 2rank G − 1 flag manifolds.

First let G = SU(4). There are two inner symmetric G-spaces: CP 3 and the Grassmannian
G2(C4) (of course, qua Riemannian symmetric space G3(C4) is the same as CP 3). The flag
manifolds are given by

F (r1, . . . , rk; C4) =
SU(4)

S(U(r1)× · · · ×U(rk))

where r1 + · · ·+ rk = 4 and the complex structure is induced by the inclusion

F (r1, . . . , rk; C4) −→ Gr1(C4)×Gr1+r2(C4)× · · · ×Gr1+···+rk−1
(C4) .

The symmetric space associated to F (r1, . . . , rk; C4) is G∑ r2i
(C4). There is an “antipo-

dal map” on G2(C4) given by taking the perpendicular complement of an element and so
the flag manifolds that fibre canonically over G2(C4) do so twice. They are F (1, 1, 1, 1; C4),
F (1, 2, 1; C4) and F (2, 2; C4). Of course, F (2, 2; C4) is just G2(C4) itself and the fibrations
are just the identity and the antipodal map. We also note that G2(C4) is quaternionic Kähler
so that the discussion in section 3 applies. In particular, recall that the 2-sphere bundle of
C is a complex submanifold of Z: in our setting this is just one of the two realisations of
F (1, 2, 1; C4) in Z. The remaining flag manifolds F (2, 1, 1; C4), F (1, 1, 2; C4), F (1, 3; C4) and
F (3, 1; C4) fibre canonically over CP 3 and may be identified with the various Grassmannian
bundles Gr(T 1,0CP 3) described in section 3. In conclusion, we see that, for CP 3, Z has 4
components while, for G2(C4), it has 6.

Now let G = SO(7). There are again three simply connected inner symmetric G-spaces: S6;
G̃3(R7) the Grassmannian of oriented 3-planes in R7 and G̃2(R7) the 5-quadric. All of these
may be viewed as Grassmannians of oriented k-planes for some k and so possess an antipodal
map given by reversing the orientation of the k-planes. Thus each flag manifold has two
canonical fibrations. The flag manifolds are given by

Fiso(r1, . . . , rk; R7) =
SO(7)

U(r1)× · · · ×U(rk)× SO(7− 2
∑
ri)

where r1 + · · ·+rk ≤ 3. To see the complex structure, we realise Fiso(r1, . . . , rk; R7) as a family
of isotropic flags in C7 = (R7)C:

Fiso(r1, . . . , rk; R7) = {V1 ⊂ . . . ⊂ Vk ⊂ C7: dimC Vi = r1 + · · ·+ ri; Vi isotropic}

and then the complex structure is induced from the natural inclusion into Gr1(C7) × · · · ×
Grk(C7). Now set rk+1 = 1

2(7 −
∑
ri) so that 2(r1 + · · · + rk+1) = 7 and then the symmetric

space associated to Fiso(r1, . . . , rk; R7) is G̃∑ 2r2i
(R7) with the canonical fibrations induced by

the inclusions

U(r1)× · · · ×U(rk)× SO(2rk+1)→
SO(2r1)× · · · × SO(2rk)× SO(2rk+1)→ SO(

∑
2r2i+1)× SO(

∑
2r2i).

We now see that Fiso(3; R7) fibres canonically over S6; Fiso(1; R7), Fiso(1, 1; R7) and
Fiso(2, 1; R7) over G̃2(R7) and Fiso(2; R7), Fiso(1, 2; R7) and Fiso(1, 1, 1; R7) over G̃3(R7). We
remark that G̃3(R7) is quaternionic Kähler and that the associated sphere-bundle twistor space
is one of the realisations of Fiso(2; R7). In conclusion, for S6, Z has two components which are
just J+(S6) and J−(S6) while the other two symmetric spaces have six components each in Z.
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There is a well-known duality between symmetric spaces of compact and non-compact type and
this duality extends to the twistor theory we have been discussing. For each non-compact real
form GR of a complex semisimple group Lie group GC, there is a unique Riemannian symmetric
space GR/K of non-compact type. The corresponding involution is called the Cartan involution
of GR. The above development suggests that we restrict attention to GR with inner Cartan
involution.

Consider now the orbits of such a GR on the various flag manifolds F = GC/P . Those
orbits which are open subsets of F we call flag domains: in our situation, an orbit is a flag
domain precisely when the stabilisers contain a compact Cartan subgroup of GR. It turns
out that the presence of this compact Cartan subgroup is precisely what we need to define a
canonical element of gR and thus an involution of gR just as in the compact case. However
the involution is not necessarily a Cartan involution (i.e. the associated symmetric space need
not be Riemmanian). In case that the involution is a Cartan involution we say that our flag
domain is a canonical flag domain and then we exponentiate the involution to get a Riemannian
symmetric space of non-compact type and a canonical fibration (unique in this case) of our
canonical flag domain over it. We may now repeat the analysis of the compact case and,
in particular, we find that GR acts transitively on connected components of Z ⊂ J(GR/K).
Further, each component is a canonically fibred canonical flag domain so that (4.2) holds in
the non-compact setting.

It is interesting to note that these flag domains have arisen in other areas: indeed, for GC =
SO(n,C) or Sp(n,C), they form a subset of the Griffiths period matrix domains [19] that
classify Hodge structures. There are intriguing relationships between the theory of variation
of Hodge structure and the theory of minimal surfaces in compact Riemannian symmetric
spaces that arise from this twistor space duality. For example, both flag manifolds and flag
domains carry an invariant holomorphic distribution which is transverse to the fibres of the
canonical fibrations. This super-horizontal distribution is defined at the identity coset as the√
−1-eigenspace g1 of the canonical element. It has the following interesting property:

Theorem 4.7 ([12]) Let X be a flag manifold or canonical flag domain and π:X → N be a
homogeneous fibration onto a Riemannian symmetric space. If φ:M → X is a holomorphic map
of a Kähler manifold with image tangent to the super-horizontal distribution then π◦φ:M → N
is harmonic.

We call maps φ:M → X satisfying the hypotheses of (4.7) super-horizontal holomorphic maps.

For instance, let X = SU(n + 1)/S(U(1) × · · · × U(1)) = F (1, . . . , 1; Cn+1). There are
n+ 1 homogeneous fibrations πi:X → CPn, i = 1, . . . , n, with π0 holomorphic and πn anti-
holomorphic. Now a super-horizontal holomorphic map φ:S2 → X is essentially just the Frenet
frame of the holomorphic map π0◦φ:S2 → CPn while each π◦φ is a harmonic map S2 → CPn.
It is the content of the classification theorem for harmonic 2-spheres in CPn that all such har-
monic maps arise in this way. Thus in this situation all harmonic maps are produced via
(4.7).

On the non-compact side of the fence, the super-horizontal distribution is precisely that which
defines the infinitesimal period relation. Thus the (local lifts of) period maps are precisely
the super-horizontal holomorphic maps into period domains. Much progress has recently been
made by Carleson-Toledo [13] on the relationship between period maps and harmonic maps into
compact quotients of symmetric spaces of non-compact type and it seems likely that harmonic
maps of Kähler manifolds into such quotients of sufficiently high rank are covered by period
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maps as in (4.7).

Finally, let us briefly describe the situation for non-inner even-dimensional Riemannian sym-
metric spaces. Here it can be shown that Z is nonempty and, of course, by (4.1) each orbit in Z
is an almost complex submanifold on which J is integrable. However the orbits are no longer
flag manifolds or flag domains and G no longer acts transitively on connected components of
Z.

5 Flags and the loop group

There is another realisation of the canonical fibrations of flag manifolds that serves to introduce
a twistor space of a quite different type. For this, assume that G is of adjoint type (i.e. has
trivial centre) and let ΩG denote the infinite-dimensional manifold of based loops in G: the loop
group. In fact ΩG is a Kähler manifold [23] and may be viewed as a flag manifold GC/P where
GC is the manifold of loops in GC and P is the subgroup of those that extend holomorphically
to the disc [17, 23]. We have various fibrations ρλ: ΩG→ G given by evaluation at λ ∈ S1 and
in some ways ρ−1 behaves like a canonical fibration making ΩG into a universal twistor space
for G. For instance, it is a theorem of Uhlenbeck [28] that any harmonic map of S2 into G is
of the form ρ−1 ◦ Φ for some “super-horzontal” holomorphic map Φ:S2 → ΩG.

The flag manifolds of G embed in ΩG as conjugacy classes of geodesics and we find a particular
embedding of this kind using the canonical element. Indeed, our assumption that G be centre-
free means that exp 2πξ = e for any canonical element ξ. Thus if F = G/H = GC/P is a flag
manifold with ξ the canonical element of p, we may define a map Γ:F → ΩG by setting

Γ(eH) = (e
√
−1t 7→ exp tξ)

and extending by equivariance. Moreover, if N is the inner symmetric space associated to F ,
we have a totally geodesic immersion γ:N → G defined by setting γ(x) equal to the element
of G that generates the involution at x. We now have:

Proposition 5.1 Γ:F → ΩG is a totally geodesic, holomorphic, isometric immersion and the
following diagram commutes

F
Γ−→ ΩG

π1

y yρ−1

N
γ−→ G

where π1 is a canonical fibration.

Thus we have a third realisation of the canonical fibrations as the trace of ρ−1 on certain
conjugacy classes of geodesics. The Reader is invited to ponder on the relation between these
three constructions.

6 Conclusion

We have seen that the construction of complex manifolds associated to a Riemannian manifold
N by the above methods requires stringent conditions on the curvature of N . However, the

12



construction can be carried through for a fairly large class of geometrically interesting Rieman-
nian manifolds. As for applications, the twistor theory of quaternionic Kähler and hyperkähler
manifolds is highly developed [21, 24] while for symmetric spaces it is only just beginning (see
[12], though, for applications to minimal surfaces) and there are many unanswered questions.
Let us finish by mentioning a few of these.

• We have seen that there is a good theory of flag spaces fibring over Riemannian symmetric
spaces. What can be said about pseudo-Riemannian symmetric spaces? Certainly, one
can produce such fibrations of non-canonical flag domains.

• If we view the Riemannian symmetric spaces as “flat” examples, are there “curved” ana-
logues of the above theory? The example of quaternionic Kähler manifolds suggests that
there are far less twistor spaces in the non-symmetric case but there is still a satisfac-
tory theory. A good test case for this would be the complex paraconformal manifolds of
Bailey-Eastwood [3] which are “curved” versions of the complex Grassmannians.

• Finally, an interesting but almost certainly ill-posed question is: what is the relationship
between the theory discussed in this chapter and the highly developed twistor theory of
space-time discussed elsewhere in this volume?

References

[1] M. F. Atiyah, D. G. Drinfeld, N. J. Hitchin, Y. I. Manin. Construction of instantons. Phys.
Lett. 65A (1978), 185–187.

[2] M. F. Atiyah, N. J. Hitchin and I. M. Singer. Self-duality in four-dimensional Riemannian
geometry. Proc. Roy. Soc. Lond. A362 (1978), 425–461.

[3] T. N. Bailey and M. G. Eastwood. Complex paraconformal manifolds—their differential
geometry and twistor theory. Preprint.

[4] M. Berger. Sur les groupes d’holonomie des variétés à connexion affine et des variétés
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