
TWISTOR SPACES FOR RIEMANNIAN SYMMETRIC SPACES

Francis Burstall, Simone Gutt and John Rawnsley

Published as: Math. Ann. 295 (1993) 729–743

Abstract. We determine the structure of the zero-set of the Nijenhuis tensor of the nat-

ural almost complex structure J1 on the total space of the bundle J(G=K; g) of Hermitian
structures on the tangent spaces of any even-dimensional Riemannian symmetric space G=K
of compact or non-compact type.

1. Introduction

By a twistor space for a Riemannian manifold (M, g) we mean an (almost) complex
manifold π:Z → M , fibred over M with complex fibres, together with some additional
properties; see section 2 for the details. A basic example is the space J(M, g) consisting of
all the complex structures on the tangent spaces of M which are compatible with the met-
ric. J(M, g) has fibre the Hermitian symmetric space O(2n)/U(n) and the Riemannian
connection allows this vertical complex structure on each fibre to be combined with the
horizontal lift of the given complex structure on each tangent space to M to give J(M, g)
a natural almost complex structure. This almost complex structure is integrable only for
M conformally flat [3], and for compact symmetric spaces this means only the spheres
and real projective spaces. For more general twistor spaces Z we may have integrability
under weaker assumptions, so it is desirable to find such spaces.

Any twistor space with an integrable complex structure will have an image in J(M, g)
which is a complex submanifold and so sits in the zero-set of the Nijenhuis tensor of the
natural almost complex structure J1 on J(M, g). In [1], when M = G/K is an inner
Riemannian symmetric space and g the invariant metric, this zero-set was shown to
consist of a finite number of connected components each of which was a flag space of G
fibring over G/K in a ‘minimal’ way (thus, the components were generalized flag manifolds
for G compact and flag domains for G non-compact). In particular, each of these flag
spaces is a twistor space. We used the property that G/K was inner (or, equivalently,
that rank(G) = rank(K)) in our analysis.

It is the purpose of this note to determine the zero-set of the Nijenhuis tensor for an
arbitrary even-dimensional Riemannian symmetric space. Our analysis uses similar ideas
to those of [1] but takes into account the more complicated relationship between the root
structure of G with respect to a maximal torus maximally embedded in K (a so-called
fundamental torus) and the symmetric space structure when the space is not inner.

The main difference from the inner case results from the fact that we cannot show that
Z respects the de Rham decomposition of G/K into irreducible factors. Indeed, it does
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not, and the components of Z also turn out, in general, not to be homogeneous spaces of
G. These twistor spaces appear to be new.

The components of the zero-set are expressible in terms of the τ -maximal parabolic
subalgebras which were introduced in [1] where τ is the involution determining the sym-
metric space.

The paper is organized as follows. In section 2 we summarize the basic properties of
twistor spaces for Riemannian manifolds. In section 3 we develop the properties of τ -
maximal parabolic subalgebras needed in the sequel. In section 4 we show that each point
in the zero-set corresponds with a τ -maximal parabolic together with a certain subspace
and in section 5 we show that τ -maximal parabolics determine open subsets of the zero-set
which are generalized twistor spaces in the sense of [5]. In section 6 we apply our analysis
of the zero-set to some examples. Example 1 looks at the Calabi-Eckmann Hermitian
structures [2] on the product of two odd-dimensional spheres and shows that the images of
these structures exhaust the zero-set. In example 2 we show that the Hermitian structures
found by Samelson [6] also exhaust the zero-set in the case of an even-dimensional Lie
group. In example 3 we apply our theory to a less familiar example and describe the
zero-set for the twistor space of the symmetric space SU(2n)/Sp(n), n odd. By way of
contrast with example 1, example 4 considers whether a product of odd-dimensional real
Grassmannians might carry the analogue of a Calabi-Eckmann Hermitian structure. We
show in theorem 6.1 that there can be no such Hermitian structures. Finally, in example
5 we apply our theory to obtain compact complex manifolds with the same fundamental
group as certain compact locally symmetric spaces.

During the course of this work, we have benefited from conversations with D. Burns,
J.A. Jiménez and D. Toledo. The second and third authors wish to thank the organizers
of the Danish Lie Group Seminar for their hospitality at the Sandbjerg Estate. We thank
the referee for some helpful remarks.
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2. Generalized twistor spaces

In this section we recall some of the basic facts about twistor spaces. See [5], for more
details and some examples.

Let V denote a real vector space of even dimension 2n with an inner product (·, ·).
A Hermitian structure on V is an endomorphism J of V with J2 = −1 and which is
compatible with the inner product in the sense that

(JX, JY ) = (X,Y ), ∀X, Y ∈ V.

We denote by J(V ) the set of all Hermitian structures on V .
The orthogonal group O(V ) acts transitively on J(V ) by conjugation:

g · J = gJg−1, g ∈ O(V ).

The stabilizer at J of this action consists of elements of O(V ) which are complex linear
with respect to J and so is a copy of the unitary group. We denote it by U(V, J). Thus the
set of all Hermitian structures on V coincides with the homogeneous space O(V )/U(V, J).
This is a Hermitian symmetric space, so has an invariant complex structure which we
describe next.

Denote by o(V ), u(V, J) the Lie algebras of O(V ) and U(V, J), respectively. The tan-
gent space at J is isomorphic to the quotient o(V )/u(V, J) which in turn can be identified
with the subspace of elements of o(V ) which anticommute with J . Multiplication of such
elements on the left by J preserves this subspace and so induces an invariant almost
complex structure on O(V )/U(V, J) which is integrable by standard results.

Let (M, g) be any 2n-dimensional Riemannian manifold. We denote by J(M, g) the
bundle of all Hermitian structures on the tangent spaces of M . This is a bundle associated
to the orthonormal frame bundle O(M, g) of the Riemannian metric g with fibre J(R2n).
Since the fibre is homogeneous such an associated bundle can also be viewed as the
quotient by the stabilizer: O(M, g)/U(R2n, J) where we pick some standard Hermitian
structure J on R2n as a base-point. The horizontal distribution on the frame bundle
coming from the Levi-Civita connection will thus descend to J(M, g) to give a horizontal
distribution H. We denote by V the vertical distribution. The latter has a Hermitian
structure coming from the invariant Hermitian structure on each fibre. The horizontal
distributionH also has a Hermitian structure since each horizontal spaceHj is isomorphic
to TxM if j is a Hermitian structure on TxM . Thus j can be lifted by this isomorphism
to Hj . We denote by J1 the almost complex structure on J(M, g) which we get by taking
the direct sum of the natural horizontal and vertical Hermitian structures just defined.

By a twistor space for a Riemannian manifold (M, g) we mean an (almost) complex
manifold π:Z → M , fibred over M with complex fibres together with some additional
properties which we shall come to in a moment. If Z is a twistor space then, for x ∈M ,
each z ∈ π−1(x) defines a complex vector space structure j(z) on TxM by identifying
the latter with TzZ/Vz where V is the vertical tangent bundle. Thus we get a map
j:Z → J(M, g) (in general the j(z) are not automatically compatible with the metric g,
but this is one of the extra assumptions we make).

Conversely, suppose we have a manifold Z which fibres over M with complex fibres
and that we have a fibre-preserving map j:Z → J(M, g) which is holomorphic on each
fibre. If we denote by V the vertical tangent bundle, as above, then the complex structure
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on each fibre transfers to V. We suppose we have a complement H for V, then, just as
for J(M, g), each point z ∈ Z determines a complex structure on Hz as the horizontal
lift of j(z). The direct sum of these two gives Z an almost complex structure which we
also call J1. If j preserves the horizontal distributions on Z and J(M, g) then it will be
holomorphic with respect to J1 on each of these spaces by construction.

In [5] we called a manifold Z with a horizontal distribution H and such a horizontal-
preserving map j:Z → J(M, g) which is holomorphic on the fibres a generalized twistor
space. Clearly J(M, g) is itself a twistor space with j the identity map. As remarked in the
introduction, J1 on J(M, g) is rarely integrable, so we look for generalized twistor spaces
as possible candidates for developing Riemannian analogues of Penrose’s Minkowskian
twistor theory.

3. τ -maximal parabolic subalgebras

The results in this section extend those of the appendix to chapter 4 of [1]. We assume
that g = k + p is the symmetric decomposition of a compact Lie algebra with respect to
an involution τ and denote by suffices the intersections of subspaces of g with k or p.

If q is a τ -stable parabolic subalgebra of gC we denote its nil-radical by n and set
l = q ∩ g so that q = lC + n. n and l are also τ -stable so we have decompositions

q = qk + qp, n = nk + np, l = lk + lp.

Denote the centre of l by z(l) then we have the following definition taken from [1].

Definition 3.1. A parabolic subalgebra q of gC is said to be τ -maximal if it is τ -stable
and :

(i) lp ⊂ z(l);
(ii) n = np + [np, qp].

In [1] we showed how to construct τ -maximal parabolics starting from a τ -stable
Borel subalgebra. Indeed, in theorem 4.29 of [1], it was shown that if b is such a Borel
subalgebra and b′ is its nilradical then b′p + [b′p, bp] is the nilradical of a τ -maximal
parabolic subalgebra q. Since b′p + [b′p, bp] ⊂ b′, taking polars with respect to the Killing
form gives b ⊂ q. In fact, we also have have the converse:

Lemma 3.2. If q is τ -maximal and b is any τ -stable Borel subalgebra contained in q
then q has nilradical b′p + [b′p, bp].

Proof. t = b∩g is a τ -stable maximal toral subalgebra of g which is contained in l = q∩g.
But q is τ -maximal so that lp ⊂ z(l) whence lp ⊂ t and thus lp = tp. Now gC = tC⊕b′⊕b′

so that pC = lCp⊕b′p⊕b′p. On the other hand, n ⊂ b′ so that np ⊂ b′p while pC = lCp⊕np⊕np.
Thus np = b′p. Moreover, qp = lCp ⊕ np so that we conclude that qp = tCp ⊕ b′p = bp. Thus
[np, qp] = [b′p, bp] and the result now follows immediately from the τ -maximality of q �

Remark 3.3. In the course of the proof of lemma 3.2 we have shown that for q τ -
maximal, q ∩ p is the p-part of a maximal toral subalgebra of g.

We now have a simple characterization of τ -maximal subalgebras given by the following
theorem.
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Theorem 3.4. A τ -stable parabolic subalgebra q is τ -maximal if and only if it contains
a τ -stable Borel subalgebra b with n = b′p + [b′p, bp].

Proof. Let q be a parabolic subalgebra with n = b′p + [b′p, bp] for some τ -stable Borel
subalgebra b. Then b ∩ g is a τ -stable maximal toral subalgebra of g which, by lemma
4.27 of [1], is fundamental. Thus theorem 4.29 of [1] says that q is τ -maximal.

Conversely, if q is a τ -maximal parabolic subalgebra, then it contains a τ -stable Borel
subalgebra b and Lemma 3.2 gives the required condition on its nilradical. �

4. Points in the zero-set

Let G/K be an even-dimensional Riemannian symmetric space of compact or non-
compact type. The action of G as isometries on G/K lifts into J(G/K, g) and preserves
Z. Since G acts transitively on G/K then Z will be G · Zk = G×K Zk where Zk denotes
the intersection of Z with the fibre of J(G/K, g) over the identity coset. If we identify
the tangent space to G/K at the identity coset with p where

g = k + p

is the usual symmetric space decomposition of the Lie algebra g of G, then the fibre of
J(G/K, g) over the identity coset can be identified with J(p), the set of all skew-symmetric
transformations j of p with j2 = −I. Such a transformation j has eigenvalues ±i and
is determined by its +i-eigenspace which we denote by p+. If g is given an invariant
bilinear form which induces the metric on G/K then p+ is a maximal isotropic subspace
of the complexification pC of p. We shall use j and p+ interchangeably without further
comment. In [1] it is shown that the condition for j to be in the zero-set of the Nijenhuis
tensor is

[[p+, p+], p+] ⊂ p+,

or equivalently that [p+, p+] is an isotropic subspace of kC.
For connected G the components of Z will have the form G · Z1 where each Z1 is

a component of Zk. Our goal is to describe the structure of the components of Zk.
Moreover, in view of the celebrated duality between symmetric spaces of compact and
non-compact type, it suffices to take G compact. This is possible since, when G/K is of
non-compact type, the space pC, the isotropic subspaces p+ and their K-orbits coincide
with those of the compact dual U/K and thus Zk is the same for both spaces.

So let g be compact and let p+ be in Zk. Set

h = {ξ ∈ g : [ξ, p+] ⊂ p+ + [p+, p+]}

then h is τ -stable so h = hk + hp where

hk = h ∩ k = {ξ ∈ k : [ξ, p+] ⊂ p+}

and
hp = h ∩ p = {ξ ∈ p : [ξ, p+] ⊂ [p+, p+]}.

hk is then the Lie algebra of Hk = {k ∈ K : AdG k p+ ⊂ p+}.
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Lemma 4.1. hp is an abelian subalgebra of g and [hp, hk] = 0.

Proof. Let ξ ∈ hk, η ∈ hp and ζ ∈ p+ then [η, ζ] =
∑
i[λi, µi] for some λi and µi in p+.

Thus
([ξ, η], ζ) = (ξ, [η, ζ]) =

∑
i

(ξ, [λi, µi]) =
∑
i

([ξ, λi], µi) = 0

so [hp, hk] = 0. Obviously [hp, hp] ⊂ hk and if ξ, η ∈ hp, ζ ∈ hk then

([ξ, η], ζ) = (ξ, [η, ζ]) = 0

and hence [hp, hp] = 0. �

Let m denote the orthogonal complement of hk in k and mC its complexification.

Lemma 4.2. We have mC = [p+, p+] + [p+, p+] and hk is the centralizer of a torus in k.

Proof. Lemma 5.1 and Proposition 5.2 of [1] still apply since these are proven without
the assumption that G/K is inner. �

Take a maximal toral subalgebra tk of k in hk. Such a toral subalgebra exists by
Lemma 4.2. Then t = tk + tp is a fundamental toral subalgebra of g where tp is the
centralizer of tk in p. It is clear that tCp is the zero weight space (relative to tk) for pC as
a representation of kC and so as of hCk . pC splits into p+ + p+ as a representation of hCk
and so tCp is the sum of the zero weight space t+ on p+ and its complex conjugate. Hence
t+ is a maximal isotropic subspace of tCp .

Let ∆ be the root system of (gC, tC) and let I denote the set of roots which vanish on
tp, II those which do not. If α ∈ I then the root space gα lies in kC or pC. Let Ik and Ip
denote the corresponding sets of roots, so ∆ = Ik ∪ Ip ∪ II is a disjoint union.

Lemma 4.3. Each root of type II is non-zero on t+.

Proof. The roots of a compact torus take imaginary values, so a root α of type II will
be imaginary on tp and hence if it vanishes on t+ it will vanish on the complex conjugate
and so on tp. This is impossible. �

For each root α choose a non-zero vector eα in gα. If a root α is in II then gα cannot
lie entirely in kC nor in pC. Thus there are non-zero elements xα ∈ kC and yα ∈ pC with
eα = xα + yα.

Lemma 4.4. Let p+ be in Zk, choose tk, tp as above and let ∆ be the roots of gC with
respect to tC. Set

Φ = {α ∈ ∆ : gα ⊂ p+ + [p+, p+]}

then Φ is closed under root addition and there exists a subset t+ of tCp such that

p+ = t+ +
∑

α∈Φ∩II
Cyα +

∑
α∈Φ∩Ip

gα.

Proof. We examine pC in terms of its weight spaces as a representation of tk. The zero
weight space is tCp by definition, so the zero weight space on p+ will be a maximal isotropic
subspace t+ of tCp . To finish the proof we need to show that the tk-invariant complement
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of t+ in p+ consists of 1-dimensional weight spaces. This depends on knowing how the
roots of gC may coincide when they are restricted to tk. Obviously the restrictions of no
two type I roots can coincide. Equally obviously if α is of type II then α and τα coincide
if τ is the involution, but this is the only way two type II roots can coincide when they
are restricted. This follows since xα will be a root vector of kC for the restriction of α of
type II. If two type II roots α, β have coincident restrictions, then both xα and xβ would
be in the same (kC, tCk )-root space. Thus xα and xβ are proportional, and by rescaling we
can assume they are equal. Then for any ξ in tp we have

α(ξ)2xα = [ξ, [ξ, xα]] = [ξ, [ξ, xβ ]] = β(ξ)2xβ

so α = ±β on tp. Hence α = β or α = τβ. Thus the only remaining coincidence that can
happen is that the restriction of a type I root β coincides with the restrictions of a pair
of type II roots α and τα.

The weight spaces for non-zero weights will be one-dimensional unless there are coin-
cidences when roots of (gC, tC) are restricted to tk. By the above, weight vectors will be
either type Ip root vectors, or the yα of type II roots or a combination of these when
there happens to be a coincidence for restricted roots. So suppose that β ∈ Ip with
eβ ∈ gβ and α ∈ II and also that α = β on tk with eβ + yα ∈ p+. By Lemma 4.3 we can
pick an element ξ of t+ with α(ξ) 6= 0 then [ξ, [ξ, eβ + yα]] ∈ p+. But this is α(ξ)2yα and
so yα ∈ p+. Thus eβ ∈ p+ also.

Thus we have shown that p+ is composed of a maximal isotropic subspace t+ of tCp
together with a sum of type Ip root spaces and a sum of spaces of the form Cyα for type
II roots α. We may now define

Φ = {α ∈ ∆ : gα ⊂ p+ + [p+, p+]}

and we have
p+ = t+ +

∑
α∈Φ∩II

Cyα +
∑

α∈Φ∩Ip

gα

as required. We note that since p+ + [p+, p+] is an algebra, Φ will be closed under root
addition. �

With this we have the main result relating points in the zero-set of the Nijenhuis tensor
to parabolic subalgebras:

Theorem 4.5. If p+ ∈ Zk then there exists a τ -maximal parabolic subalgebra q of gC

with q ∩ g = h and such that p+ = n ∩ pC + h+ with h+ a maximal isotropic subspace of
hCp where hp = p ∩ q.

Proof. We use the subset Φ of the roots defined in lemma 4.4. Since p+∩p+ = 0 we have
Φ ∩ −Φ = ∅, whilst II ⊂ Φ ∪ −Φ. Since Φ is closed under root addition it follows that

n =
∑
α∈Φ

gα

is the nilradical of a τ -stable parabolic q with Levi factor hC and that p+ = t+ + n ∩ pC.
Finally note that [tp, p+] =

∑
α∈Φ∩II Cxα ⊂ [p+, p+] and so tp ⊂ h. Hence we must have

tp = hp. In particular t+ is a maximal isotropic subspace of hCp .
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In order to see that the parabolic subalgebra q constructed above is τ -maximal we
observe that condition (i) of definition 3.1 is a consequence of lemma 4.1. Condition (ii)
follows since nk = [p+, p+] by lemma 4.2. But n is an ideal in q so [np, tCp + np] ⊂ n∩ kC =
nk. �

We also have a converse to this result. Suppose we have a τ -maximal parabolic q with
Levi factor l = q ∩ g then we know that lp = q ∩ p is even dimensional and if n is the
nilradical then pC = np + np + lCp . If we take a maximal isotropic subspace l+ of lCp then
p+ = np + l+ is maximal isotropic. In fact:

Theorem 4.6. If q is a τ -maximal parabolic of gC and l+ is a maximal isotropic subspace
of lCp (defined as above) then p+ = np + l+ is in Zk.

Proof. We have seen that p+ is maximal isotropic. Since n is an ideal in q and lp is abelian
then [p+, p+] ⊂ [np, np + l+] ⊂ nk. Further [nk, p+] ⊂ np ⊂ p+, so [[p+, p+], p+] ⊂ p+. �

Consider the set Z̃k consisting of pairs (q, l+) where q is a τ -maximal parabolic and
l+ is a maximal isotropic subspace of (q ∩ p)C. Theorem 4.5 gives us a map a:Zk → Z̃k
a(p+) = (hC +

∑
α∈Φ gα, h

+) and theorem 4.6 gives us a map b: Z̃k → Zk defined by
b(q, l+) = n ∩ pC + l+ where n is the nilradical of q.

Theorem 4.7. The maps a, b, defined above, are inverses of each other.

Proof. b◦a is clearly the identity. To see the converse, suppose we have a τ -maximal
parabolic q and a maximal isotropic subspace l+ of lCp (notation as in section 3) and we
set p+ = np + l+. Take a maximal toral subalgebra tk of lk then t = tk + lp is maximal
toral in g (see remark 3.3). Take the roots of gC with respect to tC and divide them into
types I and II as usual. Type I roots vanish on lp, so [gα, lCp ] = 0 = [gα, l+] for α of type I.
As in lemma 4.3, a root α of type II does not vanish on l+, and so [gα, l+] = gα = [gα, lCp ].
Thus for all roots α we have [gα, l+] = [gα, lCp ] and so summing over root spaces in n

we have [n, l+] = [n, lCp ]. Intersecting with kC we conclude that [np, l+] = [np, lCp ] and so
[p+, p+] = [np, np + l+] = [np, np + lCp ] = [np, qp] = nk since q is τ -maximal.

This means that the hk determined by p+ will be equal to the lk of q, and so hp = lp
and then h+ = p+∩hCp = l+. Then the p-part of the nilradical of the parabolic determined
by p+ will be np and so we recover both q and l+ from p+ showing that a◦b = id. �

5. The structure of the zero-set

We now associate a subset Zq of the zero-set of the Nijenhuis tensor of J1 on J(G/K, g)
to the K-conjugacy class of a τ -maximal parabolic q; we continue with the notation above.

Let J(lp) denote the almost complex structures on the vector space lp compatible
with the Killing form and give J(lp) its natural structure of a complex manifold as in
section 2. Let Lk be the stabilizer in K of q in the adjoint representation of G on gC.
Then Lk has Lie algebra the normalizer of q in k. Since a parabolic subalgebra of gC

is its own normalizer, it follows that Lk has Lie algebra q ∩ k = lk. Obviously, Lk also
preserves qk and so the latter defines an invariant complex structure on K/Lk. Give
K/Lk × J(lp) the product complex structure. Define a map φ:K/Lk × J(lp) → J(p) by
φ(kLk, l+) = Ad k(b(q, l+)) where b is the map defined in section 4. Then we have the
following proposition:
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Proposition 5.1. The map φ defined above is holomorphic.

Proof. That the map is holomorphic follows by considering the two variables separately.
The inclusion of J(lp) into J(p) given by adding on a fixed isotropic subspace np is clearly
holomorphic. Keeping the point in J(lp) fixed we need to see finally that the map from
K/Lk to J(p) given by conjugating a fixed element j0 of J(p) is holomorphic. This follows
from the following more general lemma.

Lemma 5.2. Let the reductive homogeneous space K/H have a complex structure given
by the subspace m+ of mC where m is the reductive summand. Let j0 be an H-invariant
element of J(p) where p is an even-dimensional representation of K. Then the map
kH 7→ k j0 k

−1 is holomorphic if and only if m+ ·p+ ⊂ p+ where · denotes the infinitesimal
action and p+ is the +i eigenspace of j0.

Proof. Denote the map by φ and let ξ̃ denote the vector-field on K/H generated by an
element ξ of the Lie algebra k of K. Then

dφ(ξ̃eH) = [ξ·, j0].

Since φ is equivariant it will be holomorphic if its differential at the identity coset preserves
the spaces of (1,0) vectors. Thus, for ξ ∈ m+, we need to have [ξ·, j0] in the (1,0) space at
j0. The latter consists of endomorphisms A of pC which anticommute with j0 and satisfy
(j0 − i)A = 0. Thus take ξ in m+ and consider

(j0 − i)◦[ξ·, j0] = (j0 − i)◦(ξ·)◦j0 − (j0 − i)◦j0◦(ξ·)
= (j0 − i)◦(ξ·)◦(j0 + i)

This will vanish if and only if m+ · p+ ⊂ p+. �

To complete the proof of proposition 5.1, we observe that in our case m+ = nk and
p+ = np + l+ so m+ · p+ = [nk, np + l+] ⊂ np ⊂ p+. �

Theorem 4.7 shows that φ is injective so we may use it to view K/Lk × J(lp) as a
subset of the fibre of J(G/K, g) over the identity coset and take its orbit Zq under G.
Clearly this orbit will be in the zero-set of the Nijenhuis tensor and depends only on the
K-conjugacy class of q. As a manifold it is just the homogeneous fibre bundle associated
to the principal K-bundle G→ G/K with fibre K/Lk×J(lp) and as such it is an example
of a generalized twistor space as considered in section 2. There it is shown that such
spaces have a natural almost complex structure J1 with respect to which the natural
map to J(G/K, g) is holomorphic. In our case this map is just the inclusion map, so
that we have immediately that Zq is an almost-complex submanifold of J(G/K, g). Since
Nijenhuis tensors are natural with respect to almost-complex maps, and Zq is in the
zero-set of the Nijenhuis tensor of J(G/K, g) it follows that the Nijenhuis tensor of J1 on
Zq also vanishes and hence that J1 is integrable on Zq. We have thus shown:

Proposition 5.3. To each τ -maximal parabolic q is associated a subset Zq of J(G/K, g)
which lies in the zero-set of the Nijenhuis tensor of J1. The latter induces an integrable
complex structure on Zq. Zq depends only on the K-conjugacy class of q.
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Proposition 5.4. There are only a finite number of K-conjugacy classes of τ -maximal
parabolics.

Proof. Each τ -maximal parabolic q determines a parabolic qk of kC and there are only a
finite number of K-conjugacy classes of these. It suffices to show, therefore, that the kC

parabolic qk can be contained in only a finite number of τ -maximal parabolics. But this
is the case since we can choose a maximal toral subalgebra tk of lk which is also maximal
in k. We take lp to be the centralizer of lk in p (so dependent only on qk and not q). Then
we know tk + lp is a maximal toral subalgebra of g. Since a maximal toral subalgebra
may only be contained in a finite number of parabolics of any kind this means that the
extensions q of qk are finite in number. �

We summarize these results as

Theorem 5.5. The zero-set of the Nijenhuis tensor of J1 on J(G/K, g) is a finite union
of complex manifolds of the form Zq where q is a τ -maximal parabolic of gC.

6. Examples and applications

Let us see what our analysis tells us about the geometry of Z and examine some
examples. First we note that the situation is rather more complicated for non-inner
Riemannian symmetric spaces than for the inner spaces treated in [1]: for instance, G
does not act transitively on the components of Z except when J(lp) is zero-dimensional,
which is the case precisely when dim lp = 2. We remark that dim lp = rankG − rankK
and so only depends on τ rather than the particular τ -maximal parabolic q. Thus G will
be transitive on all components of Z if it is transitive on one.

Moreover, if G/K = G1/K1×G2/K2 is an isometric splitting of G/K into a pair of even-
dimensional non-inner Riemannian symmetric spaces, then lp = lp1 + lp2 but J(lp) 6=
J(lp1)× J(lp2) so that, in general, j ∈ Zq will not split as j = j1 + j2 with ji ∈ J(Gi/Ki).
Thus Z does not respect the de Rham decomposition of G/K in contrast to the case
of inner symmmetric spaces (compare theorem 5.3 of [1]). Despite this, the Zq do not
behave too badly with respect to the de Rham decomposition: if b ⊂ gC is a τ -stable
Borel subalgebra and

g = g1 ⊕ · · · ⊕ gk

is the decomposition of g into irreducible orthogonal symmetric Lie algebras, then it is
straightforward to show that b = b1 ⊕ · · · ⊕ bk with each bi a τ -stable Borel subalgebra
of gCi . Thus τ -stable parabolic subalgebras also commute with this decomposition.

Let us now consider some examples:

Example 1. Let us take our symmetric space to be a product of odd-dimensional spheres
S2n−1 × S2m−1 = SO(2n)× SO(2m)/SO(2n− 1)× SO(2m− 1). In this case, rankG−
rankK = 2 so that the connected components of Z are G-orbits. To find the Zq, we
note from the above discussion that a τ -maximal parabolic subalgebra of gC is a sum
of τ -maximal parabolic subalgebras for the factors so(2n) and so(2m) and so it suffices
to find these. For this, fix x ∈ S2n−1 and set V = {x}⊥. Let τ be the involution at
x and then, under the usual identification of so(2n) with Λ2

R
2n, we have as symmetric

decomposition:
Λ2
R

2n = Λ2V ⊕ V ⊗ Rx.
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A τ -maximal parabolic is equivalent to a maximal isotropic subspace V + of V C: we have
an orthogonal direct sum

V C = V + ⊕ V 0 ⊕ V −

with V ± mutually conjugate and V 0 real and 1-dimensional and then the corresponding
parabolic subalgebra q has nilradical

(Λ2V + ⊕ V + ⊗ V 0)⊕ V + ⊗ Cx.

We note that such a parabolic determines (and is determined by) a choice of complex
structure on R2n (equivalently, a choice of isomorphism R

2n ∼= C
n). Indeed, if j : R2n →

R
2n is a complex structure, take V 0 = Cjx and V + to be the

√
−1-eigenspace of j on

{x, jx}⊥. We denote the corresponding parabolic by qx,j .
Thus, if (x, y) ∈ S2n−1 × S2m−1 and τ is the involution at (x, y) then any τ -maximal

parabolic is of the form qx,j ⊕ qy,k with j, k complex structures on R2n and R2m respec-
tively. The p-part of the Levi-factor is then given by

lp = Rjx⊗ x+ Rky ⊗ y

giving just two choices for l+: C(jx⊗ x±
√
−1ky ⊗ y).

Observe that fixing j, k and a choice of l+ while letting x and y vary gives rise to a
globally defined section of Z—this section is easily checked to be an integrable Hermitian
structure on S2n−1 × S2m−1 and is that discovered by Calabi-Eckmann [2].

From lemma 5.4 of [1], it is known that any integrable Hermitian structure on an even
dimensional manifold M , when viewed as a section of J(M), has image in Z. In the case
at hand then, we conclude from the above development that for S2n−1 × S2m−1, Z is
exhausted by the images of globally defined Hermitian structures.

Example 2. Let G be an even-dimensional compact semisimple Lie group. We view G
as a symmetric G × G-space G ∼= (G × G)/∆G. The involution at the identity coset is
then τ : (x, y) 7→ (y, x) so the the symmetric decomposition has

k = ∆g, p = {(ξ,−ξ): ξ ∈ g}.

Now a τ -stable Borel subalgebra of gC ⊕ gC is of the form b⊕ b with Levi-factor tC ⊕ tC

for a Borel subalgebra b of gC and t = b ∩ g. We now apply theorem 3.4 to find the
τ -maximal parabolic subalgebras: let b′ be the nilradical of b and n that of b ⊕ b. We
have

np = {(ξ,−ξ): ξ ∈ b′} (b⊕ b)p = {(η,−η): η ∈ b},

so that
[np, (b⊕ b)p] = ∆[b′, b] = ∆b′ = nk.

From this we see that the τ -maximal parabolic containing b ⊕ b is b ⊕ b itself, that is,
the τ -maximal parabolics are precisely the τ -stable Borels.

We now use projection onto the first factor to identify p with g and conclude that
p+ ∈ Zk if and only if it is of the form

p+ = b′ ⊕ t+

11



with t+ maximal isotropic in tC. Observe that such a p+is in fact a subalgebra of gC

and so gives rise, by left (or right) translation, to a globally defined Hermitian structure
on G. These Hermitian structures were first discovered by Samelson [6] (see also Wang
[7]). Once again, we conclude that Z is exhausted by the images of the globally defined
Hermitian structures.

One may observe that in both the previous examples there is but a single K-conjugacy
class of τ -maximal parabolic subalgebras and thus at most two components of the zero-set
of the Nijenhuis tensor. This is a consequence of the fact that both products of spheres
and semisimple Lie groups are split-rank symmetric spaces as we now explain.

A symmetric space G/K is said to be split-rank if its rank is the difference between the
ranks of G and K. In this case there cannot be any type Ip roots since tp is now maximal
abelian in p. It follows that any τ -stable Borel subalgebra b is determined by its k-part
bk by b = bk+[bk, tp] and hence that there is a single K-conjugacy class of τ -stable Borel
subalgebras. The resulting τ -maximal parabolics built from these Borels by theorem 4.29
of [1] will thus also form a single K-conjugacy class, strengthening proposition 5.4. Since
J(tp) has two components, it follows that in the split-rank case there are just one or two
components to the zero-set.

Example 3.
Another example of this situation is the symmetric space SU(2n)/Sp(n) which has

dimension (2n+ 1)(n− 1). This is even for n odd. Let us illustrate the previous sections
by determining explicitly the components of its zero-set.

So fix n odd and let V = C
2n with its usual Hermitian metric 〈 , 〉 and fix a normalized

complex volume form ε ∈ Λ2nV ∗. A quaternionic structure on V is an antilinear map
j:V → V with j2 = −1 which is compatible with the metric in the sense that

〈ju, jv〉 = 〈v, u〉

for all u, v in V . Such a j gives rise to a non-degenerate 2-form ωj ∈ Λ2V ∗ by

ωj(u, v) = 〈u, jv〉

and we further demand that j be compatible with ε in the sense that

ωnj = ε.

Let N be the collection of all such quaternionic structures. Then SU(2n) acts transitively
on N by conjugation. A choice of base point j ∈ N allows us to identify C2n with Hn

and hence its stabilizer with Sp(n). The involution τ corresponding with j is then given
by

τ(g) = −jgj

for g ∈ SU(2n). Thus N is a model for SU(2n)/Sp(n).
Fix j and denote ωj by ω. For A ∈ End(V ) define the quaternion transpose AT by

ω(Au, v) = ω(u,AT v),

then the symmetric decomposition of the Lie algebra su(2n) is given by

su(2n) = k⊕ p
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with

sp(n) = k = {A ∈ su(2n)|A+AT = 0}, p = {A ∈ su(2n)|A = AT }.

It is useful to have another model for su(2n) and its complexification. For this we use
ω to identify V with V ∗ by

u(v) = ω(u, v)

so that End(V ) ∼= V ⊗ V . Under this identification, it is easy to check that

kC = S2V, pC = Λ2
0V

where Λ2
0V is the orthogonal complement of ω ∈ Λ2V ∗ ∼= Λ2V . Moreover, conjugation

with respect to the real form su(2n) becomes

u⊗ v 7→ jv ⊗ ju

while the involution is given by

u⊗ v 7→ −(u⊗ v)T = v ⊗ u.

With these preliminaries, let us fix a maximal torus tk of k. This amounts to fixing a
j-stable orthogonal decomposition of V into one-dimensional subspaces

V = jLn ⊕ · · · ⊕ jL1 ⊕ L1 · · · ⊕ Ln.

The fundamental toral subalgebra t of su(2n) containing tk is then the stabilizer in su(2n)
of this decomposition.

Any Borel subalgebra b of sl(2n,C) containing t is the stabilizer of a full flag of
subspaces {0} = V0 ⊂ V1 ⊂ · · · ⊂ V2n = V with dimVi = i and each Vi a direct sum of
some of the Li and jLi. The condition that b be τ -stable amounts to the demand that

V 0
i = V2n−i

where V 0
i denotes the polar of Vi with respect to ω. From this we conclude that, after

relabelling the Li if necessary, a τ -stable Borel subalgebra is the stabilizer of a flag given
by

Vi =
i⊕

k=1

jLn+1−k, i ≤ n,

Vn+i = V 0
n−i = Vn ⊕

i⊕
k=1

Lk, i ≤ n.

Denoting jLk by L−k, it is now straightforward to check that

b =
⊕
i+j≤0

Li ⊗ Lj
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with nilradical
b′ =

⊕
i+j<0

Li ⊗ Lj .

From 3.5, the τ -maximal parabolic containing b has nilradical given by

n = b′p + [b′p, bp].

The following bracketing relations are easy to verify

[Li ∧ L−i,Li ∧ Lj ] = Li ∨ Lj , for i+ j < 0, i 6= j;

[Li ∧ L−k,L−i ∧ L−j ] = L−k ∨ L−j , for i 6= j, k ≥ 0;

[Li ∧ L−j ,Lj ∧ L−k] = Li ∨ L−k, for 0 < i < j < k;

while all other brackets between summands of b′p vanish. In particular, S2L−k = [Li ∧
L−k,L−i ∧ L−k] only lies in [b′p, bp] for 1 ≤ i < k. We therefore conclude that

[b′p, bp] =
⊕
i+j<0
i 6=j

Li ∨ Lj ⊕
⊕
i≥2

S2Li.

Thus the k-part of the Levi factor lk is given by

lCk = tCk + S2L1 ⊕ S2L−1

so Lk =

n−1 times︷ ︸︸ ︷
U(1)× · · · × U(1)×Sp(1).

Note that in this case, all τ -stable Borels and hence τ -maximal parabolics are K-
conjugate. Thus there are at most two components of the zeroset of the Nijenhuis tensor
of J(N), each a copy of the same Zq.

In summary, our analysis shows that any p+ in the zero set arises from an orthogonal
decomposition

V =
⊕

1−n≤i≤n−1

Ei

with dimE0 = 2, dimEi = 1, |i| ≥ 1 with jEi = E−i (in our previous notation, E0 =
L1 ⊕ L−1, E1 = L2, . . . ) and then

p+ =
⊕
i+j<0

Ei ∧ Ej ⊕ t+

where t+ is a maximal isotropic subspace of∑
i

Fi ∧ E−i ∩ {ω}⊥

which is (n− 1)-dimensional.

14



Example 4. Consideration of example 1 might lead one to enquire as to whether there
were Calabi-Eckmann type complex structures on products of odd-dimensional oriented
Grassmannians. In fact, this is far from being the case: in this setting, there are, in
general, not even any continuous sections of Z as the following theorem shows.

Theorem 6.1. Let M = M1 × · · · ×Mr be an even-dimensional product of connected
Riemannian symmetric spaces of semisimple type with M1 = Gk(Rk+n) a Grassmannian
of oriented k-planes in Rk+n with n, k odd and n ≥ k > 1. Then Z has no globally
defined continuous sections.

In particular, M admits no Hermitian complex structures.

Proof. A continuous section of Z must lie in some Zq and so gives a reduction of the
K-bundle G → G/K = M to some Hk. However, τ -maximal parabolic subalgebras
commute with the de Rham decomposition of M so that restricting attention to a slice
M1 ⊂ M , we get a reduction of the SO(k) × SO(n)-bundle SO(n + k) → Gk(Rk+n)
to the centralizer of a maximal torus in SO(k) × SO(n). However, such a reduction
would induce a splitting of the tautological k-plane bundle W → Gk(Rk+n) into a line
sub-bundle and its complement:

W = L⊕ L⊥

and such splittings do not exist for topological reasons. Indeed, such a splitting would
give a factorization of Stiefel-Whitney classes

wk(W ) = w1(L)wk−1(L⊥),

but w1(L) = 0 since H1(Gk(Rn+k),Z2) vanishes while wk(W ) is known to be non-zero,
see [4] for example. �

Example 5. Finally, we prove a result of a different nature, relating the topology of G/K
to that of the components of Z under the simplifying assumption that K is connected
(this involves no loss of generality when G/K is of non-compact type).

We prove

Theorem 6.2. Let G/K be an even-dimensional Riemannian symmetric space of compact
or non-compact type with G, K connected and let X be a connected component of Z ⊂
J(G/K). Then

π1(G/K) = π1(X).

Proof. From theorem 5.5, we know that any component of Z arises in the following
manner: fix a τ -maximal parabolic subalgebra q and let Lk be the normalizer of q in K.
Let lp be the centralizer of lk in p and take a connected component J0(lp) ⊂ J(lp). Then
X = G×K (K/Lk × J0(lp)) is a connected component of Z and all components arise this
way.

Now Lk coincides with the normalizer in K of the parabolic subalgebra qk of kC and
so is the centralizer of a torus in K whence K/Lk is simply connected, as is J0(lp). The
homotopy long exact sequence of

K/Lk × J0(lp)→ X → G/K
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now gives
0→ π1(X)→ π1(G/K)→ π0(K/Lk × J0(lp)) = 0

whence π1(X) ∼= π1(G/K). �

As a corollary, we see that certain compact quotients of Riemannian symmetric spaces
of non-compact type have the same fundamental group as a compact complex manifold.
This partially answers a question posed to us by D. Toledo.

Theorem 6.3. Let D be an even-dimensional compact Riemannian locally symmetric
space with universal cover M a Riemannian symmetric space of non-compact type. Sup-
pose that, viewed as deck translations, Γ = π1(D) ⊂ I0(M). Then there is a compact
complex manifold with fundamental group Γ.

Proof. Let G = I0(M). Then M = G/K with K connected and M simply connected. Let
X be a component of Z ⊂ J(M). From theorem 6.2 we know that X is simply connected
and, moreover, X is a complex manifold on which G acts holomorphically. Thus Γ\X is
the required complex manifold. �
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